
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022 2857

Monitoring Link Faults in Nonlinear Diffusively
Coupled Networks

Miel Sharf , Member, IEEE, and Daniel Zelazo , Senior Member, IEEE

Abstract—Fault detection and isolation is an area of en-
gineering dealing with designing online protocols for sys-
tems that allow one to identify the existence of faults, pin-
point their exact location, and overcome them. We consider
multi-agent systems, where faults correspond to the disap-
pearance of links in the underlying graph, simulating com-
munication failures between agents. We study the case in
which the agents and controllers are maximal equilibrium-
independent passive, and use the known connection be-
tween steady states of these multi-agent systems and net-
work optimization theory. We first study asymptotic meth-
ods of differentiating the faultless system from its faulty
versions by studying their steady-state outputs. We explain
how to apply the asymptotic differentiation to detect and
isolate communication faults, with graph-theoretic guaran-
tees on the number of faults that can be isolated, assum-
ing the existence of a “convergence assertion protocol,” a
data-driven method of asserting that a multi-agent system
converges to a conjectured limit. We then construct two
data-based convergence assertion protocols. We demon-
strate our results by a case study.

Index Terms—Fault tolerant Control, fault detection and
isolation, multi-agent systems, networked control systems,
nonlinear control systems, passivity.

I. INTRODUCTION

MULTI-AGENT systems (MASs) have been widely stud-
ied in recent years, presenting both a variety of applica-

tions and a deep theoretical framework [1]. One of the deepest
concerns when considering applications of MASs is communi-
cation failures, which can drive the agents to act poorly or fail
their task altogether. These communication failures, which we
term network failures, can either be accidental or planned by
an adversary. There is a need of detecting network faults and
dealing with them in real time for the network to be secure.

Fault detection and isolation (FDI) for MASs usually deals
with faults in one of the agents (see, e.g., [3] and references

Manuscript received July 14, 2020; revised December 6, 2020 and
February 18, 2021; accepted June 20, 2021. Date of publication July 7,
2021; date of current version May 31, 2022. Recommended by Asso-
ciate Editor P. Rapisarda. (Corresponding author: Miel Sharf.)

Miel Sharf is with the Division of Decision and Control Systems, KTH
Royal Institute of Technology and Digital Futures, 114 28 Stockholm,
Sweden (e-mail: msharf@tx.technion.ac.il).

Daniel Zelazo is with the Faculty of Aerospace Engineering,
Technion—Israel Institute of Technology, Haifa 3200003, Israel (e-mail:
dzelazo@technion.ac.il).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2021.3095258.

Digital Object Identifier 10.1109/TAC.2021.3095258

therein). The possibility of faults in the communication links was
first studied in [4] using the notion of structural controllability,
which was later used in [5] to solve the problem of leader
localization. The problem of network FDI, i.e., detection and
isolation of network faults, was studied primarily for linear
time-invariant (LTI) systems with a known model. In [6] and
[7], Rahimian and Preciado used jump discontinuities in the
derivative of the output to detect topological changes in the
network. Tools from switching systems theory, namely, mode
observability, was used in [8] for network FDI. Combinatorial
tools were used in [9] and [10] to solve the FDI problem for
consensus-seeking networks. Recently, Zhang et al. [11] have
proposed a network FDI method, which allows an uncertainty
in the model, but is restricted for networks with LTI systems.
A compressed-sensing-based approach was presented in [12],
providing an FDI algorithm for nonlinear power networks with
measurement noise. A related problem in which one tries to
distinguish between MASs with identical agents but different
communication graphs was studied in [13]–[15], from which
only [14] also deals with nonlinear agents.

We aim at a network FDI scheme applicable also for nonlinear
systems by relying on another concept widespread in MASs,
namely, passivity. Passivity was first used to address faults
by Yang et al. [16] for control-affine systems, although only
fault tolerance is addressed, and no synthesis procedures are
suggested. Later works addressed FDI for a single nonlinear
agent [16]–[18], [37]. To the extent of our knowledge, passivity
has not been previously used for network FDI schemes, and no
other works consider networks with nonlinear components.

Passivity theory is a cornerstone of the theoretical framework
of networks of dynamical systems [19]. It allows for the analysis
of MASs to be decoupled into two separate layers: the dynamic
system layer and the information exchange layer. Passivity
theory was first used to study the convergence properties of
network systems in [20]. Many variations and extensions of
passivity have been applied in different aspects of MASs. For
example, the related concepts of incremental passivity or re-
laxed co-coercivity and have been used to study synchronization
problems [2], [38], port-Hamiltonian systems [21], and robotic
systems [22].

One prominent variant is maximal equilibrium-independent
passivity (MEIP), which was applied in [23] in order to rein-
terpret the analysis problem for an MAS as a pair of network
optimization problems. Network optimization is a branch of
optimization theory dealing with optimization of functions de-
fined over graphs [24]. The main result of [23] showed that

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3938-1587
https://orcid.org/0000-0002-2931-245X
mailto:msharf@tx.technion.ac.il
mailto:dzelazo@technion.ac.il
https://doi.org/10.1109/TAC.2021.3095258

2858 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

the asymptotic behavior of these MASs is (inverse) optimal
with respect to a family of network optimization problems. In
fact, the steady-state input–output signals of both the agents and
the controllers comprising the MAS can be associated with the
optimization variables of either an optimal flow or an optimal
potential problem; these are the two canonical dual network
optimization problems described in [24]. The results of [23] were
used in [25] and [26] to solve the synthesis problem for MASs
and were further used in [14] to solve the network identification
problem.

We aim to use the network optimization framework of [23],
[25], and [26] for analysis and synthesis of MASs in order to
provide a strategy for detecting and isolating network faults.
We also consider adversarial games regarding communication
faults. We strive to give graph-theoretic-based results, showing
that network FDI can be done for any MEIP MAS, so long that
the graphG satisfies certain conditions. We show that if the graph
G is “connected enough,” we can solve the network FDI problem.
Namely, if G is 2-connected, then detecting the existence of any
number of faults is possible, and if G is k-connected with k > 2,
we can isolate up to k − 2 faults.

The rest of this article is organized as follows. Section II sur-
veys the relevant parts of the network optimization framework.
Section III presents the problem formulation of this work and
states the assumptions used throughout this article. Section IV
presents the first technical tool used for building the network
fault detection schemes, namely, edge-indication vectors, and
shows how to construct them. Section V uses edge-indication
vectors to design network FDI schemes, as well as strategies for
adversarial games, assuming the existence of a “convergence as-
sertion protocol,” a data-driven method of asserting that a given
MAS converges to a conjectured limit. Section VI studies these
convergence assertion protocols, prescribing two approaches for
constructing them. Finally, we present simulations demonstrat-
ing the constructed algorithms.

Notations: We use basic notions from algebraic graph the-
ory [27]. An undirected graph G = (V ,E) consists of a finite
set of vertices V and edges E ⊂ V × V . We denote by e =
{i, j} ∈ E the edge that has ends i and j in V . For each edge e, we
pick an arbitrary orientation and denote e = (i, j). The incidence
matrix of G, denoted EG ∈ R|E|×|V |, is defined such that for edge
e = (i, j) ∈ E, [EG]ie = +1, [EG]je = −1, and [EG]�e = 0 for
� �= i, j. We also use simple notions from graph theory [28].
A path is a sequence of distinct nodes v1, v2, . . . , vn such that
{vi, vi+1} ∈ E for all i. A cycle is a path v1, ..., vn for which
v1 = vn. A cycle v1, v2, . . . , vn−1, v1 is called simple if vi �= vj
for all i �= j. A collection of paths is called vertex disjoint if
no two share a node, except possibly for their first and last
nodes. Furthermore, for a linear mapT : U → V between vector
spaces, we denote the kernel of T by kerT .

II. NETWORK OPTIMIZATION AND MEIP
MULTI-AGENT SYSTEMS

This section briefs over the main results we need about the
connection between MASs and network optimization, originally
presented in [23], [25] and [26].

Fig. 1. Block diagram of the closed loop.

A. Diffusively Coupled Networks and Their
Steady States

Consider a collection of single-input single-output (SISO)
agents interacting over a network G = (V ,E). The agents
{Σi}i∈V and the controllers {Πe}e∈E are governed by:

Σi :

{
ẋi = fi(xi, ui)

yi = hi(xi)
, Πe :

{
η̇e = φe(ηe, ζe)

μe = ψe(ηe, ζe).
(1)

We consider stacked vectors of the form u = [u�1 , . . ., u
�
|V |]

�

and similarly for x, y, ζ, η, and μ. The agents and controllers
are coupled by defining the controller input as ζ = E�

G y and the
control input as u = −EGμ. This closed-loop system is called
a diffusively coupled network and is denoted by (G,Σ,Π). Its
structure is illustrated in Fig. 1. We wish to study the steady
states of the closed loop. Suppose that (u, y, ζ, μ) is a steady state
of (G,Σ,Π). For every i ∈ V , e ∈ E, (ui, yi) is a steady-state
input–output pair of the ith agent, and (ζe, μe) is a steady-state
pair of the eth controller. This motivates the following definition,
originally from [23].

Definition 1: The steady-state input–output relation k of a
dynamical system is the collection of all steady-state input–
output pairs of the system. Given a steady-state input u and
a steady-state output y, we define

k(u) = {y : (u, y) ∈ k)}, k−1(y) = {u : (u, y) ∈ k)}.
Let ki be the steady-state input–output relation for the ith

agent, γe be the steady-state input–output relation for the
eth controller, and k and γ be their stacked versions. The
closed-loop steady-state (u, y, ζ, μ) has to satisfy y ∈ k(u), ζ =
E�
G y, μ ∈ γ(ζ), and u = −EGμ. By a simple manipulation, one

can show that y is a closed-loop steady state for the agents’
output if and only if 0 ∈ k−1(y) + EGγ(E�

G y) [26].

B. MEIP Systems and Closed-Loop Convergence

The convergence of the diffusively coupled network (G,Σ,Π)
can be assured using passivity. We first recall the classic defini-
tion of (shifted) passivity.

Definition 2 (Passivity [29]): Let Υ be a SISO system with
input u(t), output y(t), and state x(t), and let (u, y) be a steady-
state input–output pair of the system. For a differentiable func-
tion S = S(x) and a number ρ > 0, we consider the inequality
d
dtS(x) ≤ −ρ‖y(t)− y‖2 + (y(t)− y)(u(t)− u). We say Υ
is passive (w.r.t. (u, y)) if there exists a semidefinite storage
function S(x) and ρ ≥ 0 such that the inequality holds for any
trajectory. Also, we say the system is output-strictly passive

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

SHARF AND ZELAZO: MONITORING LINK FAULTS IN NONLINEAR DIFFUSIVELY COUPLED NETWORKS 2859

(w.r.t. (u, y)) if the same condition holds for some ρ > 0. The
largest number ρ for which the condition holds is called the
(output) passivity index w.r.t. (u, y).

Passivity was first used for diffusively coupled networks
in [20]. It is known that if (u, y, ζ, μ) is an equilibrium of
the network, and the agents and controllers are passive with
respect to (ui, yi) and (ζe, μe), then the network converges
to said equilibrium. The existence of an equilibrium for the
closed-loop network can be proved using network optimization
tools under certain monotonicity assumptions on the steady-state
input–output relation of the agents and controllers [23], [26],
namely, under the following variant of passivity.

Definition 3 (MEIP [23]): Consider the SISO dynamical
system Υ governed by ẋ = f(x, u), y = h(x, u) with input–
output relation r. The system Υ is (output-strictly) MEIP if the
following conditions hold.

i) The system Υ is (output-strictly) passive with respect to
any steady-state pair (u, y) ∈ r.

ii) The steady-state input–output relation r is maximally
monotone. That is, if (u1, y1), (u1, y2) ∈ r, then (u1 −
u2)(y1 − y2) ≥ 0, and r is not contained in any larger
monotone relation [24].

The passivity index of the system Υ is defined as min
y∈r(u)

ρu,y,

where ρu,y is the passivity index with respect to (u, y).
Such systems include single integrators, gradient systems,

port-Hamiltonian systems on graphs, and others (see [23]
and [26] for more examples). In this work, we often
consider networks of control-affine systems. We provide
a sufficient condition for a control-affine system to be
MEIP.

Theorem 1: Let Σ be the SISO system of the form ẋ =
−f(x) + q(x)u, y = h(x). Suppose that q(x) is positive for all
x, that h is strictly monotone C1 ascending, and that f/q is C1

and monotone ascending.
1) A pair (u, y) is a steady-state input–output pair for Σ

if and only if there exists some x ∈ R such that u =
f(x)/q(x) and y = h(x).

2) For any x ∈ R, the function S(x) =
∫ x

x
h(σ)−h(x)

q(σ) dσ is
a storage function for the steady-state input–output pair
u = f(x)/q(x) and y = h(x).

3) The function S(x) proves that Σ is passive w.r.t. (u, y)

with passivity index ρ = infx∈R

f(x)
q(x)

− f(x)
q(x)

h(x)−h(x) ≥ 0.

4) If either lim|t|→∞ |f(t)/q(t)| = ∞ or lim|t|→∞ |h(t)| =
∞, then the system is MEIP.

5) If the derivative of h is always positive, then the inverse
steady-state relation k−1 is differentiable.

Proof: The first, second, and fourth parts are proved in [30,
Proposition 1]. As for the third, we note that

Ṡ =
(h(x)− h(x))

q(x)
ẋ =

(h(x)− h(x))

q(x)
(−f(x) + q(x)u) =

= (h(x)− y)(u− u)− (h(x)− h(x))

(
f(x)

q(x)
− f(x)

q(x)

)

≤ (y − y)(u− u)− ρ(y − y)2.

We note that ρ ≥ 0 as (h(x)− h(x))(f(x)q(x) − f(x)
q(x)) ≥ 0 by

monotonicity. Moreover,
∫ x

x
h(σ)−h(x)

q(σ) dσ ≥ 0, with strict in-
equality whenever x �= x, as h is strictly monotone and q(x) >
0. Thus, S is aC1 storage function, and hence the system is pas-
sive with passivity index ρ ≥ 0 with respect to the steady-state
input–output pair (u, y). Finally, as h is strictly monotone, the
inverse h−1 can be defined. Thus, the inverse steady-state rela-
tion k−1 is given by k−1(y) = f(h−1(y))

q(h−1(y)) , which is differentiable
by the inverse function theorem. �

As we previously remarked, MEIP can be used to prove
existence of a closed-loop equilibrium for networks.

Theorem 2 (see [23] and [25]): Consider the network
(G,Σ,Π). Assume the agents Σi are MEIP, and the controllers
Πe are output-strictly MEIP (or vice versa). Then, the signals
u(t), y(t), ζ(t), and μ(t) of the closed-loop converge to steady-
state values u, y, ζ, and μ, where 0 ∈ k−1(y) + EGγ(E�

G y).

C. Synthesis Problem for MEIP Multi-Agent Systems

The synthesis problem of MAS with MEIP agents has been
studied in [25] and [26]. The problem deals with synthesizing
controllers {Πe} forcing the closed-loop network to converge to
some desired steady-state output y�, when the agents Σ and the
graph G are known. We cite the following results from [26].

Theorem 3 (see [26]): Let Σ be any MEIP agents and let G
be any graph. Let y� ∈ R|V | be any desired steady-state output.
Then, there exists a solution to the synthesis problem (i.e., a
realization of the controllersΠ) with desired output y� for which
the controllers are output-strictly MEIP.

Remark 1: The paper [26] depicts many possible solutions
to the synthesis problem with output-strictly MEIP controllers.
It is shown that one can always solve the problem using affine
controllers. Another suggested solution is an augmentation of
any preferred output-strictly MEIP controller using a constant
exogenous input. In practice, we will usually opt for the augmen-
tation procedure when using the theorem as a tool for synthesis,
as many real-world networks are already equipped with some
given controllers.

III. PROBLEM FORMULATION

This section presents the problem we aim to solve and states
the assumptions we make to tackle it. We consider a diffusively
coupled network of the form NG = (G, {Σi}i∈V , {Πe}e∈EG),
where G = (V ,EG) is the interaction graph, Σi are the agents,
andΠe are the edge controllers. For any subgraphH = (V ,EH)
of G, we can consider another diffusively coupled network
NH = (H, {Σi}i∈V , {Πe}e∈EH). We can think ofNH as a faulty
version of NG , in which the edge controllers corresponding to
the edges EG \ EH have malfunctioned and stopped working.
Edges can fault mid-run, but we assume that once an edge has
malfunctioned, it remains faulty for the remainder to the run. If
we let G be the collection of all nonempty subgraphs of G, then
one can think of the closed-loop diffusively coupled network as
a switched system, where the switching signal ς : [0,∞) → G

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

2860 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

designates the functioning edges at each time instant. The as-
sumption that faulty edges remain faulty throughout the run can
be described using the switching signal ς . Namely, we require
that the switching signal ς is nonincreasing, in the sense that for
all times t1 < t2, ς(t2) is a subgraph of ς(t1). We denote the
number of faulty edges at time t by ς̂(t).

Consider a collection of agents {Σi} and a graph G. Fix
a constant vector y� ∈ R|V |. Our goal is to design a control
scheme, for which the closed-loop network will converge to the
steady-state output y�. In the absence of faults, we can solve
the synthesis problem as in Theorem 3. However, designing
controllers while ignoring faults might prevent the system from
achieving the control goal. Thus, we also seek for a fault monitor-
ing system, monitoring the agents and controllers, attempting to
identify aberrant behavior. When it does, it declares a fault [31].
We now formulate the problems of network FDI:

Problem 1 (Network fault detection): Let {Σi}i∈V be a set
of agents, G be a graph, y� be any desired steady-state output,
and let ς(t) be any nonincreasing switching signal. Find edge
controllers {Πe}e∈EG and a fault monitoring system such that:

i) if no faults occur, i.e., ς(t) = G, ∀t, then the closed-loop
network converges to the steady-state output y�, and the
fault monitoring system never declares a fault;

ii) if faults do occur, i.e. ∃t, ς(t) �= G, then the fault moni-
toring system declares a fault.

Problem 2 (Network FDI): Let {Σi}i∈V be a set of agents,
G be a graph, and y� be any desired steady-state output. Given
some r < |EG|, find a synthesis for the edge controllers such
that for any monotone nonincreasing switching signal ς such
that ς̂(t) ≤ r, ∀t, the closed-loop diffusively coupled network
converges to the steady-state output y�, i.e., the effect of up to
r faults can be isolated from the network.1

A. Assumptions

We now state the assumptions used throughout the work. For
the remainder of this work, we fix the agents {Σi} and make the
following assumption.

Assumption 1: The agent dynamics {Σi} are MEIP, and the
chosen controller dynamics {Πe} are output-strictly MEIP (or
vice versa). Moreover, the relations k−1

i and γe areC1 functions.

Furthermore, the derivative dk−1
i

dyi
is positive at any yi ∈ R.

The passivity assumption assures that all the systems NH
will globally asymptotically converge to some limit. The added
smoothness assumptions, together with the positive derivative
assumption, are technical assumptions we need to apply tools
from manifold theory used later. The passivity assumption al-
lows the consideration of, e.g., port-Hamiltonian systems and
gradient-descent systems [23]. Moreover, if a system satisfies
any dissipation inequality with respect to all equilibria, one can
use output feedback and input feedthrough to force MEIP [32].
Theorem 1 shows the smoothness assumption holds for many
control-affine systems. Moreover, it can be shown by definition
that if Σi is output-strictly MEIP with passivity index ρ, then
dk−1

i

dyi
≥ ρ > 0 whenever k−1

i is differentiable. Furthermore, the

1Some authors refer to fault isolation in this case as identifying the faulty
links, which is achieved by the algorithms in Section V-C as a side effect.

smoothness assumption can be relaxed by allowing k−1
i and γe

to not be differentiable at finitely many points. The arguments
presented below still hold, but require heavier tools from mea-
sure theory, so we avoid them for clarity of presentation.

In some cases, we need to sense the state of the system,
including the state of the controllers. Sometimes, the control
model is such that the controller state has a physical meaning that
can be measured even for nonconnected agents. For example,
in the traffic control model in [33], the state ηe is the relative
position between two vehicles. However, the controller state of
some systems might not have a physical meaning. For example,
consider a collection of robots trying to synchronize their po-
sitions, where the output y(t) is the position of each robot and
the edge controllers are proportional–integral controllers. The
controller state η(t) has no physical meaning and, thus, cannot
be defined for nonconnected agents. Some of the techniques
developed later require us to be able to sense the state of the
system, including the controllers’ states, and we will then make
the following assumption.

Assumption 2: The controllers Πe are static nonlinearities
given by the functions ge, i.e., μe(t) = ge(ζe(t)) for all t. In
this case, the steady-state relation γe is equal to the function
ge, and the closed-loop system is ẋ = f(x,−EGg(E�

G h(x))), or
equivalently, ẋi = fi(xi,

∑
e={i,j} ge(hj(xj)− hi(xi))).

In one of the methods below, we will want to have a clear
relationship between the measurements hi(xi) and the storage
functions Si(xi). To achieve this, we follow Theorem 1 and
assume that the agents are control-affine.

Assumption 3: Assumption 2 holds, and the agents have the
form ẋi = −fi(xi) + qi(xi)ui; yi = hi(xi). Thus, the closed-
loop system is governed by

ẋi = −fi(xi) + qi(xi)
∑

e={i,j}
ge(hj(xj)− hi(xi)). (2)

It should be noted that the MEIP property for the static
controllers ge reduces to monotonicity of the functions ge.

In the next section, we start heading toward a solution to
Problems 1 and 2 by exhibiting a method for asymptotically
differentiating between the nominal dynamical system NG and
its faulty versions NH. Later, we show how this asymptotic
differentiation can induce a finite-time differentiation of the
systems.

IV. ASYMPTOTIC DIFFERENTIATION BETWEEN NETWORKS

In this section, we develop the notion of edge-indication vec-
tors, which will be used for network fault detection later. In [14],
the notion of indication vectors was first developed. These
are constant exogenous inputs used to drive the closed-loop
system, chosen appropriately to give different steady-state limits
for systems with identical agents and controllers, but different
underlying graphs. The idea of using constant exogenous inputs
to drive the system into favorable steady-state outputs was also
used in [34] to give a network reconstruction algorithm with
optimal time complexity, although it considers sets of multiple
constant exogenous inputs applied in succession. Here, we opt
for a slightly different strategy.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

SHARF AND ZELAZO: MONITORING LINK FAULTS IN NONLINEAR DIFFUSIVELY COUPLED NETWORKS 2861

In [14] and [34], the problem of network reconstruction was
considered, in which we cannot affect the agents, controllers, or
the underlying graph. In network FDI, we are doing synthesis,
so we can manipulate the controllers and (in most cases) the un-
derlying network. For that reason, we opt for a slightly different
idea, in which we add a constant exogenous signal to the output
of the controllers, that is, we consider u(t) = −EG(μ(t) + w).
A system implementing this control law is said to have the
interaction protocol (Π,w). Analogously to the notion of in-
dication vectors, we desire that networks with identical agents
and controllers, but different underlying graphs, will be forced to
converge to different steady-state outputs. We can then monitor
the output y of the system and use it to detect changes in the
underlying graph, i.e., network faults. For that, we first compute
the steady-state limit for these systems (G,Σ, (Π,w)).

Proposition 1: Consider a diffusively coupled networkNH =
(H,Σ,Π) satisfying Assumption 1. Suppose that w ∈ R|EH| is
any constant signal added to the controller output, i.e., the loop
is closed as u(t) = −EH(μ(t) + w). Then, y is a steady-state
output of the closed-loop system if and only if

k−1(y) + EHγ(E�
Hy) = −EHw. (3)

Proof: The proof follows from the discussion after Definition
1, as the new steady-state relation for the controllers is given as
γ̃(ζ) = γ(ζ) + w. �

In our case, the constant signal w will be in R|EG |, as we
determine the exogenous controller output on each edge of G.
If one then considers the system NH for some H ∈ G, then
the exogenous controller output will be different from w, as it
will only have entries of w corresponding to edges in H. To
formulate this, take any graph H ∈ G, and let PH be the linear
map R|EG | → R|EH| removing entries corresponding to edges
absent from H. In other words, this is an R|EH|×|EG | matrix with
entries in {0, 1}, whose rows are the rows of the identity matrix
Id ∈ R|EG |×|EG | corresponding to the edges of H.

We can now define the notion of edge-indication vectors.
Definition 4: Let (G,Σ,Π) be a network satisfying Assump-

tion 1. Let w ∈ R|EG | by any vector, and for any graph H ∈ G,
we denote the solution of (3) with underlying graph H and
exogenous input PHw by yH.

1) The vector w is called a (G,H)-edge-indication vector if
for any H′ ∈ G such that H′ �= H, we have yH �= yH′ .

2) The vector w is called a G-edge-indication vector if for
any two graphs H1 �= H2 in G, yH1

�= yH2
.

Note 1: An edge-indication vector is a bias chosen on each
edge in G. This bias can be programmed into the controllers and
nodes and need not be changed nor computed online. In this
light, for any w ∈ R|EG |, (3) transforms into

k−1(y) + EHγ(E�
Hy) = −EHPHw. (4)

We wish to find a G-edge-indication vector for given agents
and controllers or at least a (G,G)-edge-indication vector. As
in [14], we use randomization. We claim that random vectors
are G-edge-indication vectors with probability 1.

Theorem 4: Let P be any absolutely continuous2 probability
measure on R|EG |. Let w be a vector sampled according to P .
Then, P (w is a G-edge-indication vector) = 1.

Proof: By definition, w is not a G-edge-indication vector if
and only if there are G1,G2 ∈ G such that the same vector y
solves (4) for both graphs. We show that for any G1,G2 ∈ G, the
probability that the two equations share a solution is zero.

Let n be the number of vertices in G. For each graph H ∈
G, define a function FH : Rn × R|EG | → Rn by FH(y,w) =
k−1(y) + EHγ(E�

Hy) + EHPHw. The set of steady-state exoge-
nous input and output pairs for the system NH is given by the set
AH = {(y,w) : FH(y,w) = 0}. We note that the differential
dFH always has rank n. Indeed, it can be written as [∇k−1(y) +
EH∇γ(E�

Hy)E�
H , EHPH], where ∇γ(E�

Hy) ∈ R|EH|×n. By As-
sumption 1, the first matrix, of size n× n, is positive definite as
a sum of a positive-definite matrix and a positive-semidefinite
matrix, hence invertible. Thus, by the implicit function theorem,
AH is a manifold of dimension |EG|. Moreover, by Assumption
1, for any w, there is a unique y such that (3) is satisfied. Thus,
P gives rise to an absolutely continuous3 probability measure
on each manifold AH.4 Hence, it suffices to show that for any
G1 �= G2, the intersectionAG1

∩ AG2
has dimension≤ |EG| − 1.

To show this, we take any point (y,w) ∈ AG1
∩ AG2

. As
both AG1

and AG2
are of dimension |EG|, it suffices to show

they do not have the same tangent space at (y,w). The tan-
gent space of the manifold AH is given by the kernel of the
differential dFH(y,w), so we show that if G1 �= G2, the kernels
ker dFG1

and ker dFG2
are different at (y,w). As G1 �= G2, we

can find an edge existing in one of the graphs and not the
other. Assume the edge e exists in G1 but not in G2, and let
v = (0, 1e), where 1e is the vector in R|EG | with all entries zero,
except for the eth entry, which is equal to 1. Then, v ∈ ker dFH
if and only if 1e ∈ ker(EHPH). Note that 1e �∈ ker(EG1

PG1
),

as PG1
1e = 1e, and thus, EG1

PG1
1e = EG1

1e �= 0. Moreover,
1e ∈ ker(EG2

PG2
), as PG2

1e = 0, so ker dFG1
�= ker dFG2

at
(y,w). Thus, AG1

∩ AG2
is of dimension ≤ |EG| − 1, and is

a zero-measure set inside both AG1
,AG2

. �
Theorem 4 presents a way to choose a G-edge-indication

vector, but does not deal with the control goal. One could satisfy
the control goal by using Theorem 3 to solve the synthesis
problem for the original graph G, but we cannot assure we get
an edge-indication vector. Note that any w ∈ ker EGPG gives a
solution of (4) identical to the solution for w = 0, so choosing
an exogenous control input in ker EGPG does not change the
steady-state output of the system NG . However, it does change
the steady-state output of all other systems NH. This suggests
to search for an edge-indication vector in ker EGPG , which is
possible if G is “sufficiently connected,” defined below in an
exact manner.

Proposition 2 (Menger’s theorem [28]): Let G be any con-
nected graph. The following conditions are equivalent.

2Unless stated otherwise, absolute continuity is with respect to the Lebesgue
measure.

3With respect to the |EG|-dimensional Hausdorff measure, or equivalently,
with respect to the standard Riemannian volume form on AH.

4As the push-forward measure of P under the map w �→ (ϕ(w),w), where
ϕ is the local map w �→ y given by the implicit function theorem.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

2862 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

1) Between every two nodes, there are k vertex-disjoint
simple paths.

2) For any k − 1 vertices v1, . . . , vk−1 ∈ V , the graph G −
{v1, . . . , vk−1} is connected.

A graph satisfying these conditions is called k-connected.
We will take special interest in 2-connected graphs. Specifi-

cally, we can state the following theorem about edge-indication
vectors in ker EGPG .

Theorem 5: Let P be any absolutely continuous probability
distribution on ker EHPH, where H is 2-connected. Suppose
furthermore that w is a vector sampled according to P . Then,
P (w is a (G,H)-edge-indication vector) = 1.

We first need to state and prove a lemma.
Lemma 1: Let H be a 2-connected graph. Suppose that we

color the edges of H in two colors: red and blue. If not all edges
have the same color, then there is a simple cycle in H with both
red and blue edges.

Proof: Suppose, heading toward contradiction, that any sim-
ple cycle in H is monochromatic. We claim that for each vertex
x, all the edges touching x have the same color. Indeed, take any
vertex x, and suppose that there are two neighbors v1 and v2 of
x such that the edge {x, v1} is blue and the edge {x, v2} is red.
We note that v1 → x→ v2 is a path from v1 to v2, meaning
that there is another path from v1 to v2, which does not pass
through x. Adding both edges to the path yields a simple cycle
with edges of both colors, as {x, v1} is blue and {x, v2} is red.
Thus, every node touches edges of a single color.

Let Vred be the set of nodes touching red edges, and Vblue be
the set of nodes touching blue edges. We know that Vred and
Vblue do not intersect. Moreover, if we had an edge between Vred

and Vblue, it had a color. Assume, without loss of generality, that
it is blue, so some vertex in Vred touches a blue edge, which is
impossible. Thus, there are no edges between Vred and Vblue. By
assumption, there is at least one edge of each color in the graph,
meaning that both sets are nonempty. This is a contradiction to
the fact H is connected, completing the proof. �

We can now prove Theorem 5.
Proof: We denote m1 = dimker EHPH. The proof is sim-

ilar to the proof of Theorem 4. We again define functions
FG1

for graphs G1 ∈ G as FG1
(y,w) = k−1(y) + EG1

g(E�
G1
y) +

EG1
PG1

w, but the function FG1
is now defined on ker EHPH ⊂

R|EG |. As before, we defineAG1
= {(y,w : FG1

(y,w) = 0} and
use the implicit function theorem to show that AG1

are all
manifolds, but their dimension is now m1 = dimker EHPH.
This time, we want to show that if H �= G1, then AH ∩ AG1

is an embedded submanifold of dimension ≤ m1 − 1, as we
want to show that (with probability 1), the solutions (4) for the
graphs G1 and H are different. As before, it suffices to show that
if (y,w) ∈ AG1

∩ AH, then ker dFG1
and ker dFH are different

at (y,w). For any graph G1,

dFG1
= [∇k−1(y) + EG1

∇γ(E�
G1
y)E�

G1
, (EG1

PG1
)|ker EHPH]

where ·|ker EHPH is the restriction of the matrix to ker EHPH.
Thus, if G1 ∈ G is not a subgraph of H, it contains an edge
e absent from H. As in the proof of Theorem 4, we note that
1e ∈ ker EHPH and conclude that ker dFG1

�= dFH at (y,w).
Thus, we only consider nonempty subgraphs G1 of H.

For any collection E ⊂ EH, we consider v = (0, 1E), where
1E =

∑
e∈E 1e. If E corresponds to a cycle in H, then v ∈

ker dFH(y,w). We show there exists cycle in H such that v �∈
ker dFG1

(y,w), completing the proof.
The graph G1 defines a coloring of the graph H—edges in G1

are colored in blue, whereas edges absent from G1 are colored
in red. Because G1 is a nonempty proper subgraph of H, this
coloring contains both red and blue edges. By the lemma, there
is a simple cycle in H having both red and blue edges. Let E
be the set of the edges traversed by the cycle. We claim that
EG1

PG1
1E �= 0, which will complete the proof of the theorem.

Indeed, because the simple cycle contains both red and blue
edges, we can find a vertex touching both a red edge in the cycle
and a blue edge in the cycle. We let v be the vertex, and let
e1 and e2 be the corresponding blue and red edges. Recalling
that the cycle is simple, these are the only cycle edges touching
v. However, by the coloring, e1 is in G1, but e2 is not. Thus,

(EG1
PG1

1E)v = (EG1
)ve1 = ±1 �= 0

and in particular, 1E �∈ ker EG1
PG1

. �

V. MONITORING NETWORK FAULTS

In this section, we consider two applications of the developed
framework, namely, network FDI and defense strategies for
adversarial games over networks. We first present a simple
algorithm for network fault detection. Then, we discuss de-
fense strategies for adversarial games over networks, which will
require a bit more effort. Finally, we exhibit a network fault
isolation protocol by combining the previous two algorithms,
which will be demonstrated in a case study in Section VII. In
order to apply the framework of edge-indication vectors, we need
an algorithm elevating the asymptotic differentiation achieved
in the previous section to an online differentiation scheme. Thus,
we make the following assumption.

Assumption 4: There exists an algorithm A that receives a
model for a network (G,Σ,Π) and a conjectured limity� as input
and takes measurements of the network in-run. The algorithm
stops and declares “no” if the network does not converge to y�

and otherwise runs indefinitely. The algorithm A is called a
convergence assertion algorithm.

In the language of Section III, this is a fault-monitoring system
that gives neither false positives nor false negatives. For now,
we assume that such algorithm exists. We will discuss this
assumption in Section VI.

A. Detecting Network Faults

We first focus on Problem 1. To tackle the problem, we use
the notion of edge-indication vectors from Section IV. Suppose
that we have MEIP agents {Σi}. We first take any output-strictly
MEIP controllers {Πe} solving the classical synthesis problem,
i.e., forcing the closed loop system to converge to y� (see
Theorem 3). As we noted, if w ∈ R|EG | lies in the kernel of
EGPG , then the solution of the following equations is the same:

k−1(y) + EGγ(E�
G y) = −EGPGw, k−1(y) + EGγ(E�

G y) = 0.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

SHARF AND ZELAZO: MONITORING LINK FAULTS IN NONLINEAR DIFFUSIVELY COUPLED NETWORKS 2863

Algorithm 1: Network Fault Detection in MEIP MAS.

1: Find edge controllers {Πe}e∈EG solving the synthesis
problem with graph G, agents Σ, and control goal y�

(see Theorem 3 and Remark 1).
2: Find a basis {b1, . . ., bk} for the linear space ker EGPG
3: Pick a Gaussian vector α ∈ Rk and let w =

∑
i αibi

4: Define the interaction protocol as (Π,w).
5: Run the system with the chosen interaction protocol.
6: Implement the algorithm A for the system

(G,Σ, (Π,w)) with limit y�. Declare a fault in the
network if A declares that the system does not
converge to the prescribed value.

Thus, if w lies in ker(EGPG), running the interaction protocol
(Π,w) does not change the steady-state output of the system.
However, by Theorem 5, a random vector in ker(EGPG) gives a
(G,G)-edge-indication vector, as long asG is 2-connected. Thus,
using the interaction protocol (Π,w), where w ∈ ker EGPG is
chosen randomly, will guarantee that all faulty systems would
converge to a steady state different than y�, with probability
1. Thus, applying the algorithm A allows an online finite-time
distinction between the nominal faultless system and its faulty
versions. We explicitly write the prescribed algorithm as follows.

Theorem 6 (Network fault detection): Consider an underlying
graph G and n agents {Σi} satisfying Assumption 1. Assume G
is 2-connected. Then, with probability 1, Algorithm 1 synthe-
sizes an interaction protocol (Π,w) solving Problem 1, i.e., the
algorithm satisfies the following properties.

i) If no faults occur in the network, the output of the closed-
loop system converges to y�.

ii) If any number of faults occur in the network, the algo-
rithm detects their existence.

Proof: The proof follows from the discussion preceding Al-
gorithm 1. Namely, Theorem 5 assures that w is a (G,G)-edge-
indication vector, so long that G is 2-connected. In other words,
the output of the closed-loop system with graph G converges to
y�, and for any graph G �= H ∈ G, the output of the closed-loop
system with graph H converges to a value different from y�.

It remains to show that the algorithm declares a fault if and
only if a fault occurs. If no faults occur, A never declares a fault,
and the same is true for Algorithm 1. On the contrary, assume
that any number of faults occur in the network, and let H be the
current underlying graph. The output of the closed loop system
converges to y �= y�, so A eventually stops and declares a fault.
Thus, Algorithm 1 declares a fault. �

B. Synthesis in the Presence of an Adversary

Consider the following two-player game. Both players are
given the same n SISO agents Σ1, . . . ,Σn, the same graph G on
n vertices and m edges, and the same vector y� ∈ Rn. There is
also a server that can measure the state of the agents at certain
intervals and broadcast a single message to all agents once. The
planner acts first and designs a control scheme for the network
and the server. The adversary acts second, removing at most
r edges from G. The system is then run. The planner wins if

Algorithm 2: Planner Strategy in Adversarial Multi-Agent
Synthesis Game With MEIP Agents—Synthesis.

1: Define N =
∑r

�=0

(
m
�

)
. Let Graphs be an array with

N entries, and let j = 1.;
2: for � = 0, . . . , r do
3: for 1 ≤ i1 < i2 < · · · < i� ≤ m do
4: Insert the graph H = G − {ei1 , . . . , ei�} to the jth

entry of Graphs. Advance j by 1.
5: Define two arrays Controllers, SSLimits of length N .
6: Choose w as Gaussian random vector of length m.
7: for j = 1, . . . , N do
8: Take any edge controllers {Πe}e∈EG satisfying

Assumption 1.
9: Compute the steady-state limit of the network

(Graphs(j),Σ, (Π,w)). Insert the result into
SSLimits(j)

10: Solve the synthesis problem for agents Σ and
underlying graph Graphs(j) as in Theorem 3 and
Remark 1. Insert the result into Controllers(j)

Algorithm 3: Planner Strategy-In-Run Protocol for Agents.

1: Run the interaction protocol (Π,w).
2: When a message j is received, run the interaction

protocol described by Controllers(j).

Algorithm 4: Planner Strategy-In-Run Protocol for Server.
1: Define HasFaulted as an array of zeros of size N .
2: while HasFaulted has at least two null entries do
3: Run N instances of the algorithm A simultaneously,

with conjectured steady-state limits from SSLimits.
4: for j = 1 to N do
5: if The jth instance declared “no” then
6: Change the value of HasFaulted(j) to 1.
7: Find the index j such that HasFaulted(j) = 0.

Broadcast the message j to the agents.

the closed-loop system converges to y�, and the adversary wins
otherwise. We show that the planner can always win by using a
strategy stemming from edge-indication vectors, assuming that
the agents are MEIP.

Namely, consider the following strategy. Take all possible∑r
�=0

(
m
�

)
underlying graphs. For each graph, the planner solves

the synthesis problem as in Theorem 3. If the planner finds out
the adversary changed the underlying graph to H, he could alert
the agents (through the server) and ask them to run the protocol
solving the synthesis problem for H. Thus, the planner needs to
find a way to identify the underlying graph after the adversary
acted, without using the server’s broadcast. This can be done
by running the system with a G-edge-indication vector and
using the server to identify the network’s steady state. Namely,
consider Algorithms 2–4, detailing the synthesis procedure and
in-run protocol for the planner. We prove:

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

2864 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

Theorem 7: Consider the game above. With probability 1,
Algorithms 2–4 describe a winning strategy for the planner.
Moreover, if r is independent of n (i.e., r = O(1)), the syn-
thesis algorithm has polynomial time complexity. Otherwise,
the time complexity isO(nc1r+c2) for some universal constants
c1, c2 > 0. Furthermore, the size of the message broadcasted by
the server is O(r log n).

Proof: Suppose the adversary changed the underlying graph
to H, which has entry j in Graphs. We note that Assumption 4
assures that A never declares a fault if and only if the closed-
loop system converges to the conjectured steady state, and that
w is a G-edge-indication vector by Theorem 4. Thus, the jth
instance of convergence assertion protocol can never return a
fault, and all other instances must eventually declare a fault.
Thus, the server correctly guesses the underlying graph. It then
broadcasts the index j to the agents, allowing them to change
the interaction protocol and run the solution of the synthesis
problem with desired output y� and underlying graph H. Thus,
the network will converge to y�, and the planner wins.

We now move to time complexity. Note that N = O(mr).
The first for-loop has N iterations; each having O(mn) actions
(where a graph is saved in memory by its incidence matrix,
which is of size ≤ m× n). Thus, the first for-loop takes a total
of O(mr+1n) time. The second for-loop solves the synthesis
problem forH by solving an equation of the formEHv = v0 for a
known vector v0 and an unknown v. This can be done using least
squares, takingO(max{m,n}3) time. As for finding the steady
state, this can be done by solving a convex network optimization
problem [23, Problem (OPP)], which takes a polynomial amount
of time in n and m (e.g., via gradient descent). Recalling that
m ≤ (n2) = O(n2), we conclude that if r is bounded, the total
time used is polynomial in n. Moreover, if r is unbounded, the
bottleneck is the first for-loop which takes O(mr+1n) time.
Plugging m ≤ n2 gives a bound on the time complexity of
the form O(n2r+3). As for the communication complexity, the
server broadcasts a number between 1 and N , so a total of
O(log2 N) bits are needed to transmit the message. Plugging
in N = O(mr) gives that O(r log2m) = O(r log n) bits are
needed.

C. Detection and Isolation of Network Faults

We now consider Problem 2, in which faults occur throughout
the run, and we want to detect their existence and overcome
them. This problem can be thought of as a tougher hybrid of
the previous two problems—in Section V-A, the faults could
appear throughout the run, but we only needed to find out they
exist. In Section V-B, all of the faults occur before the run, but
we had to overcome them. Motivated by this view, we offer a
hybrid solution. Ideally, the interaction protocol will have two
disjoint phases—a first “stable” phase in which the underlying
graph is known and no extra faults have been found, and a second
“exploratory” phase in which extra faults have been found, and
the current underlying graph is not yet known. The first phase
can be solved by using the network fault detection Algorithm
1, as long as the current underlying graph is 2-connected. The

Algorithm 5: Synthesis for Network Fault Isolation.

1: Define N =
∑r

�=0

(
m
�

)
. Let Graphs be an array with

N entries, and let j = 1;
2: for � = 0, . . . , r do
3: for 1 ≤ i1 < i2 < · · · < i� < m do
4: Insert the graph H = G − {ei1 , . . . , ei�} to the jth

entry of Graphs. Advance j by 1.
5: Define two arrays IP, SSLimits of length N .
6: Choose w as a Gaussian random vector of length m.
7: Choose controllers {Πe}e∈E satisfying Assumption 1.
8: for j = 1, . . . , N do
9: Run steps 1–1 of Algorithm 1. Insert the resulting

interaction protocol into IP(j).
10: Compute the steady-state limit of the closed-loop

system with the interaction protocol (Π,w). Insert
the result into SSLimits(j)

second phase can be solved by the pre-broadcast stage of the
planner strategy described in Algorithms 2–4.

The main issue that remains is what happens if the underlying
graph changes again in the exploratory phase, i.e., we entered the
exploratory phase with underlying graph H1, but it changed to
H2 before we identified that graph. In the exploratory phase, we
run an instance ofA on all of the possible graphs simultaneously,
until all but one instance declared a fault. If the instance related
to H2 has not declared a fault yet, it will not declare a fault
from now on, unless another fault occurs before the end of the
exploratory phase. If the same instance has already declared a
fault, we have a problem—all other instances will eventually
also declare a fault, and there are two options in this case.

The first option is that one instance will declare a fault last,
i.e., there is a time in which all but one instance have declared
a fault. In this case, we identify the graph as some H3. When
we return to the stable phase and run the interaction protocol
(Π,w) corresponding to H3, a fault will be declared, and we
will return to the exploratory phase. This is because w was
synthesized as a (G,H3)-edge-indication vector, meaning that
the de-facto steady-state limit (with graph H2) will be different
than the conjectured steady-state limit (with graph H3). The
second option is that the last few instances of A declare a fault
simultaneously, which is dealt with by restarting the exploratory
phase. We get the synthesis algorithm and the in-run protocol
presented in Algorithms 5 and 6, respectively. We claim these
solve Problem 2.

Theorem 8: Let Σ1, . . . ,Σn be agents satisfying Assumption
1, and let G be a k-connected graph for k ≥ 3 on n vertices and
m edges. Then, with probability 1, Algorithms 5 and 6, run with
r = k − 2, solve Problem 2 for up to r faults.

Proof: We refer to steps 2 and 3 of Algorithm 6 as the stable
phase of the algorithm, and to steps 4–13 as the exploratory
phase. As the number of faults is no bigger than r = k − 2, the
underlying graph remains 2-connected throughout the run. We
claim that the theorem follows from the following claims:

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

SHARF AND ZELAZO: MONITORING LINK FAULTS IN NONLINEAR DIFFUSIVELY COUPLED NETWORKS 2865

Algorithm 6: In-Run Protocol for Network Fault Isolation.

1: Find the index j for which Graphs(j) = G.
2: Command the agents to change their interaction

protocol to the one described in IP(j). Define
H = Graphs(j).

3: Run A for the closed-loop system with graph H and
interaction protocol IP(j). Only if the algorithm
declares a fault, continue to step 4.

4: Define HasFaulted as an array of zeros of size N .
5: Change the agents’ interaction protocol to (Π,w).
6: while HasFaulted has at least two null entries do
7: Run N instances of A simultaneously, with

conjectured limits from SSLimits.
8: for j = 1 to N do
9: if The jth instance has declared a fault then

10: Change the value of HasFaulted(j) to 1.
11: if HasFaulted has no entries equal to zero then
12: Go to step 4.
13: Find the index j such that HasFaulted(j) = 0. Set

H = Graphs(j). Go to step 2.

1) If we are in the stable phase, the current underlying graph
is H = Graphs(j), and no more faults occur throughout
the run, the closed-loop system converges to y�.

2) If we are in the stable phase, but the assumed graph H =
Graphs(j) is not the current underlying graph, we will
eventually move to the exploratory phase.

3) Each instance of the exploratory phase eventually ends.
4) If an instance of the exploratory phase is executed, and

no more faults occur throughout the run, it correctly
identifies the current underlying graph.

We first explain why the claims hold with probability 1.
Claims 1 and 2 follow from Theorem 6 with probability 1, as
the underlying graph G is always 2-connected. Claim 4 holds
with probability 1, as follows from Theorem 7. As for Claim
3, if no faults occur throughout the instance of the exploratory
phase, then it eventually ends by Claim 4. If faults do occur
throughout the run, the discussion above shows that at some time,
all (except possibly one) instances of the convergence assertion
protocol have declared a fault. If all of them declared a fault, we
start another instance of the exploratory phase, and otherwise,
we move to the stable phase. In either case, the instance of the
exploratory phase ends, and Claim 3 is proved.

We now explain how the theorem follows from these claims.
Suppose that a total of � ≤ r faults occur throughout the run.
Let T <∞ be the time at which the last fault occurs. We look
at the phase of the algorithm at times t > T and show that in
either case, the system must converge to y�.

i) If we arrive at the stable phase and the conjectured graph
H is the true underlying graph, then the system converges
to y� (Claim 1).

ii) If we start an instance of the exploratory phase, it eventu-
ally ends (Claim 3) and the stable phase starts, in which the
conjectured graph H is the true underlying graph (Claim
4). By i), the system converges to y�.

iii) If we are in the stable phase, but the conjectured graph
H is incorrect, we eventually start an exploratory phase
(Claim 2). Thus, the system converges to y� by ii).

iv) Finally, we could be in the middle of an instance of the
exploratory phase. In that case, the instance eventually
ends (Claim 3), after which we either apply a new instance
of the exploratory phase, or the stable phase. In both cases,
the system must converge to y� by i), ii) or iii). �

Remark 2: We can use a similar protocol to isolate more com-
plex faults. For example, we can consider a case in which each
agent communicates with all other agents by a single transceiver,
and if it faults, all edges touching the corresponding vertex are
removed from the graph. We can even use a hybrid fault model,
in which faults correspond to the removal of certain subsets of
edges touching a common vertex. For example, suppose that
there are two distant groups of agents. Agents in the same group
are close and communicate using Bluetooth communication.
Agents in different groups are farther and communicate using
Wi-Fi. When an agent’s Bluetooth transceiver faults, all inter-
group edges are removed, and when the Wi-Fi transceiver faults,
all intragroup edges are removed.

VI. ONLINE ASSERTION OF NETWORK CONVERGENCE

In the previous section, we used the notion of edge-indication
vectors, together with Assumption 4, to suggest algorithms
for network FDI. In this section, we propose algorithms A
satisfying Assumption 4 by using convergence estimates, relying
on passivity. We revisit a result from [23].

Proposition 3 (see [23]): Let (u, y, ζ, μ) be a steady state
of (G,Σ,Π) of the form (1). Suppose that the agents Σi, with
state xi, are passive with respect to (ui, yi) with passivity index
ρi ≥ 0, and that the controllers Πe, with state ηe, are passive
with respect to (ζe, μe), with passivity index νe ≥ 0. Let Si and
We be the agents’ and the controllers’ storage functions. Then,
S(x, η) =

∑
i∈V Si(xi) +

∑
e∈E We(ηe) is a positive-definite

C1-function, which nulls only at the steady states (x,η) corre-
sponding to (ui, yi) and (ζe, μe), and satisfies the inequality

dS

dt
≤ −

∑
i∈V

ρi(yi(t)− yi)
2 −

∑
e∈E

νe(μe(t)− μe)
2. (5)

Proof: The proof follows immediately from Si,We being
positive-definite C1-functions nulling only at xi,ηe, by sum-
ming the following inequalities:

dSi

dt
≤ (ui(t)− ui)(yi(t)− yi)− ρi(yi(t)− yi)

2

dWe

dt
≤ (μe(t)− μe)(ζe(t)− ζe)− νe(μe(t)− μe)

2

and using the equality (u(t)− u)�(y(t)− y) = −(μ(t)−
μ)�E�

G (y(t)− y) = −(μ(t)− μ)(ζ(t)− ζ). �
The inequality (5) can be thought of as a way to check that

the system is functioning properly. Indeed, we can monitor x,
y, η, and μ and check that the inequality holds. If it does not,
there must have been a fault in the system. This idea has a few
drawbacks, linked to one another. First, as we commented in
Section III-A, in some networks, the controller state ηe(t) can

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

2866 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

be defined only for existing edges, so using η(t) requires us
to know the functioning edges, which is absurd. Thus, in some
cases, we must use Assumption 2. Second, in practice, even if
we have access to x, we cannot measure it continuously. Instead,
we measure it at certain time intervals. One can adapt (5) to an
equivalent integral form

S(x(tk+1), η(tk+1))− S(x(tk), η(tk)) ≤

−
∫ tk+1

tk

(∑
i∈V

ρiΔyi(t)
2 +

∑
e∈E

νeΔμe(t)
2

)
dt (6)

where Δyi = yi(t)− yi and Δμe = μe(t)− μe. However, this
gives rise to the third problem—unlike the functionS, we cannot
assure that the functions (yi(t)− yi)

2 and (μe(t)− μe)
2 (or

their sum) are monotone. Thus, we cannot easily bound the
integral appearing on the right-hand side of the inequality.

We present two approaches to address this problem. First, we
estimate the integral by linearizing the right-hand side of (6) and
bounding the error. Second, we bound the right-hand side as a
function ofS, resulting in an inequality of the form Ṡ ≤ −F(S),
providing a convergence estimate.

A. Asserting Convergence Using High-Rate Sampling

Consider the inequality (6), and assume tk+1 − tk = Δtk
is very small, so the functions yi(t)− yi and μe(t)− μe are
roughly constant in the time period [tk, tk+1]. More precisely,
recalling that y = h(x) and μ = φ(η, E�

G y), and assuming these
functions are differentiable near x(tk) and η(tk), we expand the
right-hand side of (6) to a Taylor series

∫ tk+1

tk

(∑
i∈V

ρiΔyi(t)
2 +

∑
e∈E

νeΔμe(t)
2

)
dt =

(∑
i∈V

ρiΔyi(tk)
2 +

∑
e∈E

νeΔμe(tk)
2

)
Δtk +O(Δt2k). (7)

We wish to give a more explicit bound on the O(Δt2k) term.
We consider the following function G, defined on [tk, tk+1]:

G(t) =
∑
i

ρi(yi(t)− yi)
2 +

∑
e

νe(μe(t)− μe)
2. (8)

Equation (7) arises from the approximation G(t) = G(tk) +
O(|t− tk|), which is true for differentiable functions. Using
Lagrange’s mean value theorem for t ∈ [tk, tk+1], we find a
point s ∈ (t, tk+1) such thatG(t) = G(tk) +

dG
dt (s)(t− tk). If

we would bound the derivative dG
dt in the interval [tk, tk+1], we

would find a computational way to assert convergence. By the
chain rule, the derivative of G is given by

dG

dt
=
∑
i∈V

ρi(yi(t)− yi)ẏi +
∑
e∈E

νe(μe(t)− μe)μ̇e. (9)

In order to compute the time derivative of yi and μi, we recall
that both are functions of x and η, namely, y = h(x) and μ =

φ(η, E�
G y) = φ(η, E�

G h(x)). Thus, we have that{
ẏ = ∇xh(x(t))ẋ

μ̇ = ∇ηφ(η(t), ζ(t))η̇ +∇xφ(η(t), ζ(t))E�
G ∇h(x(t))ẋ

(10)

where ζ(t) = E�
G h(x(t)), ẋ = f(x, u) = f(x,−EGφ(η, ζ)),

and η̇ = ψ(η, ζ) = ψ(η, E�
G h(x)). Thus, we can write the time

derivative of G as a continuous function of x(t), η(t) by plug-
ging (10) into (9). However, we do not know the value of
x(t), η(t) between measurements. To tackle this problem, notice
that we have some information on where x(t) and η(t) can lie.
Namely, (5) shows that S(x(t), η(t)) is a monotone descending
function, so (x(t), η(t)) lie in the set B = {(x, η) : S(x, η) ≤
S(x(tk), η(tk))}. More precisely, we have:

Proposition 4: Assume that the functions hi, fi, φe, and ψe

are all continuously differentiable. Then, for any time t ∈
[tk, tk+1], the following inequality holds:∣∣∣∣dGdt (t)

∣∣∣∣ ≤ (ρ�MΔyMẏ + ν�MΔμMμ̇,x)Mẋ

+ ν�MΔμMμ̇,ηMη̇

where Mẋ = max(x,η)∈B ‖f(x,−EGφ(η, E�
G h(x))‖,Mη̇ =

max(x,η)∈B ‖ψ(η, E�
G h(x))‖,Mẏ = max(x,η)∈B ‖∇xh(x)‖,

Mμ̇,x = max(x,η)∈B ‖∇ζφ(η, E�
G h(x))E�

G ∇xh(x)‖,Mμ̇,η =

max(x,η)∈B ‖∇ηφ(η, E�
G h(x))‖,Mδy=max(x,η)∈B ‖h(x)−

h(x)‖,Mδμ=max(x,η)∈B ‖ψ((η, E�
G h(x))−μ‖,ρ� = maxi ρi,

ν� = maxe νe, and B = {(x, η) : S(x, η) ≤ S(x(tk), η(tk))}.
Proof: We fix some t ∈ [tk, tk+1], so that (x(t), η(t)) ∈ B.

We use the expressions for ẋ, η̇, ẏ, and μ̇ found in (10). First, the
conditions‖ẋ‖ ≤Mẋ and‖η̇‖ ≤Mη̇ are obvious. Equation (10)
shows that ‖ẏ‖ ≤MẏMẋ and ‖μ̇‖ ≤Mμ̇,xMẋ +Mμ̇,ηMη̇ . By
using the Cauchy–Schwarz inequality on (9), we obtain |dGdt | ≤
ρ�Mδy‖ẏ‖+ ν�Mδμ‖μ̇‖, concluding the proof. �

Corollary 1: Fix any two times tk < tk+1, and consider the
notation of Proposition 4. Then, the following inequality holds:

S(x(tk+1))− S(x(tk)) ≤

−
(∑

i

ρiΔyi(tk)
2 +

∑
e∈E

νeΔμe(tk)
2

)
Δtk +

M

2
Δt2k,

(11)

where

M = (ρ�MΔyMẏ + ν�MΔμMμ̇,x)Mẋ + ν�MΔμMμ̇,ηMη̇.

Proof: Recall that G(t) =
∑

i∈V ρi(yi(t)− yi)
2 +∑

e∈E νe(μe(t)− μe)
2. By Proposition 4, for every

t ∈ [tk, tk+1] we have G(t) ≤ G(tk+1) +M |t− tk+1|. Thus,
(6) implies that (11) holds. �

The corollary proposes a mathematically sound method for
asserting convergence of the output y(t) toy�. One samples y(t),
x(t), η(t), and μ(t) at times t1, t2, t3, At every time instance
tk+1, one checks that the inequality (11) holds. We show that
whenΔtk → 0, this method asserts that the output of the system
converges to the said value. In other words, assuming that we

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

SHARF AND ZELAZO: MONITORING LINK FAULTS IN NONLINEAR DIFFUSIVELY COUPLED NETWORKS 2867

sample the system at a high-enough rate, we can assert that it
converges very closely to the supposed steady-state output:

Proposition 5: Let t1, t2, . . . , be any monotone sequence
of times such that tk → ∞, and suppose that the inequal-
ity (11) holds for any k. Then, for any ε > 0, there
are infinitely many N > 0 such that

∑
i∈V ρiΔyi(tN)2 +∑

e∈E νeΔμe(tN)2 < M
2 ΔtN + ε. More precisely, for any

two times tN1
≤ tN2

, if tN2
≥ tN1

+ ε−1S(x(tN1
), η(tN1

)),
then there exists some k ∈ {N1, N1 + 1, . . . , N2} such that∑

i∈V ρiΔyi(tk)
2 +

∑
e∈E νeΔμe(tk)

2 < M
2 Δtk + ε.

The proposition can be thought of as a close-convergence
estimate. The left-hand side, viewed as a function of x, η, is
a nonnegative smooth function, which nulls only at the steady
state (x, η). Thus, it is small only whenx(t) and η(t) are close to
(x, η), and because S(x(t), η(t)) is monotone descending, once
the trajectory arrives near (x, η), it must remain near (x, η). One
might ask why “infinitely many times” is more useful in this case.
It does not add any more information if the time intervals Δtk
are taken as constant (i.e., we sample the system at a constant
rate). However, we can measure the system at an ever-increasing
rate, at least theoretically. Taking Δtk → 0 (while still having
tk → ∞, e.g., Δtk = 1/k), we see that we must have x(t) → x
and η(t) → η, hence we can use the proposition to assert con-
vergence. We now prove the proposition.

Proof: It is enough to show that for each ε > 0 and any
N1 > 0, there is some N > N1 such that

∑
i∈V ρiΔyi(tN)2 +∑

e∈E νeΔμe(tN)2 < M
2 ΔtN + ε. Indeed, suppose this is not

the case. Then, for any k > N1, the right-hand side of (11) is
upper-bounded by −εΔtk. We sum the telescopic series and
conclude that for any k > N1,

S(x(tk))− S(x(tN1
)) ≤ −

k∑
j=N1+1

εΔtj = −ε(tk − tN1
),

(12)

so tN2
≥ tN1

+ ε−1S(x(tN1
), η(tN1

)) implies that
S(x(tk), η(tk)) < 0. This is absurd, as S ≥ 0. Thus, there
must exist some N ∈ {N1, N1 + 1, . . . , N2} such that∑

i∈V ρiΔyi(tN)2 +
∑

e∈E νeΔμe(tN)2 < M
2 ΔtN + ε. �

Proposition 5 can be used for convergence assertion. We can
consider the following scheme—begin at time t0 and statex0, η0.
We want to show that S(x(t), η(t)) → 0. We instead show that
G(t), defined in (8), gets arbitrarily close to 0. As we said, this
is enough as G(t) is a only small when x(t), η(t) are close to
the steady state (x, η). We prove the following.

Theorem 9: Consider the algorithm A , defined in the fol-
lowing form. Sample the system at times t1, t2, . . . and check
whether the inequality (11) holds. If it does, continue, and if does
not, then stop and declare “no.” Then, there exists a sequence
t1, t2, . . . , depending on the system and the initial conditions,
such that A satisfies Assumption 4.

Proof: We present the following method of choosing
t1, t2, We first choose t0 = 0, an arbitrary δ1 > 0, compute
M as in Proposition 4, and choose Δ1t =

δ1
M and ε = δ1

2 . Sam-
ple the system at rate Δ1t until time tN1

> t0 + ε−1S(x0, η0).
The process is then reiterated with δk+1 = δ1/2

k for k =
1, 2, . . . , giving rates Δkt and times tNk

. We claim that A ,

with this choice of sample times, satisfies Assumption 4. If
the network (G,Σ,Π) converges to (x, η), then Corollary 1
implies that the algorithm never stops, as required. We show
that if the algorithm never stops, the network converges to the
conjectured limit. By the discussion above, and the fact that
S(x(t), η(t)) is a monotone descending function, it suffices to
show that lim infk→∞G(tk) = 0. By choice of Δ1t, if (11)
holds at each time, then when we reach time tN1

, we know
that at some point, we hadG(t) ≤ M

2 Δ1t+ ε = δ1. Reiterating
shows that at some times t�k, G(t�k) ≤ δk, where δk+1 = δ1

2k
, so

lim infk→∞G(tk) = 0. �
The term “high-rate sampling” comes from the fact that if M

is not updated when we reiterate with smaller δ, then eventually,
tk+1 − tk → 0, which is impractical in real-world cases. How-
ever, we note that the number M decreases as S(x(t), η(t))
decreases, as shown in Proposition 4. Thus, if M is updated
between iterations, we might have Δt �→ 0.

Remark 3: There is a tradeoff between the time steps Δt and
the time it takes to find a point in whichG(t) < M

2 Δt+ ε, given

by t = S(x(0),η(0))
ε . On one hand, we want larger time steps (to

avoid high-rate sampling) and shorter overall times; however,
increasing both Δt and ε creates a worse eventual bound on
G(t). We can choose both by maximizing an appropriate cost
function C(Δt, ε), monotone in both Δt and ε, subject to
M
2 Δt+ ε = δ1, ε ≥ 0,Δt ≥ 0. Choosing C(Δt, ε) as linear is

inadvisable, as maximizing a linear function with linear con-
straints always leads to the optimizer being on the boundary,
which means either Δt = 0 or ε = 0. The choice Δt = δ1

M and
ε = δ1

2 mentioned above corresponds to the geometric average
cost function C(Δt, ε) =

√
Δtε. Other possible choices of C

include the Harmonic mean 2Δtε
Δt+ε , or weighted versions of

these means, where the weights express a preference between
lowering ε and lowering Δt.

B. Asserting Convergence Using Convergence Profiles

For this subsection, we now assume that Assumption 3 holds,
and that the agents are output-strictly MEIP, i.e., that ρi > 0.
Consider (5) and suppose that there is a nonnegative monotone
function F such that for any t, the right-hand side of (5) is
bounded from above by −F(S). In that case, we get an estimate
of the form Ṡ ≤ −F(S). This is a weaker estimate than (5), but
it has a more appealing discrete-time form

S(x(tk+1))− S(x(tk)) ≤ −
∫ tk+1

tk

F(S(x(t)))dt

≤ −F(S(x(tk+1))) · (tk+1 − tk)
(13)

where we use the monotonicity of F and the fact that S(x(t))
is monotone nonascending. Due to Assumption 3, we focus on
the elements of the right-hand side of (5) corresponding to the
agents and neglect the ones corresponding to controllers, as S
is now the sum of the functions Si(xi). Because controllers are
passive, we have νe ≥ 0, so removing the said term does not
change the inequality’s validity.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

2868 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

In order to find F , it is natural to look for functions Ωi

satisfying Ωi(Si) ≤ (yi(t)− yi)
2. We define the existence of

the functions Ωi properly in the following definition.
Definition 5: Let Ω : [0,∞) → [0,∞) be any function on the

nonnegative real numbers. We say that an autonomous system
has the convergence profile (ρ,Ω)with respect to the steady state
(u, y) if there exists a C1 storage function S(x) such that the
following inequalities hold.

i) dS(x(t))
dt ≤ (u(t)− u)(y(t)− y)− ρ(y(t)− y)2;

ii) Ω(S(x(t))) ≤ (y(t)− y)2.
Example 1: Consider the SISO system Σ defined by ẋ =

−x+ u, y = x, and consider the steady-state input–output pair
(0,0). The storage function S(x(t)) = 1

2x(t)
2 satisfies

Ṡ(x(t)) = x(t)ẋ(t) = (u(t)− 0)(y(t)− 0)− (y(t)− 0)2.

Thus, Σ has convergence profile (1,Ω) for Ω(θ) = 2θ.
More generally, when considering an LTI system with no input

feedthrough, both functions S(x) and (y(t)− y)2 are quadratic
in x. Thus, there is a monotone linear function Ω such that
the inequality Ω(S(x(t)) ≤ (y(t)− y)2 holds. In particular, a
function Ω exists in this case. We show that functions Ω exist
for rather general systems.

Theorem 10: Let Σ be the SISO system of the form ẋ =
−f(x) + q(x)u, y = h(x). Suppose that q is a positive continu-
ous function, that f/q isC1 and monotone ascending, and that h
isC1 and strictly monotone ascending. Let (u = f(x)/q(x), y =
h(x)) be any steady-state input–output pair of the system. Then,
we have the following.

i) Using the storage function S(x) =
∫ x

x
h(σ)−h(x)

q(σ) dσ, the
system Σ has the convergence profile (ρ,Ω) for a strictly
ascending function Ω and ρ = infx

f(x)−f(x)
h(x)−h(x) ≥ 0.

ii) Suppose that there exists some α > 0 such that the limit
limx→x

|h(x)−h(x)|
|x−x|α exists and is finite. Then, the limit

limθ→0
Ω(θ)
θβ exists and is finite, where β = 2α

α+1 . In other
words, if h behaves like a power law near x, then Ω
behaves like a power law near 0.

Proof: The passivation inequality follows from Theorem 1,
so we focus on constructing the function Ω. For every θ ≥ 0,
we define the set Aθ = {x ∈ R : (h(x)− h(x))2 ≤ θ}. We
want that x ∈ Aθ would imply that Ω(S(x)) ≤ θ. Because h
is continuous and monotone, it is clear that Aθ is an interval
containing x. Now, let ω be the function on [0,∞) defined as
ω(θ) = supx∈Aθ

S(x). We note that ω can take infinite values
(e.g., when h is bounded, but S is not). However, we show that
the restriction of ω on {θ : ω(θ) <∞} is strictly monotone. If
we show that this claim is true, then ω has an inverse function,
which is also strictly monotone. Define Ω = ω−1 as the strictly
monotone inverse function. By definition, for any x ∈ R, we
have that x ∈ Aθ for θ = (h(x)− h(x))2, so S(x) ≤ ω(θ).
Thus, Ω(S(x)) ≤ Ω(ω(θ)) = θ = (h(x)− h(x))2, concluding
the first part of the proof.

We now prove that the restriction of ω on {θ : ω(θ) <∞}
is strictly monotone. Note that if 0 ≤ θ1 < θ2, the interval {x :
(h(x)− h(x))2 ≤ θ1} = Aθ1 is strictly contained in Aθ2 , as h
is strictly monotone. Moreover, S is strictly ascending in [x,∞)

and strictly descending in (−∞, x], as the function h(x)−h(x)
g(x)

is positive on (x,∞) and negative on (−∞, x). Thus, we have
ω(θ1) < ω(θ2), unless ω(θ1) = ∞, which is what we wanted to
prove.

We now move to the second part of theorem, i.e., that
if h behaves like a power law near x, then Ω behaves
like a power law near 0. We use big-O notation (in the
limit x→ x). By assumption and strict monotonicity of h,
we have

h(x)− h(x) = Csgn(x− x)|x− x|α + o(|x− x|α) (14)

for some constant C > 0, implying (h(x)− h(x))2 = C2|x−
x|2α + o(|x− x|2α). By definition, for θ > 0 small enough, Aθ

is an interval centered at x of radius θ1/2α/C1/α + o(θ1/2α).
Writing S(x) =

∫ x

x
h(σ)−h(x)

q(σ) dσ and q(x) = q(x) + o(1), (14)
implies that

h(σ)− h(x)

q(σ)
=

1

q(x)
(Csgn(x− x)|x− x|α + o(|x− x|α)) .

Thus, S(x) = C
q(x)(α+1) |x− x|α+1 + o(|x− x|α+1). We now

compute ω(θ) by definition, using our characterization of Aθ:

ω(θ) = max
x∈Aθ

S(x) = max
x∈Aθ

(
C|x− x|α+1

q(x)(α+ 1)
+ o(|x− x|α+1)

)

=
C

q(x)(α+ 1)

(
θ

1
2α

C1/α

)α+1

+ o
(
(θ

1
2α)α+1

)

= (D + o(1))θ
α+1
2α

for D = 1
q(x)(α+1)C1/α > 0. Thus, the inverse function Ω(θ) is

given as Ω(θ) = (D− 2α
1+α − o(1))θ

2α
1+α , as desired. �

Example 2: Consider a system with q(x) = 1, h(x) = 3
√
x

and a steady state u = x = y = 0. h(x) behaves like a power
law with power α = 1

3 . Part ii) of Theorem 10 implies that Ω
also behaves like a power law, with power β = 2α

α+1 = 1
2 . We

exemplify the computation of Ω and show that it behaves like
a power law with β = 1

2 , as forecasted by the theorem. Indeed,
S(x) =

∫ x

0
3
√
σdσ = 3

4x
4/3, and (h(x)− h(x))2 = x2/3.

For every θ ≥ 0, Aθ = {x : x2/3 ≤ θ} = [−θ1.5, θ1.5].
Thus, ω(θ) = supx∈Aθ

S(x) = sup|x|≤θ1.5
3
4x

4/3 = 3
4θ

2, im-

plying that Ω, the inverse function of ω, is given by
√

4
3θ, and

one observes that actually (h(x)− h(x))2 = Ω(S(x)).
Remark 4: Theorem 10 gives a prescription to design the

function Ω. However, some steps, namely, the inversion of ω,
are computationally hard. For example, if h(x) = 1− e−x and
q(x) = 1, then ω(θ) = loge

1
1−√

θ
−√

θ for θ < 1 and ω(θ) =
∞ forθ ≥ 1, which is almost impossible to invert analytically. To
solve this problem, we can either precompute the different values
of Ω numerically and store them in a table, or approximate them
online using the bisection method. The strength of Theorem 10
is that it shows that a function Ω can always be found, implying
that this method is always applicable.

So far, we transformed (6) into the equation dS
dt ≤∑

i −ρiΩi(Si), for nonnegative monotone functions Ωi. This
is closer to an inequality of the form Ṡ ≤ −F(S), but we still

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

SHARF AND ZELAZO: MONITORING LINK FAULTS IN NONLINEAR DIFFUSIVELY COUPLED NETWORKS 2869

cannot use it without high-rate sampling, as we cannot assume
that Si(xi(t)) are monotone decreasing. We want to transform
the right-hand side into a function of S. We note that Ωi(θi) = 0
only at θi = 0, as Si = 0 happens only at xi. We claim the
following.

Proposition 6: Let ρ1, . . ., ρn be any positive numbers, and
let Ω1, . . .,Ωn : [0,∞) → [0,∞) be any C1 strictly monotone
functions such that Ωi(θi) = 0 only at θi = 0. Suppose further
that for any i, there exists some βi > 0 such that the limit
limθi→0

Ωi(θi)

θ
βi
i

exists and is positive. Define Ω� : [0,∞) →
[0,∞) asΩ�(θ) = mini Ωi(θ). Then, for everyD > 0, there ex-
ists some constant C > 0 such that for all D ≥ θ1, . . . , θn ≥ 0,
we have

∑n
i=1 ρiΩi(θi) ≥ C · Ω�(

∑n
i=1 θi).

The proof of the proposition can be found in the Appendix.
Corollary 2: Let S1, . . ., Sn be the storage functions of

the agents, let S =
∑

i Si, and let Ω1, . . . ,Ωn be C1 strictly
monotone functions such that Ωi(θi) = 0 only at θi = 0.
Suppose that for any i, there exists some βi > 0 such that
the limit limθi→0

Ωi(θi)

θ
βi
i

exists and is positive. Moreover,

suppose that Ṡ ≤∑i ρiΩi(Si). Then, for every bounded
set B ⊂ Rn, there exists a constant C > 0 such that for
any trajectory of the closed-loop system with initial con-
dition in B, the inequality Ṡ ≤ −C · Ω�(S) holds, where
Ω�(θ) = mini Ωi(θ).

Proof: Use θi = Si and D = S(x(0)) in Proposition 6. �
Proposition 6 and Corollary 2 show that an inequality of the

form (13) can be achieved, so long the functions Ωi from The-
orem 10 “behave nicely” around 0, namely, do not grow faster
nor slower than a power law. This condition is very general and
only excludes pathologies as Ω(θ) = 1

log(1/θ) , growing faster

than any power law, and Ω(θ) = exp(−1/θ2), growing slower
than any power law. Theorem 10 shows that if h behaves like
a power law near x, then so does Ω, so pathological functions
Ω� can only come from pathological measurement functions hi.
We show that it is enough to check the discretized equation (13)
to assert convergence.

Proposition 7: Let Ω� : [0,∞) → [0,∞) be any continuous
function such that Ω�(θ) = 0 only at θ = 0. Let S̃(t) be any
time-dependent monotone decreasing function S̃ : [0,∞) →
[0,∞). Let t1, t2, t3, . . . be any unbounded sequence of times
such that liminfk→∞(tk+1 − tk) > 0, and suppose that for every
k, the inequality S̃(tk+1)− S̃(tk) ≤ −Ω�(S̃(tk+1))(tk+1 −
tk) holds. Then, S̃(t) → 0 as t→ ∞.

The proof of the proposition can be found in the Appendix.
We want to use S̃(t) = S(x(t)). The results above suggest an
algorithm for convergence assertion.

Theorem 11: Algorithm 7, taking the system (G,Σ,Π), the
initial state x(0), and the conjectured steady state x̂ = h−1(y)
as input, satisfies Assumption 4.

Proof: We denote the true limit of the system (G,Σ,Π) by
x. We first assume that the algorithm never stops and show that
x̂ = x. We show that S(x(tk)) ≤ δk, which would suffice as
δk → 0 and S(t) → 0 implies that x(t) → x̂, and thus, x = x̂.
Suppose, heading toward contradiction, that S(x(tk)) �≤ δk.
Then, Ω(S(x(tk))) ≥M , meaning that the right-hand side of

Algorithm 7: Convergence Assertion Using Convergence
Profile.

Input: A diffusively coupled network (G,Σ,Π), an initial
condition x(0) and a conjectured steady state x̂;

1: Let Si(xi) =
∫ xi

x̂i

hi(σi)−hi(x̂i)
qi(σi)

dσi,
S(x) =

∑
i Si(xi);

2: Use Theorem 10, Proposition 6, and Corollary 2 to
find a function F such that Ṡ ≤ −F(S) for all times t,
with initial condition x(0);

3: Choose δ0 = S(x(0)) and t0 = 0;
4: for k = 0, 1, 2, 3, . . . do
5: Define δk+1 = δk/2.;
6: Define M = minx: S(x)≥δk+1

F(S(x));

7: Sample the system at time some tk+1 > tk + S(x0)
M .

8: if if (13) does not hold then
9: Stop and return “no”;

(13) is larger than −S(x(tk)). Hence, if the inequality holds,
then S(x(tk+1)) < 0, which is absurd. Thus, S(x(tk)) ≤ δk,
and x̂ = x. On the contrary, if the conjectured limit x̂ is the
true limit of the network, then Theorem 10, Proposition 6, and
Corollary 2 show that (13) always holds, so the algorithm never
stops, as expected. �

Remark 5: Proposition 7 shows that we can take any sample
times tk such that lim infk→∞(tk − tk−1) > 0 and still get a
valid convergence assertion algorithm. The suggested algorithm
gives extra information, as it also bounds the distance of x(tk)
from x. Another way to choose tk is to use the solution of the

ordinary differential equation (ODE) ˙̃S = −Ω(S̃) with S̃(t0) =
S(x0). Let tk be the earliest time in which S̃(tk) ≤ δk. The
inequality Ṡ ≤ −Ω(S) assures thatS(x(tk)) ≤ δk. This method
is more demanding, as the minimaM in the previous section can
be precomputed, but the solution to the ODE must be computed
online.

Remark 6: Although we can prove convergence with this
method using very seldom measurements, we should still sample
the system at a reasonable rate. This is because we want to detect
faults as soon as possible. If we sample the system in too large
intervals, we will not be able to sense a fault until a large amount
of time has passed.

We conclude this section with a short discussion about the
perks and drawbacks of the two presented convergence assertion
methods. The convergence profile method allows the designer
to sample the system at any desired rate, allowing one to prove
convergence using very seldom measurements. Moreover, it
gives rate of convergence guarantees before running the system.
On the contrary, the high-rate sampling method can require a
long time to assert convergence to a δ-ball around the desired
steady state, unless one is willing to increase the sampling rate,
perhaps arbitrarily. However, its main upshot is that Assumption
3 need not hold, and that the method is computationally easier,
as one can avoid function inversion needed to compute Ω.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

2870 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

Fig. 2. Faultless underlying graph in the case study.

Fig. 3. Results of the first scenario.

VII. CASE STUDY: VELOCITY COORDINATION IN VEHICLES

WITH DRAG

Consider a collection of n = 20 vehicles trying to coordinate
their velocity. Each vehicle is modeled as a double integrator
G(s) = 1/s2 in vacuum, but is subject to drag in the real world.
The drag model of a vehicle is usually chosen as a force against
the direction of the vehicle’s motion, which is quadratic in the
size of the velocity [35, p. 164]. Thus, each vehicle is governed
by the equations: ẋi = −Cixi|xi|+ ui, yi = xi where xi is
the velocity of the ith vehicle, and Ci is a constant aggregating
different parameters affecting the drag, e.g., density of the air,
viscosity of the air, the geometry of the vehicle, and the mass of
the vehicle. The vehicles are trying to coordinate their velocity—
Agents #1–#7 want to travel at 60 km/h, agents #8–#13 want
to travel at 70 km/h, and agents #14–#20 want to travel at
50 km/h. The edge controllers are static nonlinearities given by
sigmoid functions of the form μe = tanh(ζe). This diffusively
coupled network satisfies both Assumptions 1 and 3, and we
note that both the agents and the controllers are nonlinear. We
choose an interaction graph G, as seen in Fig. 2. One can check
that G is 4-connected, either using Menger’s theorem or using
other known algorithms [36].

The parameters Ci were chosen log-uniformly between 0.01
and 0.1. The initial velocity of the agents was chosen to be
Gaussian with mean μ = 70 km/h and standard deviation σ =
20 km/h. We solve the synthesis problem, forcing the network
to converge to y� = [60 · 1�7 , 70 · 1�6 , 50 · 1�7]

� km/h, where 1m

Fig. 4. Results of the second scenario.

Fig. 5. Results of the third scenario.

Fig. 6. Results of the fourth scenario.

is the all-one vector of size m, allowing up to two edges to
fault. We run our FDI protocol, implementing the profile-based
convergence assertion scheme, sampling the system at 10 Hz
(i.e., a modified version of Algorithm 7). We consider four
different scenarios, each lasting 100 s:

1) a faultless scenario;

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

SHARF AND ZELAZO: MONITORING LINK FAULTS IN NONLINEAR DIFFUSIVELY COUPLED NETWORKS 2871

2) at time t = 20 s, the edge {2, 3} faults, and at time t =
50 s, the edge {13, 14} faults;

3) at time t = 20 s, the edge {2, 3} faults, and at time t =
21 s, the edge {13, 14} faults;

4) at time t = 0.5 s, the edge {2, 3} faults, and at time t =
4 s, the edge {13, 14} faults.

The first scenario tests the nominal behavior of the protocol.
The second tests its ability to handle with one single fault at a
time. The third tests its ability to handle more than one fault at
a time. The last tests its ability to deal with faults before the
network converged. The results are available in Figs. 3–6. It
can be seen that we achieve the control goal in all four scenarios.
Moreover, in all scenarios and at all times, the velocities of the
agents are not too far from the values found in y�, meaning
that this protocol cannot harm the agents by demanding them
to have very wild states. In the second and third scenarios, the
exploratory phase begins at the first measurement after the fault
occurred. On the contrary, in the fourth scenario, the exploratory
phase begins only at t = 1.3 s, a little under a second after the
first fault. This is because the steady states of the faulty and
nominal closed-loop systems are relatively close, meaning that
it takes a little extra time to find that a fault exists.

VIII. CONCLUSION

We considered multi-agent networks prone to communication
faults, in which the agents are output-strictly MEIP and the
controllers are MEIP. We exhibited a protocol, in which a
constant bias w is added to the controller output, and showed
that if w is chosen randomly, no matter what the underlying
graph G is, we can asymptotically differentiate between any two
versions (faulty or faultless) of the system. We also showed that
if w is chosen randomly within a certain set, we asymptoti-
cally differentiate the faultless version of the system from its
faulty version, while also solving the synthesis problem for the
faultless version, assuming that G was connected enough, i.e.,
2-connected. These results were used to describe algorithms for
network FDI protocols for general MEIP MASs, where the num-
ber of isolable faults is given by a graph-theoretic characteristic
of G, while no extra information on the agents and controllers
but MEIP is used. These were achieved by assuming the ex-
istence of an online algorithm asserting that a given network
converges to a conjectured steady state, allowing us to move
from asymptotic differentiation to online differentiation. Later,
two such algorithms were built using passivity of the agents and
controllers, and their correctness was proved. We demonstrated
our protocols by a case study, in which we successfully detect
communication faults in a nonlinear network. We emphasize
that the proposed method is proved to work so long the agents
and controllers are MEIP, and the graph G is connected enough.
In particular, there is no assumption on the scale of the network.

APPENDIX

This appendix includes the proof of technical propositions
from Section VI-B. We start with Proposition 6.

Proof: Without loss of generality, we assume that Ωi =
Ω� for all i, as proving that

∑n
i=1 ρiΩ�(θi) ≥ CΩ�(

∑n
i=1 θi)

would imply the desired inequality. We also assume that
ρi = 1 for all i, as proving that

∑
i Ωi(θi) ≥ C · Ω�(

∑
i θi)

would give
∑

i ρiΩi(θi) ≥ Cmini ρi · Ω�(
∑

i θi). Define F :

[0, D]n\{0} → R as F (θ1, . . . , θn) =
∑n

i=1 Ω�(θi)
Ω�(

∑n
i=1 θi)

, where the
claim is equivalent toF being bounded from below. For any r >
0, F is continuous on the compact set [0, D]n\{x : ||x|| < r},
so its minimum is obtained at some point. As F does not vanish
on the set, the minimum is positive, soF is bounded from below
on that set by a constant greater than zero. It remains to show
that lim infθ1,...,θn→0 F (θ1, . . . , θn) > 0. Let β = maxi βi, so

that limθ→0
Ω�(θ)
θβ > 0. Then, F (θ1, . . . , θn) =

∑n
i=1 Ω�(θi)

Ω�(
∑n

i=1 θi)
=

∑n
i=1 Ω�(θi)

(
∑n

i=1 θi)β
· (

∑n
i=1 θi)

β

Ω�(
∑n

i=1 θi)
. We want to bound both factors from

below when θ1, . . . , θn → 0. It is clear that the second fac-
tor is equal to (limθ→0

Ω�(θ)
θβ)−1, which is a positive real

number by assumption. As for the first factor, we can bound
it as limθ1···θn→0

∑n
i=1 Ω�(θi)

(
∑n

i=1 θi)β
≥ limθ1···θn→0

Ω�(maxi θi)
(nmaxi θi)β

> 0 as∑n
i=1 θi ≤ nmaxi θi and

∑
i Ω�(θi) ≥ Ω�(maxi θi). �

We now prove Proposition 7.
Proof: By assumption, S̃(tk) is monotone decreasing and

bounded from below, as S̃(tk) ≥ 0. Thus, it converges
to some value, denoted S̃∞. Using S̃(tk+1)− S̃(tk) ≤
−Ω�(S̃(tk+1))(tk+1 − tk) and taking k → ∞ gives
that 0 ≤ −Ω�(S̃∞). However, Ω� is nonnegative, so
Ω�(S̃∞) = 0, and thus, S∞ = 0, meaning that S̃(tk) → 0.
By monotonicity of S̃, we conclude that S̃(t) → 0 as
t→ ∞. �

REFERENCES

[1] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation
control,” Automatica, vol. 53, pp. 424–440, 2015.

[2] L. Scardovi, M. Arcak, and E. D. Sontag, “Synchronization of in-
terconnected systems with applications to biochemical networks: An
input-output approach,” IEEE Trans. Autom. Control, vol. 55, no. 6,
pp. 1367–1379, Jun. 2010.

[3] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “Dis-
tributed fault detection and isolation resilient to network model un-
certainties,” IEEE Trans. Cybern., vol. 44, no. 11, pp. 2024–2037,
Nov. 2014.

[4] S. Jafari, A. Ajorlou, A. G. Aghdam, and S. Tafazoli, “On the struc-
tural controllability of multi-agent systems subject to failure: A graph-
theoretic approach,” in Proc. 49th IEEE Conf. Decis. Control, 2010,
pp. 4565–4570.

[5] S. Jafari, A. Ajorlou, and A. G. Aghdam, “Leader localization in multi-
agent systems subject to failure: A graph-theoretic approach,” Automatica,
vol. 47, no. 8, pp. 1744–1750, 2011.

[6] M. A. Rahimian and V. M. Preciado, “Detection and isolation of failures
in directed networks of LTI systems,” IEEE Control Netw. Syst., vol. 2,
no. 2, pp. 183–192, Jun. 2015.

[7] M. A. Rahimian and V. M. Preciado, “Failure detection and iso-
lation in integrator networks,” in Proc. Amer. Control Conf., 2015,
pp. 677–682.

[8] G. Battistelli and P. Tesi, “Detecting topology variations in dynam-
ical networks,” in Proc. 54th IEEE Conf. Decis. Control, 2015,
pp. 3349–3354.

[9] M. A. Rahimian, A. Ajorlou, and A. G. Aghdam, “Detectability of multiple
link failures in multi-agent systems under the agreement protocol,” in Proc.
IEEE 51st IEEE Conf. Decis. Control, 2012, pp. 118–123.

[10] M. E. Valcher and G. Parlangeli, “On the effects of communication failures
in a multi-agent consensus network,” in Proc. 23rd Int. Conf. Syst. Theory,
Control Comput., 2019, pp. 709–720.

[11] Y. Zhang, Y. Xia, J. Zhang, and J. Shang, “Generic detectability and
isolability of topology failures in networked linear systems,” IEEE Trans.
Control Netw. Syst., vol. 8, no. 1, pp. 500–512, Mar. 2021.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

2872 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

[12] W. Pan, Y. Yuan, H. Sandberg, J. Gonçalves, and G.-B. Stan, “Online fault
diagnosis for nonlinear power systems,” Automatica, vol. 55, pp. 27–36,
2015.

[13] M. A. Rahimian, A. Ajorlou, and A. G. Aghdam, “Digraphs with distin-
guishable dynamics under the multi-agent agreement protocol,” Asian J.
Control, vol. 16, no. 5, pp. 1300–1311, 2014.

[14] M. Sharf and D. Zelazo, “Network identification: A passivity and network
optimization approach,” in Proc. IEEE 57th Annu. Conf. Decis. Control,
2018, pp. 2107–2113.

[15] D. Patil, P. Tesi, and S. Trenn, “Indiscernible topological variations in DAE
networks,” Automatica, vol. 101, pp. 280–289, 2019.

[16] H. Yang, V. Cocquempot, and B. Jiang, “Fault tolerance analysis for
switched systems via global passivity,” IEEE Trans. Circuits Syst. II: Exp.
Briefs, vol. 55, no. 12, pp. 1279–1283, Dec. 2008.

[17] W. Chen, S. X. Ding, A. Q. Khan, and M. Abid, “Energy based fault
detection for dissipative systems,” in Proc. Conf. Control Fault-Tolerant
Syst., Oct. 2010, pp. 517–521.

[18] Q. Lei, R. Wang, and J. Bao, “Fault diagnosis based on dissipativity
property,” Comput. Chem. Eng., vol. 108, pp. 360–371, 2018.

[19] H. Bai, M. Arcak, and J. Wen, “Cooperative control design: A systematic,
passivity-based approach,” in Communications and Control Engineering.
New York, NY, USA: Springer, 2011.

[20] M. Arcak, “Passivity as a design tool for group coordination,” IEEE Trans.
Autom. Control, vol. 52, no. 8, pp. 1380–1390, Aug. 2007.

[21] A. van der Schaft and B. Maschke, “Port-Hamiltonian systems on graphs,”
SIAM J. Control Optim., vol. 51, no. 2, pp. 906–937, 2013.

[22] N. Chopra and M. Spong, “Passivity-based control of multi-agent
systems,” in Advances in Robot Control, From Everyday Physics
to Human-Like Movements. New York, NY, USA: Springer, 2006,
pp. 107–134.

[23] M. Bürger, D. Zelazo, and F. Allgöwer, “Duality and network the-
ory in passivity-based cooperative control,” Automatica, vol. 50, no. 8,
pp. 2051–2061, 2014.

[24] R. T. Rockafellar, Network Flows and Monotropic Optimization. Belmont,
MA, USA: Athena Scientific, 1998.

[25] M. Sharf and D. Zelazo, “A network optimization approach to cooperative
control synthesis,” IEEE Control Syst. Lett., vol. 1, no. 1, pp. 86–91,
Jul. 2017.

[26] M. Sharf and D. Zelazo, “Analysis and synthesis of MIMO multi-agent
systems using network optimization,” IEEE Trans. Autom. Control, vol. 64,
no. 11, pp. 4512–4524, Nov. 2019.

[27] C. Godsil and G. Royle, Algebraic Graph Theory (Graduate Texts in
Mathematics), 1st ed. New York, NY, USA: Springer, 2001.

[28] J. Bondy and U. Murty, Graph Theory With Applications. New York, NY,
USA: Macmillan, 1977.

[29] H. K. Khalil, Nonlinear Systems, 3rd ed. London, U.K.: Pearson, 2001.
[30] M. Sharf, A. Romer, D. Zelazo, and F. Allgöwer, “Model-free practical

cooperative control for diffusively coupled systems,” IEEE Trans. Autom.
Control, to be published, doi: 10.1109/TAC.2021.3056582.l.

[31] A. S. Willsky, “A survey of design methods for failure detection in dynamic
systems,” Automatica, vol. 12, no. 6, pp. 601–611, 1976.

[32] M. Sharf, A. Jain, and D. Zelazo, “A Geometric method for passi-
vation and cooperative control of equilibrium-independent passivity-
short systems,” IEEE Trans. Autom. Control, to be published,
doi: 10.1109/TAC.2020.3043390.

[33] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama,
“Dynamical model of traffic congestion and numerical simulation,” Phys.
Rev. E, vol. 51, pp. 1035–1042, Feb. 1995.

[34] M. Sharf and D. Zelazo, “Network identification for diffusively-coupled
systems with minimal time complexity,” Mar. 2019, arXiv:1903.04923.

[35] R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers With
Modern Physics. Boston, MA, USA: Cengage Learning, 2018.

[36] Z. Galil, “Finding the vertex connectivity of graphs,” SIAM J. Comput.,
vol. 9, no. 1, pp. 197–199, 1980.

[37] L. Marton, “Energetic approach to deal with faults in robot actuators,” 20th
Mediterranean Conf. Control Autom. (MED), pp. 85–90, Jul. 2012.

[38] G.-B. Stan and R. Sepulchre, “Analysis of interconnected osciallators by
dissipativity theory,” IEEE Trans. Autom. Control, vol. 52, no. 2, pp. 256–
270, 2007.

Miel Sharf (Member, IEEE) received the B.Sc.
and M.Sc. degrees in mathematics from the
Technion—Israel Institute of Technology, Haifa,
Israel, in 2013 and 2016, respectively, and
the Ph.D. degree from the Department of the
Aerospace Engineering, Technion—Israel Insti-
tute of Technology, in 2020.

Since September 2020, he has been a Post-
doctoral Researcher with the Division of De-
cision and Control Systems, KTH Royal Insti-
tute of Technology, Stockholm, Sweden. His re-

search interests include the relation between graph theory to multi-agent
systems, nonlinear control, data-driven control, security in networked
systems, and formal verification of control systems.

Dr. Sharf is a recipient of the Springer Thesis Award. He was selected
as a part of the 2021 class of Forbes Israel “30 under 30.”

Daniel Zelazo (Senior Member, IEEE) received
the B.Sc. and M.Eng. degrees in electrical en-
gineering from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 1999 and
2001, respectively, and the Ph.D. degree from
the Department of Aeronautics and Astronau-
tics, University of Washington, Seattle, WA,
USA, in 2009.

He is currently an Associate Professor with
the Department of Aerospace Engineering,
Technion—Israel Institute of Technology, Haifa,

Israel. From 2010 to 2012, he was a Postdoctoral Research Associate
and Lecturer with the Institute for Systems Theory and Automatic Con-
trol, University of Stuttgart, Stuttgart, Germany. His research interests
include topics related to multi-agent systems, optimization, and graph
theory.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:58:58 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TAC.2021.3056582.l
https://dx.doi.org/10.1109/TAC.2020.3043390

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

