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Abstract— The present paper investigates the robustness of
the consensus protocol over weighted directed graphs using the
Nyquist criterion. The limit to which a single weight can vary,
while consensus among the agents can be achieved, is explicitly
derived. It is shown that even with a negative weight on one
of the edges, consensus may be achieved. The result obtained
in this paper is applied to a directed acyclic graph and to
the directed cycle graph. Graph theoretic interpretations of the
limits are provided for the two cases. Simulations support the
theoretical results.

I. INTRODUCTION

The consensus protocol is an important problem in multi-
agent systems, that has received a lot of attention [1]. In this
context, some work on the robustness of undirected graphs
has been carried out by merging concepts from graph theory
and robust control [2], [3]. These involve the application of
the small gain theorem to the networked dynamic system
described by the graph Laplacian and the edge Laplacian ma-
trices. Particularly, [3] considered the possibility of admitting
negative weights on some of the edges. The context in which
negative edge weights arise are discussed therein and also
in the special case of cyclic pursuit as in [4], [5]. However,
only undirected graphs, whose Laplacians are symmetric and
therefore lend themselves to analysis, have been studied.
This paper considers a weighted directed graph (digraph) for
similar robustness studies. Thus the agents run a consensus
protocol over a weighted digraph [6]. It will be shown in
this paper that even in the absence of symmetric Laplacians,
robust stability analysis can be carried out for a special class
of weighted digraphs.

The networked system is first transformed to edge vari-
ables, leading to a directed edge agreement protocol, origi-
nally studied in [2] for undirected graphs. This work further
develops properties of the directed edge Laplacian matrix.
Some recent work such as [7]–[9] also present some results
on the un-weighted edge Laplacian for a digraph. In [2]
the edge Laplacian aided in studying the roles of certain
subgraphs such as cycles and spanning trees in the agreement
problem. Both [2] and [3] built the platform for robustness
studies (performance and stability) of the consensus problem
over undirected graphs. The main focus of this work is to
consider the robust stability of the directed and weighted
edge agreement protocol where uncertainty in the model is
introduced in the form of a perturbation to one of the edge
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weights. The robust stability result for a general weighted
digraph is first derived using the Nyquist criteria. Further
analysis is then provided, along with graph-theoretic inter-
pretations, for two specific classes of graphs - the directed
acyclic graph and the directed cycle graph. It is shown that
for a directed acyclic graph, robust stability requires the
magnitude of the negative weight of the uncertain edge to
be less than the sum of the nominal positive weights of its
sibling edges. For the directed cycle graph, it is shown that
the limit on the perturbation on a single edge weight is the
same as the one obtained in the literature [4], [5]. In terms
of graph resistance, this limit is such that the resistance of a
perturbed edge, ek, running from node i to node j, must be at
least equal to the negative of the equivalent graph resistance
between nodes i and j, with ek removed.

Section II describes the edge Laplacian for a weighted
digraph and then some of its properties are stated. The
robust stability of the uncertain edge protocol for a weighted
digraph is analyzed in Section III. Section IV presents
relevant simulations to support the results and Section V
concludes the paper.

Notation: The null space and range space of a matrix A
are denoted by N (A) and R(A), respectively. The vectors
of all-ones and all-zeros in Rp are denoted by 1p and 0p
respectively. A weighted digraph, G, is specified by its vertex
set V , the edge set E that captures the incidence relation
between pairs of V , and the diagonal weight matrix W which
contains the weights of the edges. When the weights are all
unity, the graph is represented by V and E only. Throughout
this paper, it is assumed that |V | = n and |E| = m.

II. DIRECTED WEIGHTED EDGE LAPLACIAN

The graph Laplacian matrix provides a beautiful link
between discrete notions in graph theory to continuous
representations, such as vector spaces and manifolds [10].
Motivated by its role in consensus-seeking systems, an edge
variant of the Laplacian, known as the edge Laplacian, was
introduced in [2]. In this section, an extension of this work is
presented by considering directed and weighted graphs. As
will be shown in Section III, the edge Laplacian for digraphs
provides the correct algebraic construction to analyze the
robustness of consensus protocols over digraphs.

Some notions related to digraphs are first reviewed. A node
v ∈ V that can be reached by a directed path from every
other node in G is termed a globally reachable node. For
any digraph containing at least one globally reachable node, a
spanning subgraph Gτ ⊆ G, termed a rooted in-branching, is
defined such that there exists a directed path from every node
to a globally reachable node (or root), and all other nodes,
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except this root with out-degree 0, have out-degree equal to 1
in Gτ . For consensus over a digraph, there must be a globally
reachable node, and hence a rooted in-branching [11]. For
a digraph with a rooted in-branching, another subgraph, Gc,
can be defined such that Gτ ∪Gc = G. The subgraph Gτ has
n− 1 directed edges in the edge set Eτ , while the remaining
m−n+ 1 edges constitute the edge set Ec corresponding to
Gc (with E = Eτ ∪ Ec).

For undirected graphs, the graph and edge Laplacian
matrices can be defined in terms of the incidence matrix,
E(G). The incidence matrix is defined such that [E(G)]ij =
1 if edge ej is outgoing from vertex i, [E(G)]ij = −1 if
edge ej is incoming at vertex i, and [E(G)]ij = 0 otherwise.
The graph Laplacian for a directed graph can be defined
as Lg = A(G)E(G)T , where A(G) ∈ Rn×m is such that
[A(G)]ij = 1 if the edge ej is outgoing from vertex i and is
0 otherwise [7]. Similarly, Le = E(G)TA(G) is defined as
the directed edge Laplacian. The matrices E(G) and A(G),
for the digraph G, may be written as E and A for brevity.

The graph Laplacian and the edge Laplacian for the
weighted digraph G are given by L̄g = A(G)WE(G)T and
L̄e = E(G)TA(G)W , respectively, where, W ∈ Rm×m is a
diagonal matrix, whose diagonal entries are the weights of
the corresponding edges, that is Wii = wi > 0 ∀i.

A. The Directed Edge Laplacian: Properties

The directed edge Laplacian holds the key to the dynamics
of the directed edge agreement problem. Hence, the im-
portant properties of L̄e are central to an analysis of this
problem. The following results aid in that direction 1. Some
recent works also focus on directed edge Laplacians with
identical weights on all edges [7]–[9]. For a nonsingular W ,
dim[N (A)] = dim[N (AW )] and R(A) = R(AW ).

Lemma 1: For general weighted digraphs, N (AW ) ⊆
N (L̄e). For weakly connected weighted digraphs, if there
is at least one node with out-degree = 0, then N (L̄e) =
N (AW ), otherwise 1n ∈ R(A) and N (AW ) ⊂ N (L̄e).

Lemma 2: The following statements are equivalent:

1) A has a nontrivial null space.
2) A has at least two identical columns.
3) The out-degree of at least one vertex in G is greater

than unity.
Lemma 3: If G has r such vertices whose out-degrees are

greater than or equal to 1, then dim[N (L̄e)] ≥ m− r.
Lemma 4: If a digraph G has multiple globally reachable

nodes, then they form directed cycle(s) in G and 1n ∈ R(A).
Any vertex with an out-degree greater than unity con-

tributes to N (L̄e), by Lemmas 1-3. Moreover, from Lemma
1, if 1n ∈ R(A), then N (L̄e) 6= N (AW ). By Lemma 4, a
digraph having multiple globally reachable nodes must have
a directed cycle among the globally reachable nodes and so
every node must have an out-degree greater than 1. Thus,
from Lemmas 1 and 4, N (L̄e) 6= N (AW ) for such graphs.

1An extended version of this work with all the proofs is available online
at [12]
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Fig. 1: Dotted edge e8 (sibling to edge e2, with parent node
b) encoded in terms of the edges in the rooted in-branching.

B. Laplacians of Weighted Digraphs: Factorisations

To understand the graph theoretic relation between the
edges in Gτ and Gc and to characterize the latter in terms of
the former, the incidence matrix E(G) can be factorized in
certain forms. These factorisations also aid in the subsequent
analysis in Section III. Define two edges outbound from the
same node (parent node) as sibling edges. Further, suppose
that for the particular Gτ , the edges in Eτ are labelled e1
through en−1 with the corresponding parent nodes labelled
1 through n− 1. Clearly, no edge in Eτ has a sibling in Gτ .
The node with zero out-degree in Gτ (which corresponds to
any one globally reachable node, among possibly several, in
G) is labelled n. The incidence matrix is

E(G) = [E(Gτ ) E(Gc)] = E(Gτ )[In−1 Tτ ] = E(Gτ )R, (1)

where Tτ ∈ R(n−1)×(m−n+1) may be given by

Tτ = (E(Gτ )TE(Gτ ))−1E(Gτ )TE(Gc), (2)

as in [2]. The matrix E(Gτ )T ∈ R(n−1)×n has full row rank
and so the right inverse E(Gτ )(E(Gτ )TE(Gτ ))−1 exists.
Similarly, for a digraph with a single globally reachable node

A(G) = [A(Gτ ) A(Gc)] = A(Gτ )[In−1 T̃τ ] = A(Gτ )R̃, (3)

where T̃τ ∈ R(n−1)×(m−n+1), given by

T̃τ = (A(Gτ )TA(Gτ ))−1A(Gτ )TA(Gc), (4)

encodes the siblings of edges in Eτ , that are in Ec, while
A(Gτ ) corresponds to edges in Eτ . For R, the last m −
n + 1 columns represent how the m − n + 1 edges in Ec
can be encoded in terms of the edges in Eτ by a signed
path vector [2], as illustrated in the example of Fig. 1. A
signed path corresponding to an edge ei ∈ Ec between nodes
a and b in G is a sequence of edges in Gτ such that this
unoriented path leads from node a to node b. Denote the
i-th columns of R̃ and R as r̃i and ri, respectively, with
ri(k) denoting the k-th entry of the column vector ri. If
the signed path corresponding to any of the edges ei ∈ Ec
involves traversing an edge ej ∈ Gτ in the same direction as
its indicated direction in Gτ (or G), then ri(j) = +1, whereas
if it is traversed in a direction opposite to that marked on
it, then the same entry is −1. If the signed path does not
involve traversal of ej ∈ Eτ , then ri(j) = 0. In the example
of Fig. 1, e8 ∈ Ec is encoded in terms of e2, e3, e6, and e5 in
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Eτ . Thus, the corresponding entries in r8 ∈ R7, are non-zero
with the sign indicating the direction in which these edges
are traversed (whether in the same direction as indicated by
the arrowheads of the digraph, or opposite to it), while the
other entries are zero. Also, every edge in Ec is a sibling edge
to an edge in Eτ . So, the column in R̃ corresponding to any
edge eq ∈ Ec, will be a replica of the column corresponding
to its sibling edge in Eτ . Hence,r̃i = r̃j , 1 ≤ j ≤ n − 1
where, edge ei ∈ Ec and edge ej ∈ Eτ are sibling edges and

ri(k) =


+1, if ek is travelled in the + direction,
−1, if ek is travelled in the − direction,
0, if ek is not traversed

(5)

in the signed path for ei, for n− 1 < i ≤ m. The following
result is the same as Proposition 3.10 of [6].

Lemma 5 ( [6]): For a weighted digraph G having a
rooted in-branching and positive weights on all edges, the
eigenvalues of the graph Laplacian L̄g belong to the union
of the open right half plane with the origin.

Lemmas 6-7 are stated without proof 1.
Lemma 6: The edge Laplacian L̄e and the graph Lapla-

cian L̄g for a weighted directed graph (with positive weights)
G have the same non-zero eigenvalues.

Lemma 7: In a weighted digraph with positive weights
containing a rooted in-branching, the algebraic multiplicity
and geometric multiplicity of the zero eigenvalue of L̄e are
equal to m− n+ 1.

Lemma 8: In a weighted digraph with positive weights
and rooted in-branching, the graph Laplacian L̄g is similar
to [

E(Gτ )TA(G)WRT 0n−1
1n

TA(G)WRT 0

]
.

Proof: Consider the matrices S−1 = [E(Gτ ) 1n]T

and S = [E(Gτ )(E(Gτ )TE(Gτ ))−1 1
n1n]. Now S−1L̄gS =[

E(Gτ )TA(G)WRT 0n−1
1n

TA(G)WRT 0

]
, using (1)-(2).

Corollary 1: If the digraph in Lemma 8 had exactly one
globally reachable node then the factorisation in (3)-(4)
would hold and the graph Laplacian L̄g is similar to[

E(Gτ )TA(Gτ )R̃WRT 0n−1
1n

TA(Gτ )R̃WRT 0

]
.

Lemma 9: In a weighted digraph with positive weights
and rooted in-branching, the edge Laplacian L̄e is similar to[

E(Gτ )TA(G)WRT E(Gτ )TA(G)WNτ
0(m−n+1)×(n−1) 0(m−n+1)×(m−n+1)

]
,

where, the columns of the matrix Nτ ∈ Rm×(m−n+1) form
the orthonormal basis for N (R).

Proof: The matrix RT ∈ Rm×(n−1) has full column
rank and so the left inverse (RRT )−1R exists. Consider
V −1= [

(
(RRT )−1R

)T
Nτ ]T and V = [RT Nτ ]. Now,

V −1L̄eV =

[
E(Gτ )TA(G)WRT E(Gτ )TA(G)WNτ

0(m−n+1)×(n−1) 0(m−n+1)×(m−n+1)

]
.

∆

M(s)
y(t)u(t)

Fig. 2: Uncertain consensus protocol

Corollary 2: If the digraph in Lemma 9 had exactly one
globally reachable node then the factorisation in (3)-(4)
would hold and the edge Laplacian L̄e would be similar to[

E(Gτ )TA(Gτ )R̃WRT E(Gτ )TA(Gτ )R̃WNτ
0(m−n+1)×(n−1) 0(m−n+1)×(m−n+1)

]
.

From Lemma 7 and Corollaries 1-2, for G with pos-
itive weights and a rooted in-branching), the matrices
−E(Gτ )TA(Gτ )R̃WRT (for one globally reachable node),
and −E(Gτ )TA(G)WRT (for multiple globally reachable
nodes) are invertible. Furthermore, from Lemmas 5-9, both
of these matrices are Hurwitz.

III. ROBUST STABILITY OF UNCERTAIN DIRECTED
CONSENSUS

Consensus dynamics over a weighted digraph is driven by

ẋ = −L̄gx, (6)

where, x ∈ Rn denotes the node states. Pre-multiplying
both sides by E(G)T , yields ẋe = −L̄exe where, xe =
E(G)Tx = RTE(Gτ )Tx ∈ Rm denotes the edge states.
Choosing a suitable transformation z = V −1xe, it turns
out that z = [

(
(RRT )−1R

)T
Nτ ]TRTE(Gτ )Tx =

[xTE(Gτ ) 0Tm−n+1]T . Thus, the first n−1 components of z
represent the edge states of the rooted in-branching. Lemma
9 suggests that it is sufficient to concentrate on the dynamics
of the edges in the rooted in-branching, say xτ , given by

ẋτ = −E(Gτ )TA(G)WRTxτ . (7)

The notion of uncertainty is now introduced through the
edge weights. The perturbations are real and are bounded
about some nominal positive value. For this work, only
additive uncertainty on a single edge weight is considered
and so the weight on one of the m edges is perturbed. This
uncertainty on any edge weight wi, expressed as δi, is given
by |δi| < δ̄,∀i. The uncertainty set is thus

∆ = {∆ : ∆ = δi, |δi| ≤ δ̄ <∞}. (8)

The uncertain edge agreement protocol is

ẋτ = −E(Gτ )TA(G)(W + Pi∆P
T
i )RTxτ , (9)

with the uncertainties belonging to the set given by (8) and
Pi ∈ Rm is the i-th standard basis in Rm if the weight on
edge ei is considered uncertain.

A. Nyquist Stability Analysis

The uncertain system, described by (9), is transformed in
such a way that the uncertainty is separated from the nominal
plant as illustrated in Fig. 2. This formulation lends itself to
a stability analysis using the Nyquist criterion. Consider u
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and y as the input and output, respectively, of the plant while
the overall system is described by

ẋτ = −E(Gτ )TA(G)WRTxτ − E(Gτ )TA(G)Piu (10)

y = PTi R
Txτ , u = ∆PTi R

Txτ . (11)

The transfer function, M(s), between y(s) and u(s) is:

M(s)= −PTi RT [sI + E(Gτ )TAWRT ]−1E(Gτ )TAPi. (12)

The single-input single-output transfer function M(s) does
not have any pole at the origin because the system matrix in
(10) is of full rank. The scalar uncertainty ∆ can be analysed
using a classical Nyquist based approach.

Theorem 1: The consensus protocol, (6), over a weighted
digraph G (with positive weights) having a rooted in-
branching, is robustly stable to all perturbations δi on a single
edge weight wi, satisfying

|δi| < GM [M(s)], (13)

where GM denotes the gain margin for a transfer function.
Proof: Since the transfer function M(jω) in (12), as

depicted in Fig. 2, has no pole at the origin, the gain margin
is obtained by computing (12) at s = jωpc (which is the
phase crossover frequency). Now, from the Nyquist criterion,
stability dictates that |δi| < 1/|M(jωpc)|.

Two special digraphs are considered next: the directed
acyclic graph, having one globally reachable node, and a
directed cycle graph where every node is globally reachable.

Corollary 3: If the digraph in Theorem 1 is acyclic, the
factorization in (3)-(4) holds and the limit on the perturbation
on an edge, ei, is given by:

|δi| < |
(
PTi R

T (R̃WRT )−1R̃Pi

)−1
| (14)

Corollary 3 can be proved by applying to (13), the following

(E(Gτ )TA(Gτ )R̃WRT )−1 = (R̃WRT )−1(E(Gτ )TA(Gτ ))−1

with A = A(Gτ )R̃ as in (3)-(4).

B. Consensus over Uncertain Directed Acyclic Graphs

For directed acyclic graphs with a rooted in-branching,
(13) has a significant graph theoretic interpretation. The
factorisations of E and A, and the subsequent interpretations
of the columns of R and R̃ presented in Section II-B,
establish this connection. The following result leads to such
an interpretation of (13) for directed acyclic graphs 1.

Lemma 10: For a directed acyclic graph G, if r̃i = r̃j =
qj , 1 ≤ j ≤ n − 1, then ri(j) = +1, where qj is the j-th
standard basis for Rn−1.

Eqn. (13) suggests that an interpretation of the pertur-
bation bound involves an investigation of the structure of
[R̃WRT ]−1. Consider the matrix R̃WRT = Wτ + T̃τWcT

T
τ

(using (1) and (3)) where Wτ ∈ R(n−1)×(n−1) and Wc ∈
R(m−n+1)×(m−n+1) are diagonal matrices containing the
weights of the edges in Eτ and Ec, respectively. From (1)-(4),
the columns of Tτ and T̃τ are the columns n through m of R
and R̃, respectively. Thus, R̃WRT = Wτ +

∑m
i=n wir̃ir

T
i .

Now, using the Sherman-Morrison formula for inverse of

rank one updates [13] iteratively, Dm−n+2 = (R̃WRT )−1

can be obtained as edges in Ec are added one by one to the
rooted in-branching, Gτ , with the initial value D1 = W−1τ

and the update rule given by

Di+1 = Di −
wn+i−1Dir̃n+ir

T
n+i−1Di

1 + wn+i−1rTn+i−1Dir̃n+i−1
. (15)

It follows from (15) that for each additional edge ek ∈ Ec
incorporated, the j-th row, corresponding to its sibling edge
ej ∈ Eτ , is updated. Moreover, only those entries of the j-
th row which correspond to edges in Gτ that comprise the
equivalent signed path of ek are updated. For instance, in Fig.
1, when e8 is added, only [Di]22, [Di]23, [Di]25 and [Di]26 in
the second row will be updated. Only rows that have already
been updated at earlier iterations can be affected.

Theorem 2: The consensus protocol, over a weighted di-
rected acyclic graph G, with positive weights and a rooted
in-branching, is robustly stable to all perturbations δi on edge
weight wi, if the sum of the out-degree weights of the parent
node of edge ei is positive.

Proof: Consider a rooted in-branching Gτ for the
directed acyclic graph G. Clearly, such a rooted in-branching
will contain several branches, bw, each terminating in a single
globally reachable node. Label this node as n. Suppose the
labelling of the nodes on the branches follow two rules.
Firstly, any two nodes i and j along a branch bq are labelled
so that in Gτ , if |path length from i to n| > |path length from
j to n|, then i < j. Secondly, if any edge ek ∈ G starts from
a node i in branch bw and terminates in a node j of branch
bv , then i < j. These two rules will not contradict each
other unless there is a directed cycle that involves segments
of branches bv and bw. Consider further, a labelling such
that the first n − 1 edges in E consist of the rooted in-
branching such that the parent node of edge ei is node i,
for 1 ≤ i ≤ n−1. Further, it follows that with this labelling,
the head of any edge ei terminates at node j, where j > i.
Let the edges in Ec be labelled so that for any two edges
ef , eg ∈ Ec that are siblings of ei, ej ∈ Eτ , respectively with
i < j, one has f < g. This implies that the k − n + 1-
th column of T̃τ , that is t̃k−n+1, corresponding to edge
ek ∈ Ec, will have only one non-zero entry equal to 1 at
the p-th position if ep ∈ Eτ is a sibling of ek. Further,
column tk−n+1 of Tτ , corresponding to signed path of edge
ek ∈ Ec will be such that tk−n+1(p) = +1 (by Lemma
10) and tk−n+1(u) = 0 for u < p (by choice of labelling).
Let the weights of edges in Eτ be stored as the diagonals
of the diagonal matrix Wτ and those of edges in Ec be
stored in the diagonals of the diagonal matrix Wc. Thus,
R̃WRT can be expressed as R̃WRT = Wτ + T̃τWcT

T
τ .

Now, T̃τWcT
T
τ =

∑m−n+1
i=1 wm−n+1+it̃it

T
i is a weighted

sum of outer products and due to the structures of t̃i and ti
discussed above, is an upper triangular matrix. Consequently,
R̃WRT is also upper triangular with the i-th diagonal entry
containing the sum of the out degrees of the parent node
of edge ei ∈ Eτ . Next, consider the transfer function M(s)
given by M(s)= −PTi RTK(s)−1E(Gτ )TA(Gτ )R̃Pi, where
K(s) = (sI + E(Gτ )TA(Gτ )R̃WRT ). Clearly, the matrix
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E(Gτ )T ∈ R(n−1)×n is such that [E(Gτ )T ]ij = 0 for i > j,
[E(Gτ )T ]ii = 1, and A(Gτ ) = [In−1 0n−1]T . Hence, the
matrix Lτ = E(Gτ )TA(Gτ ) is upper triangular as it selects
the first n − 1 columns of E(Gτ )T . Thus, the matrix K(s)
is also upper triangular. Moreover, the i-th diagonal entry of
K(s), corresponding to edge ei ∈ Eτ , is (s +

∑
d(out)i)

where,
∑
d(out)i = wi +

∑
ej is a sibling of ei wj . Thus, the

corresponding diagonal of K(s)−1 is 1
(s+

∑
d(out)i)

. Without
loss of generality, suppose that ek, the perturbed edge, is
a sibling to eu ∈ Eτ (u may or may not be equal to k).
Now, since the last m − n + 1 columns of R̃ (which are
columns of T̃τ ), corresponding to edges in Ec, are replicas
of the first n − 1 columns, R̃Pi is the u-th standard basis
vector in Rn−1. Thus, postmultiplication of K(s)−1 by R̃Pi
picks out the u-th column of the triangular matrix K(s)−1

whose entries below the u-th component are zero (due to
triangularity of the matrix). Next, PTi R

T clearly picks out
one row of RT which corresponds to the perturbed edge ek.
Thus, PTi R

T = rTk and rk(u) = +1 (Lemma 10). Also,
rk(s) = 0 if s < u. So, premultiplying the u-th column
of K(s)−1 by rk picks out its u-th diagonal entry due to
triangularity. So, M(s) = 1

(s+
∑
d(out)i)

, where ei ∈ Eτ is
a sibling of ek (k may or may not be equal to i). This is
a first order plant and clearly, the Nyquist plot of −M(s)
has a phase crossover at s = 0. The gain margin is thus
|∑ d(out)i|. Hence, a negative perturbation δk = −∑ d(out)i
on edge ek causes the system to become unstable.

C. Consensus over Uncertain Cycle Digraph

Theorem 2 deals with a digraph having exactly one
globally reachable node. In the cycle digraph however, all
the n nodes are globally reachable. Removing any one of the
edges from a cycle digraph results in the rooted in-branching.
Since the cycle graph has multiple globally reachable nodes,
the relation in (3)-(4) does not hold. But a suitable similarity
transformation of the edge and graph Laplacians leads to a
block diagonal matrix in this case, instead of block triangular
ones, and for the cycle digraph A = In. The cycle digraph is
specially important as it lies at the heart of the well known
cyclic pursuit algorithm [1], [4], [14]–[19]. Some relevant
results are stated without proof 1.

Lemma 11: The graph Laplacian for weighted cyclic pur-

suit, L̄g = AWE(G)T is similar to
[
E(Gτ )TWRT 0

0 0

]
.

Lemma 12: The edge Laplacian for weighted cyclic pur-

suit, L̄e = E(G)TAW is similar to
[
E(Gτ )TWRT 0

0 0

]
.

Lemma 13: For the weighted cycle digraph, the edge
Laplacian is similar to the graph Laplacian.
Thus, the reduced edge version of cyclic pursuit is

ẋτ = −E(Gτ )TWRTxτ . (16)

Considering a perturbation in w1, it follows that

ẋτ = −E(Gτ )T (W + Pi∆P
T
i )RTxτ , (17)

with the uncertainties belonging to the set given by (8) and
Pi ∈ Rn is a {0, 1} vector with 0-entries everywhere except
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Fig. 3: Weighted digraph in the examples (black portions for
first example, black+red for second example).

at [P ]1. This is because in the cycle graph every edge is
equivalent and without loss of generality the perturbation
may be considered in w1. Here too, the phase crossover
occurs at ω = 0 and so M(0) is explicitly computed to be

M(0) = −
∑n
i=2

1
wi

1 + w1

∑n
i=2

1
wi

[5]. The Nyquist criteria yields

−w1 −
1∑n

i=2
1
wi

< δ̄ ⇒ w1 + δ̄ > − 1∑n
i=2

1
wi

. (18)

Thus, the robust stability criterion for cyclic pursuit is stated
in the following theorem, similar to [4].

Theorem 3: Given a perturbation on a single edge, say ej
(with nominal weight wj), the heterogeneous cyclic pursuit
system is stable for perturbations bounded below by δ̄:

δ̄ > −wj −
1∑n

i=1,i6=j
1
wi

. (19)

For the cycle graph, the limit on wj + δ̄ is the equivalent
resistance between the vertices j and j + 1 when the edge,
ej , joining nodes j and j+ 1, is removed. The reciprocal of
the edge weight is the resistance corresponding to each edge.
In [3], it was shown that for consensus over an undirected
graph, an edge weight can be negative so long as this negative
value is greater than a bound that equals the negative of the
equivalent resistance between the vertices that the perturbed
edge joins. This same interpretation holds for the directed
cycle graph.

IV. SIMULATION RESULTS

Consider the weighted directed acyclic graph G, in Fig. 3
(black portions only), with 11 nodes and 15 edges. The bold
edges denote a rooted in-branching with a single globally
reachable node 11. The dotted edges belong to Ec. The
nominal positive edge weights are shown. The edge, e6,11
is assumed to be perturbed. The initial node states are
[1 2 3 4 5 6 − 4 − 5 − 2 0 3]. In Fig. 4a, the perturbation
on the edge weight is −0.50, so the perturbed weight is
−0.40. It may be seen that consensus is achieved. In Fig. 4b,
where the perturbation is exactly equal to the bound, that is
−0.70 (computed from (13)), so that the perturbed weight
is −0.60 the nodes form clusters. With a perturbation of
−1.00, consensus is not achieved as the node states diverge
in this case. The Nyquist plots for convergent, clustering
and divergent cases are shown in Fig. 5 with the black dot
representing the critical point (−1, 0).
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Fig. 4: Node states for perturbed weight on e6,11 (a) within tolerable bound, (b) at exact bound, in first example and (c) for
perturbed weight on e12,13 in second example within bound.

Next, in the graph in Fig. 3 with both the black and
red portions (14 nodes and 20 edges), nodes 11, 12 and
13 are globally reachable. Hence, (13) of Theorem 1 is
used to obtain perturbation limits on the edge weights. A
perturbation of −0.50 is applied to the weight on e12,13,
while the critical value is −0.85 and the corresponding
convergent evolution of the node states is shown in Fig. 4c.

V. CONCLUSIONS

This paper presented an analysis of the robustness margins
for the edge weights of a weighted directed graph having a
rooted in-branching. Although only one weight is perturbed
at a time, the presented framework is suitable for analysis of
multiple uncertain edge weights by employing small gain
theorem. However, using present results, for any directed
graph, it may be determined as to which edge is the most
vulnerable. In other words, if an ‘attacker’ wants to disrupt
the consensus protocol, the present set up enables one to
choose the most vulnerable edge. By suitable transformations
of the edge and graph Laplacians and by considering a
reduced order system the stability margin of the consensus
protocol can thus be determined without explicit eigenvalue
computations. Graph theoretic interpretations of the robust-
ness margins for a directed acyclic graph and a directed cycle
graph provide further insights and serve as an encouragement
to interpret the result for more general graphs.
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Fig. 5: Nyquist plots of M(s)∆ for first example with
uncertain weight on e6,11 for the three types of behaviour.
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