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Abstract—In this article, we develop a data-based con-
troller design framework for diffusively coupled systems
with guaranteed convergence to an ε-neighborhood of the
desired formation. The controller is composed of a fixed
controller with an adjustable gain on each edge. Via passiv-
ity theory and network optimization, we not only prove that
there exists a gain attaining the desired formation control
goal, but we present a data-based method to find an upper
bound on this gain. Furthermore, by allowing for additional
experiments, the conservatism of the upper bound can be
reduced via iterative sampling schemes. The introduced
scheme is based on the assumption of passive systems,
which we relax by discussing different methods for esti-
mating the systems’ passivity shortage, as well as applying
transformations passivizing them. Finally, we illustrate the
developed model-free cooperative control scheme with a
case study.

Index Terms—Asymptotic stability, convex functions,
data models, iterative learning control, iterative methods,
multiagent systems, networked control systems, nonlinear
dynamical systems, optimization, sampling methods.

I. INTRODUCTION

MULTIAGENT systems have received extensive attention
in the past years, due to their appearance in many fields

of engineering, exact sciences, and social sciences. Examples
include robotics [1], traffic engineering [2], and ecology [3].
The state-of-the-art approach to model-based control for mul-
tiagent systems offers rigorous stability analysis, performance
guarantees, and systematic insights into the considered problem.
However, with the growing complexity of systems, the modeling
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process is reaching its limits. Obtaining a reliable mathematical
model of the agents becomes a time-intensive and arduous task.

At the same time, modern technology allows for gathering
and storing more and more data from systems and processes,
inciting an increasing interest in data-driven control. There
are two main approaches for data-driven control. The first is
model-based data-driven control, which uses data to identify
a model from the problem, which is in turn used to solve the
synthesis problem [4], [5]. In this case, the model estimation
errors must be taken into account when solving the synthesis
problem. The second is model-free control, which does not try
to estimate a model for the system. The latter can be further
bisected into approximate dynamic programming methods and
direct policy search. The former evaluates a score for each
state-action pair, and then obtains an optimal control policy using
dynamic programming [6], and the latter tries to find the optimal
policy directly, e.g., by gradient descent or via a nonparametric
description of the possible trajectories [7]. These methods have
all been applied to multiagent systems as well, with varying
degrees of success [6], [8]–[10].

In this article, we develop a data-driven controller synthesis
approach for multiagent systems, which comes with rigorous
theoretical analysis and stability guarantees for the closed loop,
with almost no assumptions on the agents and few measurements
needed. Our approach is based on high-gain control as well as
passivity. Some ideas on high-gain approaches to cooperative
control can be found in [11] and references therein. Zheng et
al. [12] provide a high-gain condition in the design of distributed
H∞ controllers for platoons with undirected topologies, while
there are also many approaches to (adaptively) tune the coupling
weights (e.g. [13]). Our approach provides an upper bound
on a high-gain controller using passivity measures. Passivity
properties of the components can provide sufficient abstractions
of their detailed dynamical models for guaranteed control. Such
passivity properties can be obtained from data as ongoing work
shows (e.g., [14]–[16]).

Passivity is a well-known tool for controller synthesis [17],
which is useful, beyond convergence analysis, for its powerful
properties such as compositionality. It was first introduced in the
field of multiagent systems in the seminal works of Arcak [18],
[19], and was since explored in many variants in the context
of multiagent systems in many other works [1], [20]–[26]. We
focus on the variant known as maximal equilibrium indepen-
dent passivity (MEIP), presented in [22]. The notion of MEIP
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establishes a connection between multiagent systems and net-
work optimization (see [22]–[26]). Different synthesis problems
have been solved using this network optimization framework
assuming an exact model for each of the agents exists [23],
[24], [27]. More precisely, one needs a perfect description of the
steady-state input–output behavior of the agents. Thus, these
methods cannot be applied in our case.

As we said, this article generally studies the problem of
controller synthesis for diffusively coupled systems. The control
objective is to converge to an ε-neighborhood of a constant pre-
scribed relative output vector. That is, for some tolerance ε > 0,
we aim to design controllers so that the steady-state limit of the
relative output is ε-close to the prescribed values. The related
problem of practical synchronization of multiagent systems has
been considered in [28], in which the agents were assumed to
be known up to some bounded additive disturbance. However,
a nominal model was needed to get practical synchronization.
It was also pursued in [29], where strong coupling was used to
drive agents close to a common trajectory, but again, a model
for the agents was needed.

Our contributions are as follows. We present a model-free
data-driven method for solving the practical formation control
problem. This is done by cascading a fixed controller and an
adjustable gain on each edge. We show that this gain can be
chosen to guarantee a solution to the practical formation control
problem. We then provide schemes to compute this gain offline
only from input–output data without any model of the agents.
In fact, this gain can be computed from only three experiments
(per agent), and it can become less conservative with further
data samples. If iterative experiments can be performed, we also
provide an approach for applying different gains over differ-
ent edges to further reduce any conservatism. We survey the
different advantages for each of the methods and discuss their
applicability in terms of the number of required measurements,
or trade-offs in terms of energy. We also provide simulations
presenting the effectiveness of the presented model-free control
methods. To the best of the authors’ knowledge, no prior works
consider data-driven control of multiagent systems using pas-
sivity. Furthermore, this is the first application of the network
optimization framework of [22], [24] where the agents do not
have an exact model.

Notations: We employ notions from algebraic graph the-
ory [30]. An undirected graph G = (V ,E) consists of finite sets
of vertices V and edges E ⊂ V × V . We denote the edge having
ends i and j in V by k = {i, j} ∈ E. For each edge k, we pick an
arbitrary orientation and denote k = (i, j). The incidence matrix
E ∈ R|E|×|V | ofG is defined such that for an edgek = (i, j) ∈ E,
we have [E ]ik = +1, [E ]jk = −1, and [E ]�k = 0 for � �= i, j.
diam(G) denotes the diameter of G.

We also use notions from linear algebra. For every vector
v ∈ Rn, diag(v) denotes the n× n diagonal matrix with the
entries of v on its diagonal. The image of any linear map T
between vector spaces will be denoted by Im(T ). Also, for two
sets A,B ⊆ Rd, we define A+B = {a+ b : a ∈ A, b ∈ B}.
Furthermore, ‖ · ‖ is the Euclidean norm.

Lastly, if Σ is a dynamical system, and M is a linear map of
appropriate dimension, we can consider the cascaded system of

Fig. 1. Block-diagram of the diffusively coupled network (Σ,Π,G).

Σ and M . The cascade of Σ after M is denoted ΣM , and the
cascade of Σ before M is denoted MΣ.

II. BACKGROUND: NETWORK OPTIMIZATION AND PASSIVITY

IN COOPERATIVE CONTROL

Our goal in this subsection is to describe the diffusive coupling
networks studied in [22], and to present the passivity-based net-
work optimization framework achieved for multiagent systems.
See also [23], [24].

A. Diffusively Coupled Systems and
Steady-State Relations

Diffusively coupled networks are composed of agents
{Σi}i∈V interacting over a graph G = (V ,E) using edge con-
trollers {Πe}e∈E. Each vertex i ∈ V represents an agent and
each edge e ∈ E represents a controller. We model them as SISO
dynamical systems

Σi :

{
ẋi = fi(xi, ui)

yi = hi(xi, ui)
,Πe :

{
η̇e = φe(ηe, ζe)

μe = ψe(ηe, ζe)
(1)

where the agents’ state, input, and output are xi, ui, and yi,
respectively, and the controllers’ state, input, and output are
ηe, ζe, and μe, respectively. To understand the coupling of these
systems, we consider the stacked inputs and outputs of the
agents and controllers as y = [y1, . . ., y|V |]T , and similarly for
u, ζ, μ. The system is connected via the relations ζ = ET y and
u = −Eμ, where E is the incidence matrix of the graph G. In
other words, if we stack all agents to a dynamical system Σ, and
stack all controllers to a dynamical system Π, the closed-loop
is the feedback connection of Σ and EΠET . See Fig. 1 for an
illustration of the network, which we will denote by (G,Σ,Π).

We will be interested in steady states of the closed-loop
system. It is clear that if the stacked vectors (u, y, ζ, μ) are a
steady state for (G,Σ,Π), then for every vertex i ∈ V , (ui, yi)
is a steady-state input–output pair for the system Σi, and for
every edge, e ∈ E, (ζe, μe) is a steady-state input–output pair
for the systemΠe. This motivates the exploration of steady-state
input–output relations, first defined in [22].

Definition 1: The steady-state relation of a system is a set
containing all the steady-state input–output pairs of the system.

We will denote the steady-states relations of Σi,Πe,Σ, and
Π as ki, γe, k, and γ, accordingly.

Remark 1: We will sometimes abuse the notation and con-
sider this relation as a set-valued map. Indeed, for any input
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u, we can define the set k(u) by k(u) = {y : (u, y) ∈ k}, and
similarly for ki, γe, and γ. We also consider the inverse relation
k−1 as the set-valued map assigning to a steady-state output y
the set k−1(y) = {u : y ∈ k(u)}, i.e., the set of all steady-state
inputs corresponding to the steady-state output y. We define this
similarly for ki, γe, and γ.

Thus, (u, y, ζ, μ) is a steady state of (G,Σ,Π) if and only if
y ∈ k(u), μ ∈ γ(ζ), ζ = ET y, and u = −Eμ. Equivalently, y is
a steady-state output of (G,Σ,Π) if and only if the zero vector
0 lies in the set k−1(y) + Eγ(ET y) [22], [23].

B. Maximum Equilibrium-Independent Passivity and the
Network Optimization Framework

The main tool allowing us to connect multiagent systems to
the network optimization world is monotone relations.

Definition 2: A steady-state relation is monotone if for any
two points (u1, y1) and (u2, y2) in the relation, u1 < u2 implies
y1 ≤ y2. We say that a monotone relation is maximally monotone
if it is not contained in a larger monotone relation.

In order to connect this definition to the system-theoretic
world, we define the following variant of passivity:

Definition 3. ([22]): A SISO system is said to be (output-
strictly) maximum equilibrium-independent passive (MEIP) if
the following two conditions hold.

i) The system is (output-strictly) passive with respect to any
steady-state input–output pair it has.

ii) Its steady-state relation is maximally monotone.
One important property of maximally monotone relations

is that they are subgradients of convex functions [31]. In this
direction, we assume that the agents and controllers of the
diffusively coupled network (G,Σ,Π) are MEIP. LetKi and Γe

be the corresponding convex integral functions for the steady-
state relations ki, γe. In other words, ∂Ki = ki and ∂Γe = γe,
where ∂ denotes the subdifferential of convex functions [31]. We
shall denoteK =

∑
i∈V Ki and Γ =

∑
e∈E Γe, so that ∂K = k

and ∂Γ = γ. The dual functions of Ki,Γe,K,Γ are defined
using the Legendre transform,K�(y) = supu{uT y −K(u)} =
− infu{K(u)− uTy}, and similarly for K�

i ,Γ
�
e , and Γ�. We

note that∂K� = k−1, ∂Γ� = γ−1, ∂K�
i = k−1

i , and∂Γ�
e = γ−1

e

[31].
We now resume our interest in steady states for the diffusively

coupled network (G,Σ,Π). We recall that y was the steady-
state output of the diffusively coupled network if and only if
0 ∈ k−1(y) + Eγ(ET y). Restating this result in the language of
convex functions gives the following theorem.

Theorem 1 ([22]): Consider the diffusively coupled network
(G,Σ,Π). Assume all agents Σi are MEIP, and all controllers
Πe are output-strictly MEIP (or vice versa). Let ki, γe, k, and
γ be the steady-state relations of Σi,Πe,Σ, and Π accordingly,
and let Ki,Γe,K, andΓ be the corresponding convex integral
functions. Then, the closed-loop system converges to a steady
state (u, y, ζ, μ), such that (y, ζ) and (u, μ) are dual optimal
solutions to the following convex optimization problems:

The two network optimization problems above will be de-
noted often by (OPP) and (OFP), respectively. These problems

are fundamental in the field of network optimization, dealing
with optimization problems defined on graphs [31]. The names
“optimal potential problem” and “optimal flow problem” are
inspired from standard nomenclature in this field.

III. PROBLEM FORMULATION

We focus on relative-output-based formation control. In this
problem, the agents know the relative output ζe = yi − yj with
respect to their neighbors, and the control goal is to converge
to a steady state with prescribed relative outputs ζe = yi − yj .
Examples include the consensus problem, in which all outputs
must agree, as well as relative-position-based formation control
of robots, in which the robots are required to organize themselves
in a desired spatial structure [32].

More specifically, we are given a graph G and agents Σ, and
our goal is to design controllers Π so that the signal ζ(t) of the
diffusively coupled network (G,Σ,Π)will converge to a desired,
given steady-state vector ζ�. One evident solution is to apply a
(shifted) integrator as a controller. However, this solution will
not always work even when the agents are MEIP.

Example 1: Consider agents Σi with integrator dynamics,
together with (shifted) integrator controllersΠe, where we desire
consensus (i.e., ζ� = 0) over a connected graph G

Σi :

{
ẋi = ui

yi = xi
Πe :

{
η̇e = ζe

μe = ηe.

The trajectories of the diffusively coupled system can be
understood by noting that the closed-loop system yields
the second-order dynamics ẍ = −EETx. Decomposing x us-
ing a basis of eigenvectors of the graph Laplacian EET ,
which is a positive semi-definite matrix, we see that the
trajectory of x(t) oscillates around the consensus manifold
{x : ∃λ ∈ R x = λ1n}. Specifically, x(t)− 1/n1Tnx(t)1n =∑n

i=2 ci cos(
√

λit+ ϕi)vi, where λ2, . . . , λn > 0 are the non-
trivial eigenvalues of the graph Laplacian, v2, . . . , vn are cor-
responding unit-length eigenvectors, and ci, ϕi are constants
depending on the initial conditionsx(0), η(0). Thus,x(t) = y(t)
does not converge anywhere, let alone to consensus. More-
over, ζ(t) does not converge as t→ ∞, as Eζ(t) = EET y(t) =∑n

i=2 λici cos(
√

λit+ ϕi)vi. Thus, the integrator controller
does not solve the formation control problem in this case.

Even if the integrator would solve this problem in general, we
would like more freedom in choosing the controller. In practice,
one might want to design the controller to satisfy extra require-
ments (like H2- or H∞-norm minimization, or making sure that
certain restrictions on the behavior of the system are not broken).
We do not try and satisfy these more complex requirements,
but instead show that a large class of controllers can be used
to solve the practical formation control problem. In turn, this
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Fig. 2. Block-diagram of the diffusively coupled network (Σ,Π,G, A).

allows one to choose from a wide range of controllers, and try
and satisfy additional desired properties. Sharf and Zelazo [23]
offer an algorithm solving the problem, assuming the agents are
MEIP and a perfect model of them is known. This algorithm
allows a lot of freedom in the choice of controllers. However,
in practice, we oftentimes have no exact model of the agents, or
any closed-form model. To formalize the goals we aim at, we
define the notion of practical formation control.

Problem 1: Given a graph G, agents Σ, a desired formation
ζ� ∈ Im(ET ), and an error margin ε, find a controller Π so
that the relative output vector ζ(t) of the network (G,Σ,Π)
converges to some ζ0 such that ‖ζ� − ζ0‖ ≤ ε.

By choosing suitable error margins ε, practical formation
control (compared to formation control) comprises no restriction
or real drawback in any application case. Therefore, solving the
practical formation control problem constitutes an interesting
problem, especially for unknown dynamics of the agents. Thus,
we strive to develop an algorithm solving this practical forma-
tion control problem without a model of the agents while still
providing rigorous guarantees.

The underlying idea of our approach is amplifying the con-
troller output. Consider the scenario depicted in Fig. 2, where
the graphG, the agentsΣ, and the nominal controllerΠ are fixed,
and the gain matrix A is a diagonal matrix A = diag({ae}e∈E)
with positive entries. We will show in the following that when
the gains ae become large enough, the controller dynamics Π
become much more emphasized than the agent dynamics Σ. By
correctly choosing the nominal controller Π according to ζ�, we
can hence achieve arbitrarily close formations to ζ�, as the effect
of the agents on the closed-loop dynamics will be dampened.
We denote the diffusively coupled system in Fig. 2 as the 4-tuple
(G,Σ,Π, A), or as (G,Σ,Π, a) where a is the vector of diagonal
entries ofA. In caseAhas uniform gains, i.e.,A = αI , we denote
the system as (G,Σ,Π, α1n). We make an assumption in order
to apply the network optimization framework of Theorem 1.

Assumption 1: The agents {Σi}i∈V are all MEIP, and the
chosen controllers {Πe}e∈E are all output-strictly MEIP.

Before expanding on the suggested controller design, we
discuss Assumption 1. In practice, we might not know if an
agent is MEIP. Hence, we discuss how to either verify MEIP for
the agents, or otherwise determine their shortage of passivity. We

Fig. 3. Passivation of a passivity-short agent using feedback.

also discuss how to passivize the agents in the latter case. First,
in some occasions, we might not know a model for the agents,
but some known general structure properties. For example, one
might know that an agent can be modeled by a gradient system,
or a Euler–Lagrange system, but the exact model is unknown due
to uncertainty on the characterizing parameters. In that case, we
can use analytical results to verify MEIP. To exemplify this idea,
we show how a very rough model can be used to prove that a
system is MEIP.

Proposition 1: Consider a control-affine SISO system

ẋ = −f(x) + g(x)u; y = h(x). (2)

Assume that g is positive, that f/g, h : R → R are continuous
ascending functions, and that either lim|x|→∞ |f(x)/g(x)| = ∞
or lim|x|→∞ |h(x)| = ∞. Then, (2) is MEIP.

The proof is available in the Appendix. See also [24] for a
treatment on gradient systems with oscillatory terms. Similarly,
one can use a highly uncertain model to give an estimate about
equilibrium-independent passivity indices.

Another approach for verifying Assumption 1 is learning
input–output passivity properties from trajectories. For LTI sys-
tems, the shortage of passivity can be asymptotically revealed
by iteratively probing the agents and measuring the output sig-
nal [15]. In [16], the authors showed that even one input–output
trajectory (with persistently exciting input) is sufficient to find
the shortage of passivity of an LTI system. For nonlinear agents,
one can apply approaches presented in [14], [33], under an
assumption on Lipschitz continuity of the steady-state relation.
However, for general nonlinear systems, this is still a work in
progress. We note that for LTI systems, output-strict passivity
directly implies output strict MEIP [22].

Using either approach, we can either find that an agent is
MEIP, or that it has some shortage of passivity, and we need to
render the agent passive in order to apply the model-free control
approaches presented in this article. We can use passivizing
transformations in order to get a passive augmented agent. For
example, if the agent has output-shortage of passivity si > 0, we
can apply a controllerCi : yi �→ νiyi to the agent as in [25], with
νi > si, as shown in Fig. 3. It can be shown that the augmented
agent is output-strictly MEIP in this case. More generally, one
could deal with more complex shortages of passivity, namely
simultaneous input- and output-shortage of passivity, using more
complex transformations [26].

With this discussion and relaxation of Assumption 1, we
return to our solution of the practical formation control problem.
We considered closed-loop systems of the form (G,Σ,Π, a),
where a is a vector of edge gains. From here, the article diverges
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into two sections. The next section deals with theory and analysis
for uniform edge gains. The following section deals with the case
of heterogeneous edge gains.

IV. PRACTICAL FORMATION CONTROL WITH UNIFORM GAINS

The chapter is split into two parts. The first part deals with
the theory, and the second part deals with the corresponding
implementation of practical formation control synthesis using
uniform gains on the edges.

A. Theory

We wish to understand the effect of amplification on the
steady state of the closed-loop system. For the remainder of
the section, we fix a graph G, agents Σ, and controllers Π such
that Assumption 1 holds. We consider the diffusively coupled
system (G,Σ,Π, α1n) in Fig. 2, where the gains over all edges
are identical and equal to α > 0, and wish to understand the
effect of α. We let K and Γ denote the sum of the integral
functions of the agents and of the controllers, respectively. We
first study the steady states of this diffusively coupled system.

Lemma 1: Under the assumptions above, the closed loop
converges to a steady state, and the steady states y, ζ of the
closed-loop system are minimizers of the following problem:

min
y,ζ

K�(y) + αΓ(ζ)

s.t. ET y = ζ. (3)

Proof: We define a new stacked controller, Π̄ = αΠ, by cas-
cading the previous controller Π with the gain α. The resulting
controller Π̄ is again output-strictly MEIP, and we let γ̄, Γ̄ denote
the corresponding steady-state input–output relation and integral
function. Theorem 1 implies that the closed-loop system (with
Π̄) converges to minimizers of (OPP) for the system (G,Σ, Π̄).
Hence, we have γ̄(ζ) = αγ(ζ) for any ζ ∈ R|E|. Therefore,
(OPP) for the system (G,Σ, Π̄) reads

min
y,ζ

K�(y) + αΓ(ζ)

s.t. ET y = ζ

as Γ̄ = αΓ. �
Our goal is to show that when α 1, the relative output

vector ζ of the diffusively coupled system (G,Σ,Π, α1n) glob-
ally asymptotically converges to an ε = ε(α)-ball around the
minimizer of Γ, and limα→∞ ε(α) = 0. Thus, if we design the
controllers so that Γ is minimized at ζ�, then α 1 provides
a solution to the ε-practical formation control problem. Indeed,
we can prove the following theorem.

Theorem 2: Consider the closed-loop system (G,Σ,Π, α1n),
where the agents are MEIP and the controllers are output-strictly
MEIP. Assume Γ has a unique minimizer in Im(ET ), denoted
ζ1. For any ε > 0, there exists some α0 > 0, such that for all
α > α0 and for all initial conditions, the closed-loop converges
to a vector y satisfying ‖ET y − ζ1‖ < ε. In particular, if ζ1 =
ζ�, we solve the practical control problem.

In order to prove the theorem, we study (OPP) for the diffu-
sively coupled system (G,Σ,Π, α1n), as described in Lemma

1. In order to do so, we need to prove a couple of lemmas. The
first deals with lower bounds on the values of convex functions
away from their minimizers.

Lemma 2: LetU be a finite-dimensional vector space. Let f :
U → R be convex, and suppose x0 ∈ U is the unique minimum
of f . Then, for any δ > 0, there is some M > f(x0) such that
for any point x ∈ U , if f(x) < M , then ‖x− x0‖ < δ.

Proof: We assume without loss of generality that f(x0) = 0.
Let μ be the minimum of f on the set {x ∈ U : ||x− x0|| =
δ}, which is positive since x0 is f ’s unique minimum and the
set {x ∈ U : ‖x− x0‖ = δ} is compact. We know that, for any
y ∈ U , the difference quotient f(x0+λy)−f(x0)

λ
is an increasing

function of λ > 0 (see Theorem 23.1 of [31]). Manipulating this
inequality shows that for any x ∈ U , ||x|| ≥ δ implies f(x) ≥
||x||
δ μ, and in particular f(x) ≥ μ whenever ||x|| ≥ δ. Thus, if
f(x) < μ, then we must have ||x− x0|| < δ, so we can choose
M = μ and complete the proof. �

The second lemma deals with minimizers of perturbed ver-
sions of convex functions on graphs.

Lemma 3: Fix a graph G = (V ,E) and let E be its incidence
matrix. Let K : R|V | → R be a convex function, and let Γ :
R|E| → R be a convex function with a unique minimum ζ1 when
restricted to the set Im(ET ). For anyα > 0, consider the function
Fα(y) = K�(y) + αΓ(ET y). Then, for any ε > 0, there exists
some α0 > 0 such that if α > α0, then all of Fα’s minima, y,
satisfy ‖ET y − ζ1‖ < ε.

Proof: By subtracting constants from K� and Γ, we may
assume without loss of generality thatmin(K�) = min(Γ) = 0.
Choose some y0 ∈ R|V | such that ET y0 = ζ1 and let m =
K�(y0). Note that Fα(y0) = m, meaning that if y is any min-
imum of Fα, it must satisfy Fα(y) ≤ m, and in particular
Γ(ET y) ≤ m

α . Now, from Lemma 2, we know that there is some
M > 0 such that if Γ(ET y) < M then ‖ET y − ζ1‖ < ε. If we
choose α0 = m

M , then whenever α > α0, we have Γ(ET y) <
M , implying ‖ET y − ζ1‖ < ε. �

We now connect the pieces and prove Theorem 2.
Proof: Lemma 1 implies that the closed-loop system always

converges to a minimizer of (3). Lemma 3 proves that there exists
α0 > 0 such that ifα > α0, then all minimizers of (OPP) satisfy
‖ET y − ζ1‖ < ε. This proves the theorem. �

Remark 2: The parameters ε and ζ� can be used to estimate
the minimal required gainα0 by following the proofs of Lemmas
2 and 3. Namely, α0 ≤ m

M , where M is the minimum of Γ
on the set {ζ ∈ Im(ET ) : ‖ζ − ζ�‖ = ε}, and m = K�(y0)−
minyK

�(y) = K�(y�) +K(0), where y� ∈ R|V | is any vector
satisfying ET y� = ζ�.

Corollary 1: Let (G,Σ,Π, α1n) satisfy Assumption 1 and let
(G,ΣInt,Π) be a network composed of integrator dynamics for
each agent. Denote the relative outputs of each system as ζ(t) and
ζInt(t) respectively. Then, for any ε > 0, there exists an α0 > 0
such that if α ≥ α0, then the relative outputs ζ(t) and ζInt(t)
both converge to constant vectors ζ� and ζ�Int, respectively, and
satisfy ‖ζ� − ζ�Int‖ ≤ ε.

Proof: The agents ΣInt are MEIP. Thus, by Theorem 1, we
know that the diffusively coupled system (G,ΣInt,Π) converges
to a steady state, and its steady-state output is a minimizer of the
associated problem (OPP). Note that the input–output relation
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of ΣInt is given via k−1(y) = 0, meaning the integral function
K� is the zero function. Thus, the associated problem (OPP)
is the unconstrained minimization of Γ(ET y), meaning that the
system (G,ΣInt,Π) converges, and its output converges to a
minimizer of Γ(ET y), i.e., its relative output ζ(t) converges
to the minimizer of Γ on Im(ET ). Applying Theorem 2 now
completes the proof. �

Remark 3 (Almost Data-Free Control): Corollary 1 can be
thought of as a synthesis procedure. Indeed, we can solve the
synthesis problem as if the agents were single integrators, and
then amplify the controller output by a factor α. The corollary
shows that for any ε > 0, there is a threshold α0 > 0 such that if
α > α0, the closed-loop system converges to an ε-neighborhood
of ζ�. We note that we only know that α0 exists as long as
the agents are MEIP. Computing an estimate on α0, however,
requires one to conduct a few experiments.

There are a few possible approaches to overcome this require-
ment. One can try an iterative scheme, in which the edge gains
are updated between iterations. Gradient-descent and extremum-
seeking approaches are discussed in the next section (see Al-
gorithm 3), but both require to measure the system between
iterations. Another approach is to update the edge gains on a
much slower time-scale than the dynamics of the system. This
results in a two time-scale dynamical system, where the gains ae
of the system (G,Σ,Π, a) are updated slowly enough to allow
the system to converge. Taking ae as uniform gains of size
α, and slowly increasing α, assures that eventually, α > α0,
so the system will converge ε-close to ζ�. The only data we
need is whether or not the system has already converged to an
ε-neighborhood of ζ�1, to know whether α should be updated
or not. This requires no data on the trajectories themselves, nor
information on the specific steady-state limit, but only knowing
whether the control goal has been achieved, which is the coarsest
form of data. This results in an almost data-free solution of the
practical formation control problem, which is valid as long as
the agents are MEIP.

B. Data-Driven Determination of Gains

In the previous subsection, we introduced a formula for a
uniform gainα described by the ratio ofm andM , that solves the
practical formation problem, where m and M are as defined in
Remark 2. The parameterM depends on the integral function Γ
of the controllers, evaluated on well-defined points, namely {ζ ∈
Im(ET ) : ‖ζ − ζ�‖ = ε}. Thus, we can compute M exactly
with no prior knowledge on the agents. This is not the case for
the parameter m, which depends on the integral function of the
agents. Without knowledge of any model of the agents, we need
to obtain an estimate of m solely on the basis of input–output
data from the agents.

From Remark 2, we know that m =
∑n

i=1(K
�
i (y

�
i ) +

Ki(0)) =
∑n

i=1mi for some y� ∈ Rn such that ETy� = ζ�.
Without a model of the agents, m cannot be computed directly,

1Such data can be obtained by different methods, e.g., checking the size of
the derivatives, using physical intuition in some cases, or using passivity to
determine convergence rates as in [27].

Fig. 4. Experimental setup of the closed-loop experiment for estimat-
ing mi as used in Algorithm 1.

but we can find an upper bound on m from measured input–
output trajectories via the inverse relations k−1

i , i = 1, . . . , n.
Proposition 2: Let (u�i , y

�
i ), (ui,1, yi,1), (ui,2, yi,2), . . .,

(ui,r, yi,r) and (0, yi,0) be steady-state input–output pairs for
agent i, for some r ≥ 0. Then

mi≤ui,1(yi,1 − yi,0)+· · ·+ui,r(yi,r − yi,r−1)+u�i (y
�
i −yi,r).

Proof: We prove the claim by induction on the number of
steady-state pairs, r + 2. First, consider the case r = 0 of two
steady-state pairs. Because (0, yi,0) is a steady-state pair, we
know that Ki(0) = −K�

i (yi,0) by Fenchel duality. Similarly,
Ki(u

�
i ) = u�i y

�
i −K�

i (y
�
i ). Thus

mi = K�
i (y

�
i )+Ki(0) = K�

i (y
�
i )−K�

i (yi,0) ≤ u�i (y
�
i−yi,0)

where we use the inequality K�
i (b)−K�

i (c) ≥ k−1
i (c)(b− c)

for b = yi,0 and c = y�i . Now, we move to the case r ≥ 1. We
write mi as (K�

i (y
�
i )−K�

i (yi,r)) + (K�
i (yi,r)−Ki(0)). The

first element can be shown to be bounded by u�i (y
�
i − yi,r) by

the case r = 0. The second element is bounded by ui,1(yi,1 −
yi,0) + · · ·+ ui,r(yi,r − yi,r−1) by induction hypothesis, as we
use a total of r + 1 steady-state pairs. Thus,mi is no greater than
the sum of the two bounds, ui,1(yi,1 − yi,0) + · · ·+ ui,r(yi,r −
yi,r−1) + u�i (y

�
i − yi,r). �

Remark 4: If we only have two steady-state pairs, (u�i , y
�
i )

and (0, yi,0), the estimate on mi becomes mi ≤ u�i (y
�
i − yi,0).

Thus, two steady-state pairs, corresponding to two measure-
ments/experiments, are enough to yield a meaningful bound on
mi. We do note that more experiments yield better estimates of
mi, i.e., if r ≥ 1, the estimate in Proposition 2 is better as long
as (yi,0, yi,1, . . ., yi,r, y�i ) is a monotone series.

We can use Remark 4 to compute an upper bound on m
from the two steady-state pairs (u�i , y

�
i ) and (0, yi,0) per agent.

Designing experiments to measure these quantities is possible,
but can require additional information on the plant, e.g., output-
strict passivity. Instead, we take another path and estimate yi,0
and u�i instead of computing them directly. Indeed, we use the
monotonicity of the steady-state input–output relation to bound
u�i and yi,0 from above and below. The approach is described
in Algorithm 1. It is important to note that the closed-loop
experiments are done with a output-strictly MEIP controller,
which assures that the closed-loop system indeed converges.

We prove the following.
Proposition 3: The output mi of Algorithm 1 is an upper

bound on mi.
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Proof: First, we show that the closed-loop experiments con-
ducted by the algorithm indeed converge. The plant Σi is as-
sumed to be passive with respect to any steady-state input–output
pair it possesses. Moreover, the static controller u = βi(y −
yref) is output-strictly passive with respect to any steady-state
input–output pair it possesses. Thus, it is enough to show that the
closed-loop system has a steady state, which will prove conver-
gence as this is a feedback connection of a passive system with
an output-strictly passive system. Indeed, a steady-state input–
output pair (ui, yi) of the system must satisfy ui ∈ k−1

i (yi)
and ui = −βi(yi − yref), or −βi(yi − yref) ∈ k−1(yi). This is
equivalent to

0 ∈ k−1(yi)+βi(yi−yref)=∇
(
K�

i (yi)+
βi
2
(yi−yref)

2

)

so yi exists and is equal to the minimizer of K�
i (yi) +

βi

2 (yi −
yref)

2. This shows that the closed-loop experiments converge.
It remains to show that it outputs an upper bound on mi.

Using Remark 4, it is enough to show that yi,0 ∈ [yi,0, yi,0]

and u�i ∈ [u�i , u
�
i ]. To do so, we first claim that U1 ≤ u�i ≤ U3

and Y1 ≤ yi,0 ≤ Y3. We first show that Y1 ≤ yi,0, by showing
that yi,− ≤ yi,0. Indeed, because ki is a monotone map, this
is equivalent to saying that ui,− ≤ 0. By the structure of the
second experiment, the steady-state input is close to −1, and in
particular smaller than 0. The inequality yi,0 ≤ yi,+ is proved
similarly. We note that because ui,− ≈ −1 and ui,+ ≈ 1, we
have ui,− ≤ ui,+ and thus yi,− ≤ yi,+. as ki is monotone.

Next, we prove that U1 ≤ u�i . By monotonicity of ki, this is
equivalent toY1 ≤ y�i . Becauseyi,− ≤ yi,+, it is enough to show
that either yi,− ≤ y�i or yi,2 ≤ y�i . If the first case is true, then the
proof is complete. Otherwise, yi,− > y�i , so the algorithm finds

yi,2 by running the closed-loop system in Fig. 4 with βi = 1
and yref � y�i . The increased coupling strength implies that the
steady-state output yi,2 should be close to yref , which is much
smaller than y�i . Thus, yi,2 < y�i , which shows that Y1 ≤ y�1 , or
equivalently U1 ≤ u�1. The proof that u�1 ≤ U3 is similar. This
completes the proof. �

Remark 5: Algorithm 1 demands us to run a certain system
with parameter βi small and wait until convergence. In practice,
determining when the system has converged can be done by
measuring the output or its derivative. Alternatively, one can
use a Lypaunov-based approach [27]. One could also use engi-
neering intuition and simulations to conclude an estimate on the
termination time of the experiments. The parameter βi can be
chosen in a similar manner.

Remark 6: One can run more experiments to give tighter
estimates of mi. Indeed, by construction, take a collection
{(Ui,k, Yi,k)}r+1

k=0 of steady-state input–output pairs, and use
the monotonicity of the steady-state relation to sort them in
such a way that Yi,0 ≤ · · · ≤ Yi,r ≤ y�i ≤ Yi,r+1, Ui,0 ≤ 0 ≤
Ui,1 ≤ · · · ≤ Ui,r+1. We would like to use Proposition 2, but
we do not know the exact values of yi,r, ui,0. Instead, we again
use the monotonicity of the steady-state relation and bound
Ui,r ≤ u�i ≤ Ui,r+1 and Yi,0 ≤ yi,0 ≤ Yi,1. Thus,

mi ≤Mi �
r∑

k=1

Ui,k(Yi,k − Yi,k−1) + Ui,r+1(y
�
i − Yi,r).

(4)

We claim that Mi is a relatively tight estimate of mi.
Proposition 4: Let Δk = Yi,k − Yi,k−1 ≥ 0, and assume

that k−1
i is an L-Lipschitz function. Then, |Mi −mi| ≤

Cmax{L, 1}maxk Δk, for a constant C = C(yi,0, u
�
i , y

�
i ).

Proof: First, mi = K�
i (y

�
i )−K�

i (yi,0) =
∫ y�

i

yi,0
k−1
i (s)ds.

Thus, it is enough to bound each of the following terms:
i) | ∫ Yi,k

Yi,k−1
k−1
i (s)ds− Ui,k(Yi,k − Yi,k−1)|, k = 2, . . . , r;

ii) | ∫ y�
i

Yi,r
k−1
i (s)ds− u�i (y

� − Yi,r)|;
iii) | ∫ Yi,1

yi,0
k−1
i (s)ds− Ui,1(Yi,1 − yi,0)|;

iv) |(Ui,r+1 − u�i )(y
�
i − Yi,r)|;

v) |Ui,r+1(Yi,r+1 − y�i )|;
vi) |Ui,1(yi,0 − Yi,0)|.

The first term can be bounded by∫ Yi,k

Yi,k−1

|k−1(s)−k−1(Yi,k)|ds≤L
∫ Yi,k

Yi,k−1

|s− Yi,k|ds=LΔ2
k.

Similarly, the second term is bounded by L(y�i − Yi,r)
2 and the

third term is bounded by L(Yi,1 − yi,0)
2. The sum of the three

terms is thus bounded by

L

[
r∑

k=2

(Yi,k − Yi,k−1)
2 + (y�i − Yi,r)

2 + (Yi,1 − yi,0)
2

]

≤ Lmax(Δk)

[
r∑

k=2

(Yi,k − Yi,k−1) + (y�i − Yi,r)

+ (Yi,1 − yi,0)

]

≤ Lmax(Δk)(y
�
i − yi,0)
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where we use y�i − Yi,r ≤ Δr+1 and Yi,1 − yi,0 ≤ Δ1. Sim-
ilarly, the fourth term is bounded by LΔ2

r+1, the fifth term
is bounded by Ui,r+1Δr+1, and the last term is bounded by
Ui,1Δ0. This completes the proof, as 0 ≤ Ui,1 ≤ u�i = k−1

i (y�i ),
and Ui,r+1 = k−1(Yi,r+1) ≤ k−1(y�i ) + LΔr+1. �

Remark 7: A natural question that arises is how to conduct
experiments assuring that maxk Δk is small. If we run the sys-
tem in Fig. 4 with βi  1, then the steady-state output would be
very close to yref . Thus, if we run r additional experiments with
βi  1 and references yref,1 ≤ yref,2 ≤ · · · ≤ yref,r (i.e., a to-
tal of r + 3 experiments), then maxΔk = O(maxk |yref,k+1 −
yref,k|). Thus, choosing yref,k as r equally spaced points in
an appropriate interval would give maxk Δk = O(1/r), and a
uniformly random choice gives maxk Δk = O(log r/r) with
high probability [34].

We saw that mi can be bounded using three experiments
for general MEIP agents, and that additional measurements
can be used to provide more accurate estimates of mi. Other
recent works about data-driven control focus on the case of LTI
systems, using them as a base to build toward a solution for
nonlinear systems [4], [7], [35]. If we restrict ourselves to this
case, we can exactly compute mi from a single experiment.

Proposition 5: Suppose that the agent Σi is known to be both
MEIP and LTI. Let (ũ, ỹ) be any steady-state input–output pair

for which either u1 �= 0 or y1 �= 0.2 Then, mi =
(y�

i )
2ũ

2ỹ . Thus,
mi can be exactly calculated using a single experiment.

Proof: We know that k is a linear function, and the system
state matrix is Hurwitz [21], [24]. Moreover, unless the transfer
function of the agent is 0, k−1 is a linear function k−1(y) = sy
for some s > 0 [36]. Thus, K�(y) = s

2y
2. Now, k−1(0) = s ·

0 = 0, so (0,0) is a steady-state input–output pair, meaning that
yi,0 = 0. Moreover, we know that ũ = sỹ, and not both are zero,
so we conclude that ỹ �= 0, and that s = ũ

ỹ . Thus, K�
i (yi,0) =

K�
i (0) = 0 and K�

i (y
�
i ) =

s
2 (y

�
i )

2 = s
2y

2. This completes the
proof, as mi = K�

i (y
�
i )−K�

i (yi,0). �
The chapter concludes with Algorithm 2 for solving the

practical formation control problem using the single-gain am-
plification scheme, which is applied in Section VI.

Remark 8: Step 1 of the algorithm allows almost complete
freedom of choice for the controllers. One possible choice is the
static controllers μe = ζe − ζ�e . Moreover, if Πe is any MEIP

2For example, by running the system in Fig. 4 with someβ > 0 and yref �= 0.

controller for each e ∈ E, and γe(ζe) = 0 has a unique solution
for each e ∈ E, then the “formation reconfiguration” scheme
from [23] suggests a way to find the required controllers using
mild augmentation.

Remark 9: The algorithm allows one to choose any vector
y� such that ET y� = ζ�. All possible choices lead to some gain
α which assures a solution of the practical formation control
problem, but some choices yield better results (i.e., smaller
gains) than others. The optimal y�, minimizing the estimate
α, can be found as the minimizer of the problem min{K�(y) :
ETy = ζ�}, which we cannot compute using data alone. One can
use physical intuition to choose a vector y� which is relatively
close to the actual minimizer, but the algorithm is still valid, no
matter which y� is chosen.

V. ITERATIVE PRACTICAL FORMATION CONTROL: APPLYING

DIFFERENT GAINS ON DIFFERENT EDGES

Let us revisit Fig. 2 and letA = diag({ae}e∈E) with positive,
but distinct entries ae. These additional degrees of freedom can
be used, for example, to reduce the conservatism and retrieve a
smaller norm of the adjustable gain vector a while still solving
the practical formation control problem. It follows directly from
Theorem 2 that there always exists a bounded vector a solving
the practical formation control problem. However, the question
remains how a can be chosen based on sampled input–output
data and passivity properties.

Our idea here is to probe our diffusively coupled system for
given gains ae and adjust the gains according to the resulting
steady-state output. By iteratively performing experiments in
this way, we strive to find controller gains that solve the practical
formation control problem. This approach is tightly connected to
iterative learning control, where one iteratively applies and ad-
justs a controller to improve the performance of the closed-loop
for a repetitive task [37]. Our approach here is based on passivity
and network optimization with only requiring the possibility to
perform iterative experiments.

One natural idea in this direction is to define a cost function
that penalizes the distance of the resulting steady state to the
desired formation control goal and then apply a gradient descent
approach, adjusting the gain a for each experiment. However,
to obtain the gradient of ‖ET y(a)− ζ�‖2 with respect to the
vector a, where y(a) is the steady-state output of (G,Σ,Π, a),
one requires knowledge of the inverse relations k−1

i for all i =
1, . . . , n. With no model of the agents available, a direct gradient
descent approach is hence infeasible. We thus look for a simple
iterative multigain control scheme without knowledge on the
exact steepest descent direction.

We start off with an arbitrarily chosen gain vector a0 with only
positive entries. Due to Assumption 1, the closed-loop converges
to a steady state. According to the measured state, the idea is then
to iteratively perform experiments and update the gain vector
until we reach our control goal, i.e., practical formation control.
The update formula can be summarized by

a(j+1)
e = a(j)e + hve, e ∈ E (5)
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where h > 0 is the step size, and v, with entries ve, e =
1, . . . , |E|, is the update direction. In practice, the update can
either be instantaneous or gradual, e.g., using linear interpolation
or higher order splines. We denote the eth entry of ETy as fe and
choose v in each iteration such that

ve =

{
fe−ζ�

e

γe(fe)
γe(fe) �= 0

0 otherwise.
, e ∈ E (6)

If k−1 and γ are differentiable functions, then we claim that
F (a) = ||ET y(a)− ζ�||2 decreases in the direction of v, i.e.,
vT∇F (a) < 0. This leads to a multigain distributed control
scheme, using (5) with (6), summarized in Algorithm 3. This
multigain distributed control scheme is guaranteed to solve the
practical formation problem after a finite number of iterations,
and is summarized in the following theorem.

Theorem 3: Suppose that the functions k−1, γ are differen-

tiable, and that there exists an agent i0 ∈ V such that
dk−1

i0

dyi0
> 0

for any point yi0 ∈ R. Moreover, assume that dγe

dζe
> 0 for any

e ∈ E, ζe ∈ R. Then, vT∇F (a) ≤ 0, with v, F as defined in
Algorithm 3 (and equality if and only if ET y(a) = ζ�). Further-
more, if the step size h > 0 is small enough, then Algorithm 3
halts after finite time, providing a gain vector that solves the
practical formation control problem.

Sketch of Proof: The proof is based on showing that ∇F can
be written as −diag(γ(f))X(y(a))(f − ζ�), where X(y(a)) is
a positive-definite matrix depending on y(a). We can now show
that vT∇F = −(f − ζ�)TX(y(a))(f − ζ�) ≤ 0. The full proof
of Theorem 3 is available in the Appendix. �

Algorithm 3 together with the theoretical results from Theo-
rem 3 provides us with a very simple and distributed, iterative
control scheme with theoretical guarantees. Note also that the
steady states of the agents are independent of their initial con-
dition. For each iteration, the agents can hence also start from
the position they converged to at the last iteration. This can be
interpreted similarly to Remark 3, where gains are updated on a
slower time scale than convergence of the agents. However, in-
stead of only the information whether practical formation control
is achieved, we generally need the actual difference ET y − ζ�

that is achieved with the current controller in each iteration. In the
special case of proportional controllers μe = ζe − (ζ�)e, yield-
ing ve = 1, we retrieve the exact controller scheme proposed in
Remark 3.

An alternative gradient-free control scheme is the extremum
seeking framework presented in [38]. Assuming that k−1 and
γ are twice continuously differentiable, a step in the direction
of steepest descent is approximated every 4|E| steps (cf. [38,
Theorem 1]). While the extremum seeking framework approx-
imates the steepest descent (and the simple multigain approach
only guarantees a descending direction), it also requires large
amounts of experiments per approximated gradient step. Fur-
thermore, the algorithm as presented in [38] cannot be computed
in a purely distributed fashion. Therefore, the simple distributed
control scheme in Algorithm 3 displays significant advantages
in the present problem setup.

VI. CASE STUDY: VELOCITY COORDINATION IN VEHICLES

WITH DRAG AND EXOGENOUS FORCES

Consider a collection of 30 one-dimensional robot vehicles,
each modeled by a double integrator G(s) = 1

s2 . The robots try
to coordinate their velocity. Each of them has its own drag profile
f(ṗ), which is unknown to the algorithm, but it is known that f
is increasing and f(0) = 0. Moreover, each vehicle experiences
external forces (e.g., wind, and being placed on a slope). The
velocity of the vehicles is governed by the equation

Σi :

{
ẋi = −fi(xi) + ui + wi

yi = xi
(7)

where xi is the velocity of the ith vehicle, fi is its drag model,
wi are the exogenous forces acting on it, ui is the control input,
and yi is the measurement. In the simulation, the drag models
fi are given by cd|x|x, where the drag coefficient cd is chosen
as a log uniformly distributed random variable. We assume that
the vehicles are light, so the wind accelerates the vehicles by a
non-negligible amount. Thus, wi is randomly chosen between
−2 and 2. We wish to achieve velocity consensus, with error
no greater than ε = 0.2. We consider a diffusive coupling of
the agents with the cycle graph G = C30, and take proportional
controllers ζe = μe.

We apply the amplification scheme presented in Algorithm 2
and choose the consensus value y�i = 1.5m/sec to use in the
estimation algorithm. Note that the plants are MEIP, but not
output-strictly MEIP, and use Algorithm 1 to estimate the re-
quired uniform gain α. The first two experiments are conducted
with βi = 0.01, and yref = ±100. Based on their results, we
run a third experiment on each of the agents for which this is
required, this time with βi = 1 and yref = ±10, where the sign
is chosen according to Algorithm 1. The experimental results
are available in Fig. 5(a).

We estimate each mi using Remark 4. For example, for
agent 1, we get the three steady-state input–output pairs
(0.9947,0.5203), (−0.9687,−3.1294), and (3.4268,3.5732).
Monotonicity implies that it has steady states (u�1, y

�
1) =

(u�1, 1.5) and (0, y1,0) with 0.9947 ≤ u�1 ≤ 3.4268 and
−3.1294 ≤ y1,0 ≤ 0.5203. We can thus estimatem2 ≤ 3.4268 ·
(1.5− (−3.1294)) = 15.864. Repeating this calculation for
each of the agents and summing gives m = 256.3658.

As for estimating M , we have Γe(ζe) = ζ2e , so Γ(ζ) = ‖ζ‖2.
The minimum is at ζ� = 0, and by definition, we have M =
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Fig. 5. Experiment results for vehicle case study. (a) Results of first set of experiments for the vehicles. Each plot corresponds to a different agent.
(b) The closed loop with uniform gain α = 213.638. The two leftmost graphs plot the agents’ trajectories over 0.3 and over 10 s. The rightmost graph
plots the relative outputs.

minζ∈Im(ET ): ‖ζ−ζ�‖=ε Γ(ζ) = |E|ε2. Thus, we get α = m
M =

m
30ε2 = 213.64. To verify the algorithm, we run the closed-loop
system (G,Σ,Π, α1) with the gain α we found. The results are
available in Fig. 5(b). One can see that the overall control goal is
achieved—the agents converge to a steady state which is ε-close
to consensus. However, the agents actually converge to a much
closer steady state than predicted by the algorithm. Namely, the
distance of the steady-state output from consensus is roughly
0.04, much smaller than 0.2. Uncoincidentally, the true value
of m = K(0) +K�(y�) is 50.15, meaning we overestimate it
(and hencem/M ) by about 411%. One can mitigate this by using
more experiments to improve the estimatemi, as in Proposition
2 or in Remark 6. We follow this approach and conduct further
experiments on each of the agents using βi = 10 and choosing
yref randomly. The resulting values of α, as well as the error
from the true value of m/M , can be seen in the below table. It
can be seen that even a single additional measurement per agent
can significantly reduce the estimation error of m/M .

Altogether we showed that Algorithm 2 manages to solve the
practical consensus problem for vehicles, affected by drag and
exogenous inputs, without using any model for the agents, while
conducting very few experiments for each agent. However, it
overestimates the required coupling, and thus has unnecessarily
large energy consumption.

Let us now apply the iterative multigain control strategy.
We start with a(0) = 0.1⊗ 1|E|, we choose the step size h = 2
and apply Algorithm 3. In fact, since ζ� = 0 and ζe = μe,
we receive v = 1|E|, which constitutes the special case of
Remark 3. The corresponding norm of the gain vector and

Fig. 6. Resulting ε and the norm of the gain vector ‖a(j)‖ over itera-
tions j when applying the iterative multigain control strategy to the case
study of velocity coordination in vehicles.

the resulting ε in each iteration are illustrated in Fig. 6. After
20 iterations, we already arrive at a vector, which solves the
practical formation problem with ‖a(19)‖ = 208.68, while
ε = 0.195 < 0.2. Note that the controller with the uniform gain
had ‖a‖ =

√|E| · 213.638 = 1170.1, so the iterative scheme
beats it by a factor of 5 in terms of energy.

VII. CONCLUSION

We presented an approach for model-free practical coopera-
tive control for diffusively coupled systems only on the premise
of passivity of the agents. The presented approach led to two
control schemes: with additional two or three experiments on
the agents, we can upper bound the controller gain which solves
the practical formation problem, or we can iteratively adapt
the adjustable gain vector until practical formation is reached.
Both approaches are especially simple in their application, while
still being scalable and providing theoretical guarantees. Future
research might try and improve the presented methods, either by
reducing the number of experiments needed on each agent, or
by achieving faster practical convergence using iterations. One
might also try to use very limited knowledge on the agents to
achieve the said improvement. Other possible directions include
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data-driven solutions to more intricate problems using the net-
work optimization framework, e.g., fault detection and isolation.

APPENDIX

We now give full proofs of Proposition 1 and Theorem 3.

A. Proving Proposition 1

In order to prove the proposition, we use the notion of cursive
relations established in [26].

Definition 4 (Cursive Relations, [26]): A setA ⊂ R2 is called
cursive if there exists a curve α : R → R2 such that the follow-
ing conditions hold.

i) The set A is the image of α.
ii) The map α is continuous.

iii) The map α satisfies lim|t|→∞ ‖α(t)‖ = ∞.
iv) {t ∈ R : ∃s �= t, α(s) = α(t)} has measure zero.

A relation Υ is called cursive if the set {(p, q) : q ∈ Υ (p)} is
cursive.

The notion of cursive relations is useful as it can help prove
that systems are MEIP.

Theorem 4 ( [26]): A monotone cursive relation is maximally
monotone.

We can now prove Proposition 1.
Proof: Consider an arbitrary steady state of the system. As h

is continuous and strictly monotone ascending, hence invertible,
we must have ẋ = 0 for any steady-state input–output pair. Thus,
we conclude that any steady-state input–output pair can be writ-
ten as (f(σ)/g(σ), h(σ)) for some σ ∈ R. We first show pas-
sivity with respect to every steady state, and then show that the
steady-state input–output relation is maximally monotone. Take
a steady state (f(x0)/g(x0), h(x0)) of the system, and define
S(x) = dσ

∫ x

x0

h(σ)−h(x0)
g(σ) . We claim thatS is a storage function

for the steady-state input–output pair (f(x0)/g(x0), h(x0)).
Indeed,S(x) ≥ 0, with equality only at x0, immediately follows
from strict monotonicity of h and g > 0. As for the inequality
defining passivity, we have

d

dt
S(x) =

h(x)− h(x0)

g(x)
(−f(x) + g(x)u)

= (h(x)− h(x0))u− f(x)

g(x)
(h(x)− h(x0))

= (h(x)− h(x0))

(
u− f(x0)

g(x0)

)

−
(
f(x)

g(x)
− f(x0)

g(x0)

)
(h(x)− h(x0))

where the second term is negative as f
g , h are monotone as-

cending, and the first term is (y − h(x0))(u− f(x0)
g(x0)

). Hence,
the system is indeed passive with respect to any steady-
state input–output pair. As for maximal monotonicity of the
steady-state relation, we recall that it can be parameterized as
(f(σ)/g(σ), h(σ)) for σ ∈ R. We claim that this relation is both
monotone and cursive, which will prove maximal monotonicity.
Monotonicity holds as for any x0, x1

f(x0)

g(x0)
>
f(x1)

g(x1)
⇐⇒ x0 > x1 ⇐⇒ h(x0) > h(x1) (8)

due to strict monotonicity. As for cursiveness, the map σ �→
(f(σ)/g(σ), h(σ)) is a curve whose image is the relation. More-
over, it is clear that the map is continuous, and also injective due
to (8). Finally, we have

lim
|t|→∞

∥∥∥∥
(
f(t)

g(t)
, h(t)

)∥∥∥∥ ≥ lim
|t|→∞

max

{∣∣∣∣f(t)g(t)

∣∣∣∣, |h(t)|
}

= ∞
(9)

so the proof is complete by Theorem 4. �

B. Proving Theorem 3

We first state and prove the following lemma.
Lemma 4: Suppose that the assumptions of Theorem 3 hold,

and letC > 0 be any constant. DefineA1 = {y ∈ Rn : ‖ET y −
ζ�‖ ≤ C} and A2 = {y ∈ Rn :

∑
i k

−1
i (yi) = 0}. Then, the

set A1 ∩A2 is bounded.
Proof: First, we note that the inequality ‖ET y − ζ�‖ ≤

C implies that for any edge {i, j} ∈ E, we have |yi −
yj | ≤ C + ||ζ�|| by the triangle inequality. We let ω = (C +
||ζ�||)diam(G), where diam(G) is the diameter of the graph
G, so that if there exists some i, j ∈ V such that |yi − yj | > ω,
theny �∈ A1. Moreover, let z = k(0), so

∑
i k

−1
i (zi) = 0, so that

if y ∈ Rn satisfies ∀i : yi > zi, then y �∈ A2. Indeed, for each
i, we have k−1

i (yi) ≥ k−1
i (zi), and k−1

i0
(zi0) > k−1

i0
(yi0), mean-

ing that
∑

i k
−1
i (yi) >

∑
i k

−1
i (zi) = 0. Similarly, if∀i, zi > yi

then y �∈ A2. We claim that for any y ∈ A1 ∩A2 and any i ∈
V , we have C1 < yi < C2, where C1 = minj zj − ω − 1 and
C2 = maxj zj + ω + 1. Indeed, take any y ∈ Rn, and suppose
that yi ≥ C2 for some i ∈ V . There are two possibilities.

� There is some k ∈ V such that yk < maxj zj + 1. Then,
|yi − yk| > ω, implying that y �∈ A1.

� For any k ∈ V , yk ≥ maxj zj + 1, implying that y �∈ A2.
Similarly, one shows that if there is some i such that yi ≤ C1,

then y �∈ A1 ∩A2. This completes the proof. �
Proof of Theorem 3: Consider the solution y(a) of 0 =

k−1(y) + Ediag(a)γ(ET y) as a function of a. Then y(a) is
a differentiable function by the inverse function theorem, and
its differential is given by dy

da = −X(y(a))Ediag(γ(ET y(a))),
where the matrix X(y) is given by

X(y) = [diag(∇k−1(y)) + Ediag(∇γ(ET y))ET ]−1. (10)

We note that X(y) is positive-definite for any y ∈ Rn, by
Proposition 2 in [36]. Thus, the gradient of F is given by

∇F (a) = −diag(γ(ET y(a)))ETX(y(a))E(ET y(a)− ζ�).
(11)

We note that vTdiag(γ(ET y(a)) = ET y(a)− ζ�, as γe(xe) =
0 if and only if xe = ζ�e by strict monotonicity. Thus,

vT∇F (a) = −(E(ET y(a)− ζ�))TX(y(a))E(ET y(a)− ζ�)
(12)

which is nonpositive as X(y(a)) is a positive-definite matrix.
Now, we claim that vT∇F (a) = 0 if and only if ETy(a) =

ζ�. Indeed, ζ� ∈ Im(ET ), so we denote ζ� = ET y0 for some y0.
AsX(y(a)) is positive definite, (12) implies that vT∇F (a) = 0
if and only if E(ET y(a)− ζ�) = EET (y(a)− y0) is the zero
vector. The kernel of the Laplacian EET is the span of the all-one
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vector 1n, so y(a)− y0 = κ1n for some κ, hence ET y(a) =
ET y0 = ζ�. This concludes the first part of the proof.

As for convergence, we know that if h is small enough,
then F (a(j+1)) < F (a(j)). However, the value of h so that
F (a(j+1)) < F (a(j)) can depend on a(j) itself, but it is ob-
vious that if h is small enough, then for any j, we have
F (a(j)) ≤ F (a(0)). We let C = F (a(0)) = ‖ET y(a(0))− ζ�‖,
and consider the sets A1 = {y : ‖ET y − ζ�‖ ≤ C} and A2 =
{y :

∑
i k

−1
i (yi) = 0}. For any j, we know that y(a(j)) ∈ A1

by above, and thaty(a(j)) ∈ A2 by the steady-state equation 0 =
k−1(y(a)) + Ediag(a)γ(ET y(a)). Thus, all steady-state out-
puts achieved during the algorithm are in the set D = A1 ∩A2,
which is bounded by Lemma 4. The map sending a matrix to
its minimal singular value is continuous, meaning that σ(X(y))
achieves a minimum on the set D at some point y1, and the
minimum is positive at X(y1) is positive-definite. We denote
the minimum value by σ(D).

Now, consider (12). We get that vT∇F (a) is bounded
by above −σ(D)||E(ET y(a)− ζ�)||2. In turn, we saw above
that unless ETy(a) = ζ�, E(ET y(a)− ζ�) �= 0, meaning that
‖E(ET y(a)− ζ�|)‖ ≥ ς||ET y(a)− ζ�||2, where ς is the min-
imal nonzero singular value of E . Hence, at any time
step j, vT∇F (a(j)) < −σ(D)ςF (a(j)). In turn, we con-
clude that F (a(j+1)) = F (a(j))− hσ(D)ςF (a(j)) +O(h) =
(1− hσ(D)ς)F (a(j)) +O(h). Iterating this equation shows
that eventually, F (a(j)) < ε, completing the proof. �
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