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Abstract— This paper addresses the problem of identifying
leader nodes in semi-autonomous consensus networks from
observed agent dynamics. Using the grounded Laplacian formu-
lation, we derive spectral conditions that ensure the components
of the Fiedler vector associated with leader and follower
nodes are distinct. Building on this foundation, we employ
the notion of relative tempo from prior work as an observable
quantity that relates agents’ steady-state velocities to the Fiedler
vector. This relationship enables the development of a data-
driven algorithm that reconstructs the Fiedler vector—and
consequently identifies the leader set—using only steady-state
velocity measurements, without requiring knowledge of the
network topology. The proposed approach is validated through
numerical examples, demonstrating how spectral properties and
relative tempo measurements can be combined to reveal hidden
leadership structures in consensus networks.

I. INTRODUCTION

The ability to infer or influence the structure of a net-
worked dynamical system is central to understanding and
controlling collective behaviors in multi-agent systems. In
many practical scenarios, agents interact through local rules
without global supervision, and only partial measurements of
their states are available. Identifying how such interactions
shape the network dynamics has therefore become an impor-
tant research direction in network systems theory [1]–[5].

The network identification problem concerns the task of
reconstructing or inferring the underlying interaction topol-
ogy of a multi-agent system from observed data. In other
words, given measurements of the agents’ states or outputs,
one seeks to determine which agents exchange information
and with what strength. This problem is fundamental in
areas such as systems biology [6], neuroscience [7], so-
cial networks [8], and engineering systems [9]. A central
challenge is that the observed collective behavior does not
uniquely determine the network structure without additional
assumptions or prior knowledge. Accordingly, approaches
to network identification are typically organized along a
spectrum: at one end, methods assume complete dynamical
models and seek to refine unknown network parameters,
while at the other end, data-driven methods attempt to infer
both the dynamics and the topology simultaneously [10],
[11]. In the context of multi-agent coordination, identifying
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the interaction graph is crucial for understanding how local
rules give rise to global behaviors, as well as for designing
control strategies that are robust to uncertainties or malicious
attacks in the communication topology. An illustration of
network topology identification is presented in Figure 1.

Fig. 1: Conceptual overview of the network identification
problem: (a) the interaction graph is unknown; (b) trajec-
tories are observed; (c) after identification, the edges are
recovered.

Early work focused on offline reconstruction of the in-
teraction topology or coupling weights from state or input–
output data, often assuming access to global trajectories [9].
More recent efforts have sought weaker conditions for
identifiability, studying local structural properties, spectral
methods, or algebraic constraints that ensure unique recon-
struction up to graph symmetries [12], [13]. Other works
approach the problem by probing the network with specially
designed inputs, [14], [15], or by node knock-out [16].

In many real-world networks, not all agents behave iden-
tically—some may possess additional autonomy or receive
external commands. These semi-autonomous consensus net-
works consist of a subset of agents, often termed leaders
or externally driven nodes, that are subject to independent
control inputs or reference signals, while the remaining
followers update their states through local interactions within
the network [17]–[19]. Such leader–follower architectures
appear in diverse applications including vehicle platooning,
robotic swarms, and opinion dynamics, where overall coor-
dination must be preserved despite partial autonomy.

From a systems-theoretic viewpoint, these networks in-
troduce an additional layer of structure atop the standard
consensus model: the interconnection topology not only
determines how information flows, but also which nodes
actively influence collective behavior. Consequently, an im-
portant question is how to identify the leaders—that is,
determine which agents receive external inputs or exert dis-
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proportionate influence on the group—using only observed
data. This leader identification problem can be regarded
as a focused instance of the broader network identification
problem, where the goal is to infer the underlying interaction
structure or influence pattern from measurements of the
agents’ trajectories [20]. To the best of our knowledge, this
specific problem has received little direct attention in the
literature.

The main contribution of this paper is the development
of a data-driven algorithm for identifying leader nodes in
semi-autonomous consensus networks. Building on a new
spectral characterization of leader–follower graphs, we first
establish analytical conditions under which the components
of the Fiedler vector corresponding to leaders and followers
are separable. We then leverage the concept of relative tempo
from [21] as a measurable proxy for the Fiedler vector,
enabling estimation of the network’s influence structure di-
rectly from steady-state velocity data. This connection leads
to a simple yet effective leader identification procedure that
does not require knowledge of the underlying topology. The
proposed framework therefore unifies spectral graph analysis
with data-driven inference and provides new insights into
how leader influence manifests in the dynamical response of
the network.

The rest of the paper is organized as follows. Section
II introduces the general problem setup and the semi-
autonomous consensus protocol. Section III establishes suf-
ficient graph-theoretic conditions for leader identifiability
and characterizes the limiting form of the Fiedler vector.
Section IV reviews the relative tempo formulation and its
connection to the Fiedler eigenvector, culminating in a data-
driven leader identification algorithm. Section V presents
simulation results that validate the theoretical findings, and
Section VI concludes with remarks and directions for future
work.

Notations: Let R and N denote the set of real numbers
and natural numbers, respectively, and Rm×n the space of
real matrices of size m × n. The n-dimensional vector of
all ones is denoted 1n, and In is the identity matrix. A
graph G = (V, E ,W) is defined by a set of vertices V =
{v1, . . . , vn}, edges E ⊆ V × V , and weights W : E → R.
For directed edges, eij = (vi, vj) ∈ E denotes a directed
edge from vi to vj , while for undirected edges eij = {vi, vj}.
The notation i ∼ j indicates that an edge exists between the
nodes i and j, while N (i) = {j ∈ V | i ∼ j} is the neighbor
set of node i. The degree of node i, deg(i), is the cardinality
of its neighbor set.

II. PROBLEM STATEMENT

We consider a network of n agents that interact with each
other over an undirected and connected graph G. A subset of
the agents, termed the leaders, are able to receive additional
external commands that may be used to steer the network
along a desired trajectory or configuration. In this direction,
let Vℓ ⊂ V denote the set of leaders, and Vf = V \ Vℓ the
set of followers. The dynamics of each agent, therefore, are

given by

ẋi =

{
ui + uex

i , i ∈ Vℓ,

ui, i ∈ Vf ,
(1)

where xi ∈ R is the state of agent i, ui ∈ R is the control,
and uex

i ∈ R is the additional external input available to the
leader agents.

We now introduce a basic assumption about the number
of leaders and followers. It states that there must be at least
one follower node, and no leader node should be connected
to all the other nodes.

Assumption 1: The follower set is non-empty (Vf ̸= ∅).
Furthermore, deg(i) < |V| − 1 for all vi ∈ Vℓ.

Each agent implements the celebrated consensus protocol
[22], modified such that the leader agents receive the ad-
ditional input uex

i . That is, each agent has the closed-loop
dynamics

ẋi =


∑
j∼i

(xj − xi) + (uex
i − xi), i ∈ Vℓ,∑

j∼i

(xj − xi), i ∈ Vf ,
(2)

where the sum is taken over all neighbors j of agent i.
In this work we assume that external inputs uex

i are
constant signals. In this way, it is convenient to model them
as additional nodes/state in the network, labeled as yi ∈ R,
with ẏi = 0 and yi(0) = uex

i . Defining the augmented state
x̄ = [xT yT ]T , the closed-loop dynamics can be expressed
as [

ẋ
ẏ

]
= −

[
L̄11 L̄12

0 0

] [
x
y

]
, (3)

with

L̄11 = L(G) +
[
I|Vℓ| 0
0 0

]
, L̄12 =

[
−I|Vℓ|

0

]
. (4)

Here, L(G) is the graph Laplacian matrix of G. Note that the
state matrix in (3) can be thought of as the Laplacian of a
directed graph Ḡ, where the external input nodes (the yi’s)
are connected by a directed edge to the corresponding leader
node. This is illustrated in Fig. 2, where the leader nodes
(marked in green) have directed edges from the external
signals (marked as red nodes). The remaining edges are
bidirectional.

x1

x2 x3

x4y1

y2

Fig. 2: Example of augmented graph Ḡ. Leaders (green)
receive inputs from external sources (red).

We now observe that the matrix L̄11 in (3) is the grounded
Laplacian of the undirected version of Ḡ [23], where the
external control nodes (the yi’s) are removed. The Fiedler
eigenvalue, λF corresponds to the smallest eigenvalue of



L̄11; its corresponding eivenvector vF can be chosen to
have all positive entries. It was shown in [23] that under
Assumption 1 that 0 < λF < 1. For the remainder of this
work, we refer to the Fiedler eigenvector of G to mean the
Fiedler vector of the grounded Laplacian L̄11.

In this work we are interested in two problems:
i) Characterize a class of graphs such that it is possible to

identify the leader nodes from the trajectories of (2);
ii) Using the trajectory data of (2), construct an algorithm

to identify the leader nodes.
In the sequel we present our solution to the above problem.

III. LEADER-IDENTIFIABLE GRAPHS

It is well-known in the literature that the Fiedler eigen-
vector can be used to identify clusters in a graph [24], [25].
In this section we derive conditions that ensure the elements
of the Fiedler vector can be separated into two groups, one
corresponding to the follower nodes and one to the leader
nodes.

We now explore algebraic and combinatorial connections
between the Fiedler vector associated with L̄11, and the
structure of the graph G. To begin, we first observe that the
entries of the Fiedler vector can be related to walks on an
associated normalized graphs. In this direction, we define the
semi-normalized adjacency matrix of G as

Â(G) = D̂−1
λF

A(G) ∈ Rn×n, (5)

where A(G) is the adjacency matrix of G and D̂λF
∈ Rn×n

is given by

[D̂λF
]ii =

{
deg(i) + 1− λF i ∈ Vℓ

deg(i)− λF i ∈ Vf

. (6)

Note that under Assumption 1, λF < 1 so D̂λF
is invertible.

We observe that Â(G) is actually the adjacency matrix of
a weighted and directed graph, which we denote as Ĝ. It
is readily verified that Ĝ must be strongly connected if and
only if G is connected.

The matrix Â(G) is diagonalizable since it is similar to
the symmetric matrix D̂

−1/2
λF

AD̂
−1/2
λF

, as

Â(G) = D̂
−1/2
λF

(D̂
−1/2
λF

A(G)D̂−1/2
λF

)D̂
1/2
λF

. (7)

Consequently, A(G) is similar to Â(G).
Proposition 1: The semi-normalized adjacency matrix

Â(G) has real, simple, greatest eigenvalue equal to 1. Fur-
thermore, the corresponding eigenvector is vF , the Fiedler
vector of L̄11.

Proof: Define the diagonal matrix

[D̂0]ii =

{
deg(i) + 1, i ∈ Vℓ,

deg(i), i ∈ Vf .

From the definition of the grounded Laplacian,

L̄11 = D̂0 −A(G).

Subtracting λF I and left-multiplying by (D̂0−λF I)
−1 gives

(D̂0 − λF I)
−1A(G) = I − (D̂0 − λF I)

−1(L̄11 − λF I).

Since D̂λF
= D̂0 − λF I , we have

Â(G) = I − D̂−1
λF

(L̄11 − λF I).

Multiplying by vF and using L̄11vF = λF vF yields
Â(G)vF = vF , so λ = 1 is an eigenvalue of Â(G) with
eigenvector vF .

Because Â is a nonnegative matrix whose associated graph
is strongly connected, the Perron–Frobenius theorem [26]
implies that its spectral radius is real, positive, and simple,
and that the corresponding eigenvector can be chosen strictly
positive. Since vF has positive entries, the pair (λ, vF ) =
(1, vF ) is the unique Perron–Frobenius eigenpair of Â(G).

To study how network structure affects the spectral prop-
erties of the grounded Laplacian, we introduce the notion
of a graph sequence. The key idea is to construct a family
of graphs in which the set of leader nodes remains fixed,
while the interconnections among the follower nodes become
progressively denser. This construction provides a systematic
way to examine how the components of the Fiedler vector
evolve as network connectivity increases. In particular, we
will show that along such a sequence, the Fiedler vector
converges to a simple, degree-dependent expression.

Definition 1 (Graph Sequence): Let σ : N → N be an in-
dexing map, and let Gσ(i) = (Vσ(i), Eσ(i)) denote a sequence
of undirected graphs, where the node set is partitioned into
disjoint leader and follower subsets,

Vσ(i) = Vσ(i)
ℓ ∪ Vσ(i)

f , and Vσ(i)
ℓ ∩ Vσ(i)

f = ∅.

For each follower node j ∈ Vσ(i)
f , define its number of

follower and leader neighbors as

deg
σ(i)
f (j) = |{k ∈ Vσ(i)

f | (k, j) ∈ Eσ(i)}|,

deg
σ(i)
ℓ (j) = |{k ∈ Vσ(i)

ℓ | (k, j) ∈ Eσ(i)}|.

Furthermore, let degσ(i)
f

= min
j∈Vσ(i)

f

deg
σ(i)
f (j) denote the

minimum follower degree. The sequence {Gσ(i)} satisfies the
following properties:
i) Gσ(i) is connected for all i;
ii) The leader set is fixed, Vσ(i)

ℓ = Vσ(i+1)
ℓ = Vℓ, with

|Vℓ| ≥ 1;
iii) Each leader has constant degree, dj := deg

σ(i)
ℓ (j) =

deg
σ(i+1)
ℓ (j) for all i and for all j ∈ Vℓ;

iv) Leaders are not directly connected to one another, i.e.,
k /∈ N σ(i)(j) for all k, j ∈ Vℓ;

v) The minimum follower degree increases monotonically,
degσ(i)

f
< degσ(i+1)

f
for all i.

Example 1: Figure 3 illustrates a sequence of graphs
satisfying Definition 1. The leader set (green nodes) remains
fixed throughout, and leaders are never directly connected.
In contrast, the follower subgraph (blue nodes) becomes
progressively denser as new edges and nodes are added.

We now present a result that shows, in the limit of the
graph sequence defined in Definition 1, the structure of the
Fiedler vector.
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(a) Initial graph with sparse
follower subgraph.
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follower connections.
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(c) Further densification; fol-
lower subgraph remains non-
complete.

Fig. 3: Example of a graph sequence where leaders (green)
remain fixed and followers (blue) become progressively more
connected. The leader degrees remain constant across all
graphs, and leaders are never directly connected.

Lemma 1: Let {Gσ(i)} be a graph sequence satisfying
Definition 1. Then, lim

i→∞
[Âσ(i)(G)v̄σ(i)F ]j = lim

i→∞
v̄
σ(i)
F , where

[v̄
σ(i)
F ]j =


1, j ∈ Vσ(i)

f ,

dj

dj + 1− λ
σ(i)
F

, j ∈ Vℓ,
(8)

where λ
σ(i)
F is the Fiedler value of the grounded Laplacian

associated with the graph Gσ(i) and leader set Vℓ.
Proof: For notational brevity, set λi := λ

σ(i)
F , Âi :=

Âσ(i)(G), v̄i := v̄
σ(i)
F , and degi(j) := degσ(i)(j). For any

node j ∈ V we have

[Âiv̄i]j =
1

degi(j) + δj − λi

∑
k∈Ni(j)

[v̄i]k, (9)

where δj = 1 if j ∈ Vℓ and δj = 0 otherwise. Using (8) and
splitting by follower/leader neighbors,∑
k∈Nσ(i)(j)

[v̄i]k =
∑

k∈Nσ(i)(j)∩Vf

1 +
∑

k∈Nσ(i)(j)∩Vℓ

dk

dk + 1− λi

= degi(j)− (1− λi)
∑

k∈Nσ(i)(j)∩Vℓ

1

dk + 1− λi
,

where we used the identity dk

dk+1−λi
= 1− 1−λi

dk+1−λi
.

Substituting into (9) and separating the terms yields com-
pact form

[Âiv̄i]j = 1− δj − λi

degi(j) + δj − λi
−

(1− λi)

degi(j) + δj − λi

∑
k∈Nσ(i)(j)∩Vℓ

1

dk + 1− λi
. (10)

We now consider (10) for j ∈ Vf . Here δj = 0 and [v̄i]j =
1. From (10),

[Âiv̄i]j = 1 +
λi

degi(j)− λi

− (1− λi)

degi(j)− λi

∑
k∈Nσ(i)(j)∩Vℓ

1

dk + 1− λi
.

By Definition 1(v), degσ(i)
f

→ ∞, while λi ∈ (0, 1), and
the leader degrees dk are constant by item (iii). Hence both
correction terms vanish, and therefore

lim
i→∞

[Âiv̄i]j = 1 = lim
i→∞

[v̄i]j .

For leader nodes j ∈ Vℓ, by Definition 1(iv), leaders are not
directly connected, so N σ(i)(j)∩Vℓ = ∅. Equation (10) then
reduces to

[Âiv̄i]j = 1− 1− λi

degi(j) + 1− λi
=

degi(j)

degi(j) + 1− λi

=
dj

dj + 1− λi
= [v̄i]j .

Hence equality holds for all i. To conclude, we have in both
cases lim

i→∞
[Âiv̄i]j = lim

i→∞
[v̄i]j ,.

An important consequence of Lemma 1, is that in the
limit (i.e., for an infinite graph satisfying the properties in
Definition 1, (8) is the Fiedler eigenvector.

The following theorem leverages our previous results to
provide a sufficient condition on the graph structure that
ensures a separation between the Fiedler vector components
corresponding to leaders and followers. This separation will
later enable us to identify the leaders.

Theorem 1: Let G = (V, E) be an undirected graph whose
node set is partitioned into followers Vf and leaders Vℓ, and
let A(G) and λF denote, respectively, the adjacency matrix
and the Fiedler eigenvalue of the (grounded) Laplacian
associated with G. For each follower node j ∈ Vf , define

degf (j) =
∣∣{ k ∈ Vf | (k, j) ∈ E }

∣∣,
as its number of follower neighbors, and let

deg
f
= min

j∈Vf

degf (j),

denote the minimum follower–follower degree. If the follow-
ing conditions hold:
i) G is connected;
ii) Leaders are not directly connected, i.e., k /∈ N (j) for

all k, j ∈ Vℓ;
iii) with ϕ(j) := deg(j)

(deg(j)+1−λF ) , one has

1−max
j∈Vℓ

ϕ(j) > max
j∈Vℓ

min
k∈Vℓ

|ϕ(j)− ϕ(k)|;

iv) deg
f

is sufficiently large,

then the Fiedler vector vF of G satisfies

min
i∈Vf

[vF ]i −max
i∈Vℓ

[vF ]i > max
i∈Vℓ

min
j∈Vℓ

∣∣[vF ]i − [vF ]j
∣∣.



Proof: Define the positive margin

ϵd = 1−max
j∈Vℓ

ϕ(j)−max
j∈Vℓ

min
k∈Vℓ

∣∣∣∣∣ϕ(j)− ϕ(k)

∣∣∣∣∣ > 0. (11)

Consider a graph sequence {Gσ(i)} satisfying Definition 1,
that is, each Gσ(i) = (Vσ(i), Eσ(i)) is connected, the leader
set Vℓ and the leader degrees dj are fixed, leaders are not
adjacent, and the minimum follower–follower degree degσ(i)

f

increases monotonically with i. Let vσ(i)⋆ denote the Fiedler
vector associated with the graph Gσ(i). Then, as a result of
Lemma 1, we have

lim
i→∞

∥v̄σ(i)F − v
σ(i)
⋆ ∥ = 0,

where v̄
σ(i)
F is defined in (8).

Now, let Sσ(i) = ∥v̄σ(i)F −v
σ(i)
⋆ ∥. Since lim

i→∞
Sσ(i) = 0, for

every ϵ > 0 there exists an index i∗ such that Sσ(i) < ϵ for
all i > i∗. Choose i∗ so that degσ(i

∗)

f
= m and fix ϵ < ϵd/4.

Then, for all i > i∗, the vectors v̄
σ(i)
F and v

σ(i)
∗ are ϵ–close

component-wise.
We now compare the follower and leader components of

v
σ(i)
⋆ . Because Sσ(i) < ϵ, each component of v

σ(i)
⋆ differs

from the corresponding entry of v̄σ(i)F by at most ϵ. Hence,

min
j∈Vf

[vσ(i)
⋆ ]j −max

j∈Vℓ

[vσ(i)
⋆ ]j > min

j∈Vf

[v̄
σ(i)
F ]j −max

j∈Vℓ

[v̄
σ(i)
F ]j − 2ϵ.

Substituting the explicit definition of v̄
σ(i)
F from (8), we

have

min
j∈Vf

[v̄
σ(i)
F ]j = 1, and max

j∈Vℓ

[v̄
σ(i)
F ]j = max

j∈Vℓ

dj

dj + 1− λ
σ(i)
F

.

Therefore,

min
j∈Vf

[vσ(i)
⋆ ]j −max

j∈Vℓ

[vσ(i)
⋆ ]j > 1−max

j∈Vℓ

dj

dj + 1− λ
σ(i)
F

− 2ϵ.

(12)

Recalling the definition of ϵd in (11), we can rearrange it
as

1−max
j∈Vℓ

ϕ(j) = max
j∈Vℓ

min
k∈Vℓ

|ϕ(j)− ϕ(k)|+ ϵd.

Substituting this identity into the inequality (12) gives

min
j∈Vf

[vσ(i)
⋆ ]j −max

j∈Vℓ

[vσ(i)
⋆ ]j > max

j∈Vℓ

min
k∈Vℓ

|ϕ(j)− ϕ(k)|+ ϵd − 2ϵ.

Applying again the bound Sσ(i) < ϵ to replace the terms
involving v̄

σ(i)
F by those of vσ(i)⋆ , we obtain

min
j∈Vf

[v
σ(i)
⋆ ]j −max

j∈Vℓ

[v
σ(i)
⋆ ]j

> max
j∈Vℓ

min
k∈Vℓ

∣∣[vσ(i)⋆ ]j − [v
σ(i)
⋆ ]k

∣∣+ ϵd − 4ϵ.

Finally, since ϵ < ϵd/4, the right-hand side is strictly larger
than maxj∈Vℓ

mink∈Vℓ
|[vσ(i)⋆ ]j − [v

σ(i)
⋆ ]k|, and therefore

min
j∈Vf

[v
σ(i)
⋆ ]j −max

j∈Vℓ

[v
σ(i)
⋆ ]j > max

j∈Vℓ

min
k∈Vℓ

|[vσ(i)⋆ ]j − [v
σ(i)
⋆ ]k|.

Thus, any graph G with degG
f
> m satisfies the claimed

inequality for its Fiedler vector vF , completing the proof.

IV. A LEADER IDENTIFICATION ALGORITHM

Section III provides a characterization of graphs that have
good separation between the entries of the Fiedler vector
corresponding to the leaders and the entries corresponding
to the followers. Assuming that we are considering graphs
with this property is not enough on its own to actually solve
the problem outlined at the end of Section II. Indeed, what is
missing is a way to estimate the Fiedler vector of the network
using only data from the its trajectories generated by (2).

We next review the notion of relative tempo introduced
in [21], which extends the earlier concept of the degree of
relative influence proposed in [27]. These metrics quantify
how the evolution rate of one agent (or subgroup) compares
to another within a consensus-type network. Formally, the
relative tempo between two agents is defined as

τij =
ẋi

ẋj
, (13)

capturing the instantaneous ratio between their rates of
change.

For large times t > T , the agents’ dynamics are dominated
by the slowest decaying mode of the network Laplacian.
Projecting the system onto its eigenbasis and neglecting the
zero and fast-decaying modes yields [27]

τij ≈
[vF ]i
[vF ]j

, (14)

where vF is the Fiedler vector of G. Consequently, the
steady-state relative tempos encode the spatial structure of
this dominant eigenvector. By selecting a reference agent
j∗, one can estimate vF up to a scaling factor directly from
relative tempo measurements:

vF ∈ span{τ̄}, [τ̄ ]i = τij∗ . (15)

This relationship provides a data-driven approach for recov-
ering the Fiedler vector—and thus the influence structure of
the network—from velocity measurements alone.

We are now prepared to propose an algorithm to identify
the leaders in a semi-autonomous consensus network with
graphs satisfying the properties of Definition 1 and Theorem
1.

Algorithm 1 provides a systematic method to identify lead-
ers based on the Fiedler vector derived from agents’ velocity
measurements. Line 3 ensures the system reaches steady state
so that transient dynamics do not affect the estimation. Line
4 transforms the velocity data into the relative tempo, which
gives us an estimation of the Fiedler vector. Sorting the
Fiedler vector in line 5 reveals the natural separation between
leaders and followers, and line 6 identifies the number of
leaders by detecting the largest gap in the sorted vector.
Finally, line 7 maps these components back to the actual
leader agents.

V. NUMERICAL EXAMPLE

In this section, we provide examples of networks that
support our findings from Theorem 1 and Algorithm 1. The
following examples demonstrate a 2D scenario, where the



Algorithm 1 External Observer–Based Leader Identification

1: Input: Time series of agent states xi(t) under constant
external input from (2).

2: Output: Estimated leader set Vℓ.
3: Measure the agents’ steady-state velocities ẋi.
4: Compute the relative tempo

τij =
ẋi

ẋj
,

and estimate the Fiedler vector vF using (15).
5: Sort the entries of vF in ascending order:

vFs = sort(vF ), [vFs ]i ≤ [vFs ]i+1.

6: Determine the number of leaders:

nℓ = arg max
j∈{1,...,n−1}

(
[vFs

]j+1 − [vFs
]j
)
.

7: Identify the leader nodes as those corresponding to the
smallest nℓ components of vFs

:

Vℓ = { i | [vF ]i among the smallest nℓ }.

leaders are the green nodes. Here, the dynamics of (2) are
simply augmented using a Kronecker product to represent
agents in R2. We consider a system with n = 10 agents,
where {2, 4, 8} ∈ Vℓ. The external input provided to the
leaders are given as

uex
2 = [40, 35]T , uex

4 = [48, 44]T , uex
8 = [16, 45]T .

The underlying network graph is illustrated in Figure 4.
We simulate the protocol, and the resulting trajectories are
shown in Figure 5. The relative tempo is depicted in Figure
6. The plot shows with black-dashed lines the true values
of the Fiedler vector. As expected, the leader and follower
components are clearly separated.

Next, we verify the conditions outlined in Theorem 1.
First, let us check condition (iii):

ϵd = 1−max
j∈Vℓ

ϕ(j)−max
j∈Vℓ

min
k∈Vℓ

∣∣∣∣∣ϕ(j)− ϕ(k)

∣∣∣∣∣
= 0.4498 > 0.

We can see that ϵd has a positive value, which means
condition (iii) is satisfied. Next, for condition (iv), we
require a sufficiently large deg

F
to ensure ϵ < ϵd

4 . We
calculate:

ϵ = 0.0863 < 0.1124 =
ϵd
4
.

Since all conditions are satisfied, there is sufficient separation
between the Fiedler vector components corresponding to
leaders and followers. Therefore, Algorithm 1 can be used
to identify the leaders.

Using the velocity measurements, we can estimate the
Fiedler vector as

vF = [ 0.3288, 0.1798, 0.3920, 0.1804, 0.3311,

0.3276, 0.3805, 0.1817, 0.3631, 0.3831 ]T .

Sorting the vector and then completing the steps of Algo-
rithm 1 we find from the trajectory data that there are 3
leaders.

The following describes how the algorithm operates in this
case.
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Fig. 4: Sensing graph of Example 1.
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Fig. 5: Trajectories corresponding to the underlying graph
in Example 1. Circles mark the initial states. The blue
curve corresponds to the followers, while the green curve
represents the leaders.
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Fig. 6: Relative tempo for the network in Example 1. Note
the gap between leaders and follower components. The blue
curve corresponds to the followers, while the green curve
represents the leaders. The black dashed lines is the true
value of the Fiedler vector.



VI. CONCLUSIONS
Our findings indicate that certain graph structures are

more likely to exhibit a clear separation between the com-
ponents of the Fiedler vector. Specifically, the graphs iden-
tified in this research tend to have relatively dense connec-
tivity—characterized by a high mean node degree—while
the leader nodes themselves maintain comparatively lower
degrees. This structural property enables effective leader
identification through external observation, particularly in
scenarios involving constant external input. In such cases,
the agents’ steady-state velocities are directly related to
the corresponding components of the Fiedler vector. This
relationship allows us to reliably distinguish and identify the
leader agents within the network.

Future research can extend this work in several directions.
One promising direction is to investigate scenarios involving
non-constant external input signals, or inputs that remain
constant only over specific time intervals—corresponding to
signals with discrete frequency updates. Another important
avenue is the development of methods for identifying not
only the leader nodes but the complete underlying network
structure. Finally, exploring a broader range of graph topolo-
gies that exhibit component separation in the Fiedler vector
could provide deeper insight into how structural properties
influence leader–follower dynamics.
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[1] J. Gonçalves and S. Warnick, “Necessary and sufficient conditions for
dynamical structure reconstruction of LTI networks,” IEEE Transac-
tions on Automatic Control, vol. 53, no. 7, pp. 1670–1674, 2008.

[2] S. Shahrampour and V. M. Preciado, “Reconstruction of directed
networks from consensus dynamics,” in 2013 American Control Con-
ference, 2013, pp. 1685–1690.

[3] J. M. Hendrickx, M. Gevers, and A. S. Bazanella, “Identifiability of
dynamical networks with partial node measurements,” IEEE Transac-
tions on Automatic Control, vol. 64, pp. 2240–2253, 2018.

[4] M. Gevers, A. S. Bazanella, and A. Parraga, “On the identifiability of
dynamical networks,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10 580–
10 585, 2017, 20th IFAC World Congress.

[5] H. H. Weerts, P. M. Van den Hof, and A. G. Dankers, “Identifiability
of linear dynamic networks,” Automatica, vol. 89, pp. 247–258, 2018.

[6] J. Tegner, M. K. Yeung, J. Hasty, and J. J. Collins, “Reverse engineer-
ing gene networks: integrating genetic perturbations with dynamical
modeling,” Proceedings of the National Academy of Sciences, vol. 100,
no. 10, pp. 5944–5949, 2003.

[7] K. Friston, “Functional and effective connectivity: a review,” Brain
Connectivity, vol. 1, no. 1, pp. 13–36, 2011.

[8] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reason-
ing about a Highly Connected World. Cambridge University Press,
2010.

[9] D. Materassi and G. Innocenti, “Topological identification in networks
of dynamical systems,” IEEE Transactions on Automatic Control,
vol. 57, no. 7, pp. 1865–1879, 2012.

[10] M. Timme and J. Casadiego, “Revealing networks from dynamics: an
introduction,” Journal of Physics A: Mathematical and Theoretical,
vol. 47, no. 34, p. 343001, 2014.

[11] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in
multivehicle cooperative control,” IEEE Control Systems Magazine,
vol. 27, no. 2, pp. 71–82, 2007.

[12] H. J. van Waarde, P. Tesi, and M. K. Camlibel, “Topological conditions
for identifiability of dynamical networks with partial node measure-
ments,” IFAC-PapersOnLine, vol. 51, no. 23, pp. 319–324, 2018, 7th
IFAC Workshop on Distributed Estimation and Control in Networked
Systems NECSYS 2018.

[13] H. J. van Waarde, P. Tesi, and M. K. Camlibel, “Identifiability of
undirected dynamical networks: A graph-theoretic approach,” IEEE
Control Systems Letters, vol. 2, no. 4, pp. 683–688, 2018.

[14] M. Timme, “Revealing network connectivity from response dynamics,”
Physical Review Letters, vol. 98, p. 224101, May 2007.

[15] M. Sharf and D. Zelazo, “Network identification for diffusively
coupled networks with minimal time complexity,” IEEE Transactions
on Control of Network Systems, vol. 10, no. 3, p. 1616–1628, Sep.
2023.

[16] M. Nabi-Abdolyousefi and M. Mesbahi, “Network identification via
node knock-out,” in 49th IEEE Conference on Decision and Control
(CDC), 2010, pp. 2239–2244.

[17] W. Ni and D. Cheng, “Leader-following consensus of multi-agent
systems under fixed and switching topologies,” Systems & Control
Letters, vol. 59, no. 3, pp. 209–217, 2010.

[18] W. Ren, “Multi-vehicle consensus with a time-varying reference state,”
Systems & Control Letters, vol. 56, no. 7, pp. 474–483, 2007.

[19] Y. Li and C. Tan, “A survey of the consensus for multi-agent systems,”
Systems Science & Control Engineering, vol. 7, no. 1, pp. 468–482,
2019.

[20] J. Dai, B. Wang, J. Sheng, Z. Sun, F. R. Khawaja, A. Ullah, D. A.
Dejene, and G. Duan, “Identifying influential nodes in complex
networks based on local neighbor contribution,” IEEE Access, vol. 7,
pp. 131 719–131 731, 2019.

[21] H. Shao, L. Pan, M. Mesbahi, Y. Xi, and D. Li, “Relative tempo of
distributed averaging on networks,” Automatica, vol. 105, pp. 159–
166, Jul. 2019.

[22] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, Dec. 2010.

[23] M. Pirani and S. Sundaram, “On the smallest eigenvalue of grounded
laplacian matrices,” IEEE Transactions on Automatic Control, vol. 61,
no. 2, pp. 509–514, 2016.

[24] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: analysis
and an algorithm,” in Proceedings of the 15th International Conference
on Neural Information Processing Systems: Natural and Synthetic, ser.
NIPS’01. Cambridge, MA, USA: MIT Press, 2001, p. 849–856.

[25] U. Luxburg, “A tutorial on spectral clustering,” Statistics and Com-
puting, vol. 17, no. 4, p. 395–416, Dec. 2007.

[26] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge;
New York: Cambridge University Press, 2013.

[27] H. Shao and M. Mesbahi, “Degree of relative influence for consensus-
type networks,” in 2014 American Control Conference. IEEE, Jun.
2014, p. 2676–2681.


