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Network Feedback Passivation of
Passivity-Short Multi-Agent Systems

Miel Sharf and Daniel Zelazo

Abstract—In this letter, we propose a network-
optimization framework for the analysis of multi-agent
systems with passive-short agents. We consider the
known connection between diffusively coupled maximally
equilibrium-independent passive systems, and network
optimization, culminating in a pair of dual convex network
optimization problems, whose minimizers are exactly
the steady-states of the closed-loop system. We pro-
pose a network-based regularization term to the network
optimization problem and show that it results in a network-
based feedback using only relative outputs. We prove that
if the average of the passivity indices is positive, then
we convexify the problem, passivize the agents, and that
steady-states of the augmented system correspond to
the minimizers of the regularized network optimization
problem. We also suggest a hybrid approach, in which only
a subset of agents sense their own output, and show that if
the set is nonempty, then we can always achieve the same
correspondence as above, regardless of the passivity
indices. We demonstrate our results on a traffic model with
non-passive agents and limited GNSS reception.

Index Terms—Networked control systems, cooperative
control, optimization, network analysis and control.

I. INTRODUCTION

D ISTRIBUTED control has been extensively studied in the
last few years, due to its applications in many scientific

and engineering fields [1], [2]. One repeatedly used method
in cooperative control is the notion of passivity [3], [4]. It
was first introduced in this framework in [5] to study group
coordination, but was later used in other areas as robotics,
biochemical systems and cyber-physical systems [6]–[8].

Many variants of passivity have been introduced over the
years to tackle problems in cooperative control, including
incremental passivity [9] and relaxed co-coercivity [2], [7].
Another important notion is equilibrium-independent passiv-
ity (EIP) [10], which considers passivity with respect to all
steady-state I/O pairs. For EIP systems, the steady-state I/O
pairs are related by a single-valued function. EIP was used to

Manuscript received February 24, 2019; revised April 9, 2019;
accepted April 24, 2019. Date of publication May 1, 2019; date of cur-
rent version May 13, 2019. Recommended by Senior Editor C. Seatzu.
(Corresponding author: Miel Sharf.)

The authors are with the Faculty of Aerospace
Engineering, Israel Institute of Technology, Haifa 32000, Israel
(e-mail: msharf@tx.technion.ac.il; dzelazo@technion.ac.il).

Digital Object Identifier 10.1109/LCSYS.2019.2914128

study port-Hamiltonian systems [11], but it does not apply to
single integrators and other marginally stable systems.

To tackle this problem, the notion of maximal equilibrium-
independent passivity (MEIP) for SISO systems was intro-
duced in [12]. It also considers passivity with respect to all
equilibria, but asks the collection of steady-state input-output
pairs to be a maximal monotone relation instead of a function.
In [12], [13], a connection was established between analysis of
diffusively-coupled MEIP systems and network optimization
theory, culminating in two dual network optimization prob-
lems characterizing the steady-states of the diffusively coupled
network. This framework was used in [14] to solve the syn-
thesis problem, and in [15] to solve a network identification
problem.

In practice, many systems are not passive. Their short-
age of passivity is usually quantified using passivity
indices [16], [17]. Several attempts to use networks of passive-
short systems have been made [18], [19], but only linear
controllers were considered. Other attempts only consider
static nonlinearities as controllers [20]. Moreover, the analysis
of multi-agent passive-short systems is difficult. The network
optimization framework proposed in [12], [13] might be unde-
fined, or the network optimization problems might not charac-
terize the steady-states of the closed-loop systems [21], [22].
In this direction, we consider a diffusively-coupled network of
agents, each having a uniform shortage of passivity across all
equilibria. Analysis of these passive short diffusively-coupled
systems was tackled in [21], and later generalized in [22],
by regularizing the network optimization problems obtained
by the network optimization framework for MEIP systems.
However, the solution requires an appropriate loop transfor-
mation for each individual agent, which is not applicable in
many situations, either because the agents cannot sense their
own output, or the agents are not amenable to the network’s
designer. We propose a different solution here, relying on the
network structure to overcome the lack of passivity, thus allow-
ing applications of the framework even when agents cannot
sense their own output. Our contributions are as follows.

We propose a Tikhonov-type regularization to the network
optimization problem, consisting only of network-level vari-
ables. We show that if the sum of the passivity indices
over the agents is positive, then the proposed regularization
not only convexifies the corresponding optimization problem,
but it is equivalent to a network-only feedback passivation
of the closed-loop system. Furthermore, we propose another
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Fig. 1. Block diagrams of diffusive networks and general feedback
systems. (a) A diffusively coupled network (G, �,�). (b) A general
feedback interconnection.

Tikhonov-type regularization requiring no assumptions on the
passivity indices of the agents, containing both network-level
variables, as well as variables belonging to a prescribed set
of agents. We show that this hybrid regularization term is
equivalent to a feedback passivation containing a network-
only term, and a loop transformation for each of the agents
in the prescribed set. We also show that if the prescribed
set is nonempty, then the regularization term convexifies the
optimization problem and passivizes the system.

The rest of this letter is as follows. Section II reviews MEIP
systems and equilibrium-independent passive-short systems.
Section III formally states and solves the problem. Section IV
presents a case study, and Section V concludes this letter.

Notations: This letter employs basic notions from algebraic
graph theory [23]. An undirected graph G = (V,E) consists
of a finite set of vertices V and edges E ⊂ V × V. We denote
the edge that has ends i and j in V by k = {i, j} ∈ E. For each
edge k, we pick an arbitrary orientation and denote k = (i, j)
when i ∈ V is the head of edge k and j ∈ V the tail. The
incidence matrix of G, denoted E ∈ R

|E|×|V|, is defined such
that for edge k = (i, j) ∈ E, [E]ik = +1, [E]jk = −1, and
[E]�k = 0 for � �= i, j. For a convex function F, its dual is also
convex and defined by F�(b) = supa{aTb − F(a)} [24].

II. PASSIVITY AND NETWORK OPTIMIZATION

We consider the following dynamical system, defined on a
graph G = (V,E). Namely we consider |V| agents and |E|
controllers, having the following state-space models,

�i :

{
ẋi = fi(xi, ui)

yi = hi(xi, ui)
, �e :

{
η̇e = φe(ηe, ζe)

μe = ψe(ηe, ζe)
, (1)

with inputs ui, ζe, outputs yi, μe and states xi, ηe, for i ∈
V, e ∈ E. We consider stacked vectors u = [u1, . . . , u|V|]T ,
and similarly for y, ζ and μ. The loop is closed by taking
ζ(t) = ETy(t) and u(t) = −Eμ(t). The closed loop is called
a diffusively-coupled system, denoted as a triplet (G, �,�),
and exhibited in Fig. 1(a). We note that the orientation does
not matter, as if the e-th edge is flipped, we can “flip” the
e-th controller, giving it input −ζe(t) and demanding output
−μe(t), which will give the same closed-loop behaviour as
the previously orientated system.

Our approach to the analysis of the system (G, �,�)
is based on the notion of equilibrium-independent passivity

(EIP) [10], and maximal equilibrium-independent passivity
(MEIP) [12]. As the name suggests, these properties require
that the system is passive with respect to any equilibrium I/O
(I/O) pair. Moreover, they study the collection of I/O pairs of
the system. In EIP, we demand that there is a continuous func-
tion k mapping steady-state inputs uss to steady-state outputs
yss. EIP holds for many systems, but it leaves out other impor-
tant systems, like marginally stable systems, e.g., the single
integrator ẋ = u, y = x, whose steady-state input output-pairs
are u = 0 and any y ∈ R. To address this issue, MEIP was
proposed in [12]. In MEIP, we consider the collection k of all
steady-state I/O pairs (uss, yss), called the steady-state input
output relation of the system.. It gives rise to two set-valued
functions, denoted k and k−1. If u is a steady-state input, and
y is a steady-state output, we let k(u) be the set of all steady-
state outputs corresponding to u, and k−1(y) be the set of all
steady-state inputs corresponding to y. We now define MEIP.

Definition 1 [12]: A SISO system is (output-strictly) MEIP
if the system is (output-strictly) passive with respect to any
steady-state I/O pair (u, y), and its steady-state relation is
maximally monotone.1

The monotonicity requirement in Definition 1 stems from
two origins. The first being the fact that the steady-state
function k for EIP systems is monotone. The second is that
maximally monotone relations are closely tied to convex func-
tions. A theorem by Rockafellar [25] shows that a maximally
monotone relation is the subgradient of a convex function (and
vice versa), and the convex function is unique up to an additive
constant.

We now consider a diffusively coupled network (G, �,�)
with MEIP agents and controllers. We denote the steady-state
I/O relations of �i,�e by ki, γe respectively, and the stacked
versions by k, γ . By the theorem above, there exists convex
functions Ki, �e such that ki = ∂Ki and γe = ∂�e, and their
sums K, � satisfy ∂K = k, ∂� = γ . In [13], it is shown that
y is a steady-state output of the closed-loop system if and
only if 0 ∈ k−1(y) + Eγ (ETy). Moreover, ∂K = k, ∂� = γ ,
meaning that k−1(y)+ Eγ (ETy) is exactly the subgradient of
K�(y) + �(ETy), where K�(y) = minu{yTu − K(u)} is the
convex dual function of K and ∂K� = k−1 [24]. Using convex
optimization theory, [12] proved the following:

Theorem 1 [12]: Consider a diffusively-coupled network
(G, �,�) with output-strictly MEIP agents and MEIP con-
trollers. Let K, � be the stacked integral functions for the
agents and the controllers, respectively. Then the signals
u(t), y(t), ζ(t), μ(t) converge to constant steady-states, which
are (dual) optimal solutions to the static network optimization
problems:

1For all steady-state I/O pairs (u1, y1), (u2, y2), (u2 − u1)(y2 − y1) ≥ 0
and is not contained in a larger monotone relation.
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Remark 1: The proof of Theorem 1, as seen in [13], con-
sists of two parts. The first shows that if there is a steady-state
I/O pair (u, y) for the agents �, a steady-state I/O pair
(ζ, μ) for the controllers �, and ζ = ETy, u = −Eμ, then
the closed-loop system converges. This part is based on the
output-strict passivity of � and the passivity of �. The sec-
ond part (for (OPP)) shows that the steady-state equation
0 ∈ k−1(y) + Eγ (ETy) is equivalent to the minimization of
K�(y) + �(ETy). This part is based on the convexity of the
integral function K�(y)+ �(ETy).

The feedback configuration in Fig. 1(a) can be thought of
more abstractly as the symmetric feedback configuration of
two MIMO systems P and Q with the matrix M, as shown
in Fig. 1(b). This added layer of abstraction, in which we
treat the stacked agents and controllers as MIMO dynamical
systems and study their I/O steady-state behavior, will be of
great importance later. The reason is that P, in our case, will
be a feedback connection of the agents � with some network
control law, coupling the agents together, and forcing us to
consider them as a single, indecomposable system.

Lastly, we wish to deal with multi-agent systems that
have shortage of passivity. We define equilibrium-independent
shortage of passivity, as defined in [21].

Definition 2: The system � is equilibrium-independent
output-passive short (EIOPS) if there exist some ρ < 0 such
that for any steady-state I/O pair (u, y), there exists a storage
function S(x) such that:

Ṡ ≤ (u − u)T(y − y)− ρ(y − y)T(y − y), (2)

for any trajectory with input u and output y.
One should note that (2) also defines passivity (if ρ = 0),

and output-strict passivity (if ρ > 0).

III. NETWORK REGULARIZATION AND PASSIVATION

From now on, we fix a collection {�i} of n agents, and an
underlying graph G = (V,E) on n vertices. For the rest of this
letter, we also make the following assumption:

Assumption 1: For each i ∈ V, there is a storage function
Si and some ρi ∈ R such that the SISO dynamical system
�i satisfies (2) for any (ui, yi) in the steady-state relation ki.
Moreover, we assume that the inverse steady-state relation k−1

i
is a function defined over R. In this case, we can choose an
integral function for k−1

i defined by K�i (y) = ∫ y
y0

k−1
i (ỹ)dỹ.

Thus K�i are differentiable and ∇K�i = k−1
i . We denote K(y) =∑

i Ki(yi).
Suppose one chooses MEIP controllers {�e} over the edges,

with steady-state I/O relations γe and integral functions �e,
and let �(ζ ) = ∑

e �e(ζe). In this case, Theorem 1 does
not prove convergence due to lack of passivity, but more-
over, the problem (OPP), minimizing K�(y)+ �(ζ ) such that
ETy = ζ , might not be convex. Indeed, as seen in [21], [22],
the integral functions K�i might not be convex. In [21], a
Tikhonov type regularization term of the form 1

2

∑
i∈V

βiy2
i ,

where βi > 0 [26] was introduced. In turn, this led to the
passivation of each agent using the control law ui = vi −βiyi,
where vi is some exogenous input, assuming βi > −ρi. Later,
an analysis theorem was established for closed loop with the

new, passivized agents, showing that the steady-states of this
closed loop networked system correspond to minima of the
regularized (OPP), minimizing K�(y)+ �(ζ )+ 1

2 yTdiag(βi)y
with the constraint ζ = ETy. For notational convenience, we
denote R = diag{ρ1, . . . , ρ|V|}.

This method allows for analysis, and later synthesis of
passive-short multi-agent systems. However, it requires each
agent to implement the control law ui = vi − βiyi. This might
not be possible in applications for two reasons. First, the agents
might not be able to sense their self-output yi, but only rela-
tive outputs yi −yj. This is the case in many formation control
problems, or real-life applications for robots in areas without
GNSS (Global Navigation Satellite System) reception. Second,
the planner of the multi-agent system might not be able to
intervene with the agents’ dynamics. This is the case in open
networks. Thus we strive for a different network regularization
term.

A. Network-Only Regularization and Passivation

We consider a different Tikhonov-type regularization term,
of the form of 1

2

∑
e∈E

βeζ
2
e , depending only on the network

variables ζ . This gives rise to the network-regularized optimal
potential problem (NROPP):

min
y,ζ

K�(y)+ �(ζ )+ 1

2
ζ TBζ s.t. ETy = ζ, (NROPP)

where B = diag(β) = diag{β1, . . . , β|E|} is a design parameter
that will be appropriately chosen to make (NROPP) convex.
We can consider the cost function of (NROPP) as the sum of
two functions - the first is �(ζ ), which is known to be convex.
The second is K�(y) + 1

2ζ
Tdiag(β)ζ . Following the notation

in [21] and recalling that ζ = ETy, we denote the latter as

��N(y) = K�(y)+ 0.5yTEdiag(β)ETy. (3)

The following theorem proves that this new, regularized
integral function for the agents is induced by a network
consensus-type feedback.

Proposition 1: Consider the agents �i satisfying
Assumption 1. Let ��N , given by (3), be the network-
regularized integral function for the agents. Then ��N is
differentiable. Moreover, consider the MIMO system �̃ given
by the parallel interconnection of the agents {�i}i∈V with an
output-feedback control of the form

u = v − Ediag(β)ETy, (4)

with some new exogenous input v ∈ R
n, i.e., �̃ is modeled

as the feedback-interconnection of ẋ = f (x, u), y = h(x, u)
and (4). Let λN be its I/O steady-state relation. Then λ−1

N is a
function, and ∇��N = λ−1

N .
Proof: The proof is similar to the proof of [21, Th. 1]. ��N

is differentiable as a sum of the differentiable functions K�

and 1
2 yTEdiag(β)ETy. Its derivative is given by

∇��N(y) = k−1(y)+ Ediag(β)ETy. (5)

If (u, y) is a steady-state I/O pair for the agents, and we denote
v = ∇��N(y), then (5) is equivalent to

v = u + Ediag(β)ETy. (6)
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(a) (b)

Fig. 2. Block diagrams of suggested network-based regularization
schemes. (a) Network only regularization. (b) Hybrid network regular-
ization with one self-regulating agent �|V|.

Rearranging the terms, we conclude that (v, y) is a steady-state
I/O pair for the closed-loop system �̃ given by the agents with
the network feedback as in (4), as u = v − Ediag(β)ETy and
y are a steady-state I/O pair for the agents �. This completes
the proof.

In other words, Proposition 1 gives the following
interpretation of (NROPP). It is the optimal potential problem
(OPP) for the closed-loop system which is the feedback con-
nection of the controllers � with the augmented agents �̃,
as seen in Fig. 2(a). We also note that the feedback term
is orientation-independent, as it can be written using the
weighted Laplacian of the graph. In the spirit of feedback
connection of passive systems, and because the controllers �
are MEIP, we wish to understand when �̃ is passive.

Proposition 2: Suppose that R + Ediag(β)ET is positive-
semi definite.2 Then �̃ is passive with respect to any steady-
state I/O pair. Moreover, if the matrix is positive-definite, then
�̃ is output-strict passivity.

Proof: We take a steady-state I/O pair (v, y) for �̃, so
that (u, y) is a steady-state I/O pair of � where v = u +
Ediag(β)ETy. If S(x) = ∑

i S(xi) is the sum of the agents’
storage functions , summing (2) over the agents gives

Ṡ ≤ −(yi − yi)
TR(yi − yi)+ (yi − yi)

T(ui − ui).

Substituting ui = vi − Ediag(β)ETy gives

Ṡ ≤ −(yi − yi)
TR(yi − yi)+ (yi − yi)

T(vi − vi)

− (yi − yi)
TEdiag(β)ET(yi − yi).

Grouping R and Ediag(β)ET completes the proof.
We conclude the following theorem.
Theorem 2: Let {�i}i∈V be agents satisfying Assumption 1

with passivity indices ρ1, . . . , ρn. Let {�e}e∈E be MEIP
controllers with stacked integral function �. Consider the
closed-loop system with the controller input ζ = ETy and
the control input u = −Eμ−Ediag(β)ζ . If R+Ediag(β)ET is
positive-definite, then the closed-loop system converges to a
steady-state. Moreover, the steady-state output y and ζ = ETy
are the optimal solutions to the problem (NROPP).

2Recall R = diag{ρ1, . . . , ρ|V|} with ρi the passivity index of �i.

Proof: By the discussion above, the closed-loop system is
a feedback connection of the network-regularized agents �̃,
which are output-strictly passive with respect to any steady-
state they have, and the controllers �, which are MEIP.
Moreover, the augmented agents’ steady-state I/O relation λ−1

N
is the gradient of the function ��N . The proof now follows from
Theorem 1 and Remark 1.

We now ask ourselves how to ensure R + Ediag(β)ET is
positive-definite by appropriately choosing the gains βe. To
answer that question, we prove the following.

Theorem 3: Let ρ1, . . . , ρ|V| be any real numbers and
assume G is connected. There exists some β1, . . . , β|E| such
that diag(ρ) + Ediag(β)ET is positive definite if and only if∑

i∈V
ρi is strictly positive.

Proof: Suppose first that there exist some β1, . . . , β|E|
such that X = R + Ediag(β)ET is positive definite. Then
1T

|V|X1|V| > 0, where 1|V| is the all-one vector. However,
ET1|V| = 0, so 0 < 1T

|V|X1|V| = 1T
|V|R1|V| = ∑

i ρi.
As for the other direction, suppose that

∑
i ρi > 0. We show

that if b is large enough, then R + bEET is positive definite,
which will conclude the proof as we can choose βe = b. As
the matrix in question is symmetric, it’s enough to show that
for any x ∈ R

|V|, xT(R + bEET)x ≥ 0.
We can write any vector x ∈ R

|V| as x = α1|V| + Ez for
z ∈ R

|E| orthogonal to ker(E). The quadratic form is

xT(R + bEET )x = α2
∑

i

ρi + zTET R(2α1|V| + Ez)+ b||ETEz||2,

where we use ET1|V| = 0. Now, ETE is a positive
semi-definite matrix, and z is orthogonal to its kernel, as
ker(ETE) = ker(E). Thus ||ETEz|| ≥ λmin,�=0(ETE)||z||, where
λmin,�=0(ETE) is the minimal non-zero eigenvalue. Moreover,
ETE and EET share nonzero eigenvalues [27], hence the
minimal nonzero eigenvalue of ETE is λ2(G), the second
eigenvalue of the graph Laplacian. Therefore the quadratic
form is bounded from below by

α2
∑

i

ρi + 2αzTETR1|V| + zTETdiag(ρ)Ez + bλ2
2(G)||z||2

=
∥∥∥∥
√∑

i ρi√|V| α1|V| +
√|V|√∑

i ρi
REz

∥∥∥∥
2

+ zT
(
ETRE − |V|∑

i ρi
ETR2E + bλ2(G)2Id

)
z.

The first summand is non-negative, as it is a norm, and the
second is non-negative if the symmetric matrix multiplying zT

and z is positive-definite, which is guaranteed if

b >
λmax

( |V|∑
i ρi

ETdiag(ρ)2E − ETdiag(ρ)E)
λ2(G)2

:= b,

where λmax(·) is the largest eigenvalue of a matrix. This
completes the proof.

Remark 2: Note that if G is not connected, the result of
Theorem 3 holds if we require that the sum is positive on
each connected component.

Example 1: One might expect that if we only demand
positive-semi definiteness in Theorem 3, we might be able
to accommodate

∑
i∈Vc

ρi = 0. However, this is not
the case. Consider a two-agent case with ρ1 = 1 and
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ρ2 = −1. There is only one edge in the case, diag(ρ) +
Ediag(β)ET =

[
1 + β −β
−β −1 + β

]
. This matrix can never be

positive semi-definite, as its determinant is equal to −1 < 0.
Thus, the agents cannot be passivized using the network.

Theorem 3 not only gives a good characterization of the
diffusively-coupled systems that can be passivized, but also
gives a prescription for network passivation, namely have a
uniform gain of size b + ε , for some ε > 0, over all edges.
However, it shows that not all diffusively-coupled systems sat-
isfying Assumption 1 can be network-passivized. This can be
problematic in some applications, e.g., open networks in which
the sign of the sum

∑
i ρi might be volatile, meaning that there

might be long periods in which we cannot provide a solution.
For that reason, we consider a more general approach in the
next subsection.

B. Hybrid Approaches for Regularization and Passivation

We return to the problem of regularizing the non-convex
network optimization problem (OPP). We consider a quadratic
regularization term of the form 1

2ζ
Tdiag(β)ζ as before, but add

another Tikhonov-type regularization type in the spirit of [21],
1
2 yTdiag(α)y. Namely, we consider the Hybrid-Regularized
Optimal Potential Problem (HROPP),

min
y,ζ

K�(y)+ �(ζ )+ 1

2
ζ Tdiag(β)ζ + 1

2
yTdiag(α)y

s.t. ETy = ζ. (HROPP)

As we’ll see, unlike in [21], the vector α = [α1, . . . , α|V|]T

can be very sparse. Namely, we can prove the following.
Theorem 4: Consider the agents �i satisfying

Assumption 1. Let �H(y) = K�(y) + 1
2ζ

Tdiag(β)ζ +
1
2 yTdiag(α)y. Then ��H is differentiable. Moreover, con-
sider the MIMO system �̃ given by the agents with the
output-feedback control

u = v − Ediag(β)ETy − diag(α)y, (7)

with a new exogenous input v ∈ R
n. Let λH be its I/O relation.

Then λ−1
H is a function, and ∇��H = λ−1

H .
Proof: Similar to the proof of Proposition 1.
Theorem 5: Let {�i}i∈V be agents satisfying Assumption 1.

Let {�e}e∈E be MEIP controllers with stacked integral func-
tion �. Consider the closed-loop system with the controller
input ζ = ETy and the control input u = −Eμ−Ediag(β)ζ −
diag(α)y. If the matrix diag(ρ + α)+ Ediag(β)ET is positive-
definite, then the closed-loop system converges. Moreover, the
steady-state output y and ζ = ETy are the optimal solutions
to the problem (HROPP).

Proof: Similar to the proof of Theorem 2.
Corollary 1 (Almost Network-Only Regularization): Let

{�i}i∈V be agents satisfying Assumption 1, and suppose that
the graph G is connected. Let Vsr ⊆ V be any nonempty
subset of the agents. Let {�e}e∈E be MEIP controllers with
stacked integral function �. Consider the closed-loop system
with the controller input ζ = ETy and the control input
u = −Eμ − Ediag(β)ζ − diag(α)y. Then there exist vectors
α ∈ R

|V|, β ∈ R
|E| such that:

i) For any vertex i �∈ Vsr, αi = 0.

ii) The closed-loop system converges to a steady-state.
iii) The steady-state output y and ζ = ETy are the optimal

solutions to the optimization problem (HROPP).
An example of the closed-loop system for a single self-

regulating agent �|V| can be seen in Fig. 2(b).
Proof: By Theorem 5, it’s enough to find some α, β satis-

fying the first condition such that diag(ρ + α)+ Ediag(β)ET

is positive-definite. Fixing α, Theorem 3 implies that there is
some β such that diag(ρ+α)+Ediag(β)ET is positive-definite
if and only if

∑
i(ρi + αi) > 0, or

∑
i αi > −∑

i ρi. Taking
any i0 ∈ Vsr and choosing αi = 1 − ∑

i ρi for i = i0, and
αi = 0 otherwise, finishes the proof.

Remark 3: The set Vsr in the theorem can be thought
of the set of vertices that can sense their own output, and
are amenable to the network designer (i.e., self-regularizable
agents). The theorem shows the strength of the hybrid
approach for regularization of (OPP). we can choose almost
all αi-s to be zero - namely one agent is enough. In practice,
this solution is less restrictive than the one offered in [21].

IV. CASE STUDIES

Consider the traffic dynamics model proposed in [28], in
which vehicles adjust their velocity xi according to the equa-
tion ẋi = κi(Vi(�p) − xi), where κi > 0 is a constant
representing the sensitivity of the i-th driver, and

Vi(�p) = V0
i + V1

i

∑
j∼i

tanh(pj − pi), (8)

is the adjustment, where V0
i are the preferred velocities, and

V1
i are the “sensitivity coefficients." This model was studied

in [12], where it was shown that it can inhibit a clustering
phenomenon. In [21], the case of κi < 0, attributed to drowsy
driving, was studied. There, a self-gain-feedback was applied
for each agent, resulting in a network of MEIP agents.

Consider a case where only some agents know their own
velocity (e.g., by a GNSS measurement). Thus, agents which
have no GNSS reception cannot implement the regularization
of (OPP), or the self-feedback loops, proposed in [21]. Instead,
we opt for the hybrid regularization suggested above.

The model is a diffusively coupled network with the agents
�i : ẋi = κi(−xi + V0

i + V1
i u), yi = xi and the con-

trollers �e : η̇e = ζe, μe = tanh(ηe). The agents are
EIOPS if V1

i κi > 0, with ρi = κi, so κi > 0 corresponds
to output-strict MEIP. We suppose that only agent i0 has
GNSS reception, so we implement a correction term of the
form αi0 y2

i0
+ βζ Tζ to (OPP), giving us (HROPP). The new

control law is u(t) = −αi0 xi0 ei0 − βEETx − V(�p) where
V(�p) = [V1(�p), . . . ,Vn(�p)]T , and ei is the i-th standard
basis vector. Only the states xi0 and ETx are used in the con-
trol law, meaning that no agent but i0 is required to know its
velocity in a global frame of reference, but only positions and
velocities relative to its neighbors.

To illustrate this, we consider a network of n = 100 agents,
all connected to each other, with parameters κi randomly cho-
sen either as −1 (w.p. 1/3) and 1 (w.p. 2/3). Moreover, the
parameters V0

i were chosen as a Gaussian mixture model, with
half of the samples having mean 20 and standard deviation 15,
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(a) (b)

Fig. 3. Traffic control model. (a) Vehicle trajectories for network-only
regularization. (b) Asymptotic behaviour predicted by (NROPP).

and half having mean 120 and standard deviation 15. Lastly,
V1

i where chosen as 0.8κi. In [12], it is shown that (OPP) in
this case is given by

min
y,ζ

∑
i

1

2V1
i

(yi − V0
i )

2 +
∑

e

|ζe| s.t. ζ = ETy,

meaning that (HROPP) is given by:

min
y,ζ

∑
i

1

2V1
i

(yi − V0
i )

2 +
∑

e

|ζe| + αi0y2
i0 + β

∑
e

ζ 2
e

s.t. ζ = ETy.

Here, the sum
∑

i ρi = ∑
i κi is positive, so we use

the network-regularization method, choosing αi0 = 0, and
(HROPP) reduces to (NROPP). Choosing β = b+ε, we apply
Theorems 5 and 3 to conclude that the system converges, and
find its steady-state limit. We plot the trajectories of the system
in Fig. 3(a), as well as the minimizer of (NROPP) in Fig. 3(b).
One can see that the steady-state value of the system matches
the forecast, namely the minimizer of (NROPP). It should
be noted that we obtain a clustering phenomenon, as noted
in [12]. However, the agents form much larger clusters than
in [12]. This is due to the term −βEETx appearing in u, which
not only passivizes the system, but also forces the trajectories
closer to a consensus.

V. CONCLUSION

We considered a diffusively-coupled network of
equilibrium-independent output-passive-short (EIOPS)
agents. As the agents are not MEIP, the associated network
optimization problem (OPP) need not be convex. We proposed
a regularization term, based only on the network-level vari-
ables ζ , and proved it corresponds to applying a network-only
feedback term on the agents. In turn, we showed that if

∑
i ρi

is positive, where ρi is the i-th agent’s passivity parameter,
then we successfully convexify (OPP), and that steady-state
outputs of the new closed-loop system correspond to mini-
mizers of the regularized minimization problem, (NROPP).
We also proposed a hybrid approach, in which we regularize
(OPP) both with network-level variables ζ and only a subset
of the agent outputs. We showed that (OPP) can always be
convexified using this term, and steady-state outputs of the
new closed-loop system correspond to minimizers of the
regularized problem, (HROPP). Future research can study
a more refined network-based regularization term, in which
different edges are assigned different gains.
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