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Abstract— This work introduces a distributed formation
control strategy for multi-agent systems based only on rotation
symmetry constraints. We propose a potential function that
enforces inter-agent rotational symmetries, with its gradient
defining the control law driving the agents toward a desired
symmetric and planar configuration. We show that only (n−1)
edges, the minimal connectivity requirement, are sufficient to
implement the control strategy, where n is the number of
agents. We further augment the design to address the maneu-
vering problem, enabling the formation to undergo coordinated
translations, rotations, and scalings along a predefined virtual
trajectory. Simulation examples are provided to validate the
effectiveness of the proposed method.

I. INTRODUCTION
The demand for distributed formation control schemes in

multi-agent systems (MAS) has grown significantly in recent
years, with applications ranging from UAV swarm coordina-
tion for mapping and surveillance [1], to satellite constel-
lations coordination for efficient communication relays [2].
The role of a formation control law is to steer the agents
into a desired spatial configuration in a distributed fashion.
This is commonly achieved by imposing explicit geometric
constraints between neighboring agents, such as distance-
based schemes [3], [4], where inter-agent distances are fixed,
or bearing-based schemes [5], where relative directions are
maintained. In both cases, the desired target configuration is
characterized using only local information shared between
neighboring agents.

In many formations the desired configuration exhibits
spatial symmetries between the agents - rotations and/or
reflections, often inherent from sensing coverage or commu-
nication requirements. The work [6] introduced an approach
leveraging formation symmetries together with inter-agent
distance constraints, drastically reducing the required inter-
agent communication links as compared to other approaches.
This motivates the question of whether it is possible to design
a formation control scheme that relies solely on symmetry
constraints.

Graph theory provides the natural framework for model-
ing the decentralization, interaction topology, and geometric
configuration of a MAS. Agents are represented as nodes
(vertices), with their communication links as edges. A central
challenge lies in balancing sparse information exchange
while ensuring convergence to the desired configuration. To
address this challenge, distance and bearing-based schemes
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leverage results from rigidity theory, relying on minimal
infinitesimal rigidity (MIR) as a crucial architectural require-
ment to guarantee convergence to a desired shape [3], [5]. For
distance-based approaches in R2, the MIR property requires
at least (2n− 3) edges to uniquely determine the formation
(up to translations, rotation, and so-called flip ambiguities),
where n is the number of agents.

A relevant line of research builds on the concept of aug-
mented Laplacian formulations such as complex-Laplacian
approaches [7]–[9], where complex weights replace the
standard scalar weights of the graph Laplacian, represent
inter-agent interactions encoding rotations, translations, and
scalings. Matrix-weighted Laplacian formulations, where the
weights are structured matrices encoding inter-agent rela-
tions, offers another approach. This idea has appeared in
several formation control settings: bearing-based control [5],
where projection matrices enforce relative direction con-
straints; or more recent works [10], where the matrix weights
play the same role as complex weights. These works demon-
strate that matrix-weighted Laplacians form an ongoing field
of research with multiple directions for achieving formation
objectives.

In this work, we consider a group of n agents required to
arrange themselves into a geometric spatial pattern specified
only by a set of inter-agent rotation symmetry constraints.
We formalize these constraints in Euclidean space as point
group isometries corresponding to rotations. Point groups
can be classified by several families [11]. In this paper
we restrict our study to planar cyclic rotations, enforced
between designated agent pairs. Each agent has access to
its state in R2, and may exchange this information only
with neighboring agents, as determined by an undirected
interaction network. The control objective is to design a
distributed control law that drives the agents from any
initial configuration to a desired configuration satisfying the
required rotation symmetry constraints between the agents.

This paper contributes with a foundation for solving the
formation control problem solely under rotation constraints,
providing a counterpart to the rigidity-based framework.
We introduce a potential function that enforces rotational
symmetries between neighboring agents, whose gradient
yields a distributed control law driving the system toward
the null-space of a symmetry-constraining matrix-weighted
Laplacian. We show that (n − 1) edges — the minimal
connectivity requirement — is sufficient to guarantee con-
vergence to the desired formation. To enhance flexibility,
we present an augmentation of the control strategy, enabling
the desired formation to be achieved while undergoing co-
ordinated translations, rotations, and scalings according to a
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time-varying reference virtual trajectory, effectively address-
ing the formation maneuvering problem. Additionally, the
effectiveness of the approach is also demonstrated through a
numerical example extension in R3.

The paper is organized as follows. Section II reviews the
mathematics of symmetry, focusing on graphs and frame-
works. Section III introduces the symmetry constrained for-
mation control problem and presents the controller. Section
IV extends the controller to allow for formation maneuvers,
while Section V demonstrates numerically an extension to
R3. Finally, concluding remarks are offered in Section VI.

Notations: A graph G = (V, E) consists of two non-
empty sets: V = {1, ..., n} the set of nodes and E ⊆ V×V the
set of edges. In this work, G is assumed to be undirected. The
notation ij ∈ E indicates that agent i can receive information
from its neighboring agent j, and vice versa. Let In ∈ Rn×n

be the identity matrix, and 1n ∈ Rn be the all-one column
vector of dimension n. Let ⊗ be the Kronecker product.

II. SYMMETRY IN GRAPHS AND FRAMEWORKS

The main focus of this work is to leverage the inherent
symmetries of a formation to solve the formation control
problem. In this direction, we first review notions from group
theory and graph theory used to formally define symmetry.

A. Symmetry in Graphs

Group theory provides a powerful mathematical frame-
work for describing symmetry. In the context of graphs,
symmetries correspond to structure-preserving transforma-
tions of the vertex set—formally captured by the notion of
automorphisms. The collection of all such transformations
forms a group, known as the automorphism group of the
graph. We begin by briefly recalling the definition of a group.

Definition 1. A group is a set Γ equipped with a binary
operation ◦ such that:

• Closure: For all a, b ∈ Γ, the composition a ◦ b is also
in Γ.

• Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ Γ.
• Identity: There exists an element id ∈ Γ such that a ◦
id = id ◦ a = a for all a ∈ Γ.

• Inverses: For each a ∈ Γ, there exists an inverse a−1 ∈
Γ such that a ◦ a−1 = a−1 ◦ a = id.

The order of a group is the number of its elements. A subset
B ⊆ Γ that is itself a group under ◦, is called a subgroup.

In the setting of graphs, these ideas appear naturally when
considering automorphisms.

Definition 2. Let G = (V, E) be a finite, simple graph. An
automorphism of G is a permutation ψ : V → V such that

uv ∈ E ⇔ ψ(u)ψ(v) ∈ E .

That is, an automorphism preserves the adjacency structure
of the graph. The identity permutation id is always an
automorphism, and if ψ is an automorphism, then so is its
inverse ψ−1. Moreover, the composition of two automor-
phisms is again an automorphism. These properties ensure

that the set of all automorphisms of G forms a group under
composition. This group is called the automorphism group of
G, denoted by Aut(G). One can express every permutation as
a composition of disjoint cycles of the permutation. A cycle
is a successive action of the permutation that sends a vertex
back to itself, i.e., i→ ψ(i) → ψ(ψ(i)) → · · · → ψk(i) = i,
where ψk = ψ ◦ · · · ◦ ψ︸ ︷︷ ︸

k times

. Such a cycle is compactly written

using the cycle notation, denoted by (i ψ(i) · · ·ψk−1(i)).
The integer k is the length of the cycle.

Definition 3. A graph G is Γ-symmetric for any subgroup
Γ ⊆ Aut(G).

Example 1. Fig. 1 shows the cycle graph C3. We can
identify all the automorphisms of Aut(C3). Naturally, we
can directly identify the identity permutation id. Additionally,
consider a counter-clockwise rotation by 120◦ of C3. This
gives the automorphism (in cycle notation) ψ1 = (1 2 3).
We also have ψ2 = ψ2

1 = ψ1 ◦ ψ1 = (1 3 2), which can
be interpreted geometrically as an additional rotation by
240◦. Additional permutations can be found by considering
reflections. Consider first the reflection about the vertical
blue line, giving the permutation ψ3 = (1)(2 3). Similarly,
the reflection about the red line yields ψ4 = (3)(1 2), and the
reflection about the green line gives ψ5 = (2)(1 3). Thus, we
have that Aut(C3) = {id, ψ1, . . . , ψ5} has 6 automorphisms.

1

2 3

Fig. 1: Cycle graph C3, with 6 automorphisms in Aut(G).

Note that we can choose Γ = {id, ψ1, ψ
2
1}, which corre-

sponds to the subgroup of rotational automorphisms of C3.
In this case, C3 can be considered as a Γ-symmetric graph,
where any vertex can be mapped to any other under the
rotation actions of Γ.

B. Symmetry in frameworks

The embedding of symmetric graphs in Euclidean space
is of interest, especially for formation control problems. In
this direction, we now consider symmetry of frameworks
[12]. A framework in R2 is defined as the pair (G, p), where
p : V → R2 assigns each node in G a position in Euclidean
space, used to represent the physical position of the agents
in the network.

Definition 4. Let Γ be represented as a point group, i.e.,
a subgroup of the orthogonal group O(R2), via a homo-
morphism τ : Γ → O(R2), which assigns to each γ ∈ Γ an
isometry in R2. A framework (G, p) is called τ(Γ)-symmetric
if

τ(γ)pi = pγ(i) ∀γ ∈ Γ, i ∈ V. (1)



In this work, we restrict our study to frameworks whose
underlying graph G is the cycle graph Cn. By using the
standard Schoenflies notation for point groups [11], [13], we
consider the rotational symmetries described by the cyclic
point group Cn of order n ≥ 1. That is, Cn specifies the
rotation symmetries that map the agents into one another
under rotations about the origin.

We define Γr ∈ Aut(Cn) to be the subgroup of rotational
automorphisms of Cn, where each element τ(γ) is designed
as a rotation about the origin by an angle θ = 2π/n. Then, in
a planar setting (R2), τ(Γr) coincides with the cyclic point
group Cn. We represent the elements τ(γ) by the standard
rotation matrix

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ SO(2).

Thus, for any two vertices u, v ∈ V of a Cn-symmetric
framework, we denote by γuv ∈ Γr the group element
satisfying τ(γuv)pu = pv . Here, τ(γuv) is represented by the
rotation R(θ) and consequently, τ(γvu) = R(θ)T = R(−θ).
In each case, the desired configuration satisfies condition (1),
where agent positions are mapped into one another by the
respective rotation in Cn.

p1 p4

p2 p3

(a)

p1

p4

p3

p2

(b)

p1 p6

p5

p4p3

p2

(c)

Fig. 2: Symmetric frameworks with Cn as the underlying
graph. (a) and (b) are C4-symmetric, and (c) is C6-symmetric.

III. SYMMETRY-BASED FORMATION CONTROL

We consider a team of n agents modeled by the integrator
dynamics

ṗi(t) = ui(t), i ∈ {1, . . . , n}, (2)

where pi(t) ∈ R2 is the position of agent i and ui(t) ∈
R2 is its control to be designed. The coordination objective
we consider is for the agents to arrange themselves into a
configuration characterized by a specific symmetry class -
rotation relationships between neighboring agents. Assume
the desired configuration is a Cn-symmetric framework with
the cycle graph Cn as the underlying graph.

We define an interaction graph GI = (V, EI) to specify
which agents are able to exchange information. This graph
is defined as a spanning tree subgraph of Cn, to ensure the
minimal connectivity requirement between the agents in the
MAS. For example, for a C4-symmetric formation in Fig.
2(a), the interaction edge set EI = {(1, 2), (2, 3), (3, 4)}
satisfies the connectivity requirement.

Let Γr ⊆ Aut(Cn) denote the subgroup of rotational
automorphisms of Cn, and let GI = (V, EI) be the interaction

graph defined as a spanning tree subgraph of Cn. The control
objective is to design a distributed control law ui(t) for each
agent such that, for every edge uv ∈ EI ,

lim
t→∞

∥∥pu(t)− τ(γvu) pv(t)
∥∥ = 0. (3)

Here, γvu ∈ Γr is the permutation mapping v to u and
τ(γvu) is the associated point group element representing
a rotation predefined for that edge.

We show that the interaction graph GI , chosen as a
spanning tree subgraph of Cn, suffices to solve the formation
control problem. This implies that only (n − 1) edges
are required to guarantee convergence to a Cn-symmetric
formation.

A. Symmetry-based Control Law

Similar to the idea presented in [6], we define a symmetry-
forcing potential over the edges in the interaction graph,

F (p(t)) =
1

2

∑
uv∈EI

∥pu(t)− τ(γvu)pv(t)∥2. (4)

To solve the formation control problem (3), we now
propose the law defined by the gradient dynamical system

u(t) = −∇F (p(t)). (5)

Then, we obtain the expression of the closed-loop dynamics
for each agent i:

ṗi(t) =
∑
ij∈EI

(τ(γji)pj(t)− pi(t)). (6)

pi

pj

τ(γji)pj τ(γji)pj − pi

2π
n

Fig. 3: The contribution τ(γji)pj − pi in the control law (6)
drives pi to a symmetric position of pj .

The closed-loop dynamics of each agent (6) has a straight-
forward geometric interpretation (see Fig. 3). The control
law attempts to reduce the distance error between the term
τ(γji)pj and pi.

We now focus on the closed-loop dynamics in state-space

ṗ(t) = −Qp(t), (7)

Q ∈ R2n×2n is the resulting symmetry-constraining matrix-
weighted Laplacian for graph GI , with the block entries

[Q]uv =


d(u)I2, u = v, u ∈ V
−τ(γvu), vu ∈ EI
0, o.w.

,

where d(u) denotes the degree of node u in the induced
subgraph GI . As a matrix-weighted Laplacian, observe that



Q can be expressed as the matrix product E(Γr)E(Γr)
T ,

where E(Γr) ∈ R2n×2|EI | has a matrix-weighted incidence
matrix structure with its block-columns being associated with
the edge ij,

[ · · · I2︸︷︷︸
node i

· · · −τ(γji)T︸ ︷︷ ︸
node j

· · · ]T .

Example 2. Consider the C4-symmetric framework seen
in Fig. 2(a), with the choice of the edge set EI =
{(1, 2), (2, 3), (3, 4)}. Then, the group actions in τ(Γr) are
rotations about the origin by 2π/n = π/2, and the corre-
sponding matrix Q ∈ R8×8 can be expressed as

Q =


I2 −R(π2 )

T 0 0
−R(π2 ) 2I2 −R(π2 )

T 0
0 −R(π2 ) 2I2 −R(π2 )

T

0 0 −R(π2 ) I2

 .
Note that Null(Q) coincides with the set of C4-symmetric

configurations satisfying (1). That is, τ(γ)pi = pγ(i) for all
γ ∈ Γr and i ∈ V .

Proposition 1. Let Q be the symmetry-constraining matrix-
weighted Laplacian associated with the spanning tree graph
GI . Then:

i) Q is positive semi-definite (PSD).
ii) Q has a nontrivial null-space,

Null(Q) = {p ∈ R2n|E(Γr)
T p = 0},

corresponding to the set of Cn-symmetric configura-
tions.

iii) The rank of Q is 2n− 2, and dimNull(Q) = 2.

Proof. (i) Since Q = E(Γr)E(Γr)
T , for any p ∈ R2n:

pTQp = pTE(Γr)E(Γr)
T p = ∥E(Γr)

T p∥ ≥ 0.

Hence, Q is PSD.
(ii) Without loss of generality, assume the nodes are

labeled such that each edge in GI is of the form i(i + 1).
By construction, E(Γr)

T p stacks the edge errors ri = pi −
τ(γ(i(i+1)))

T p(i+1) ∈ R2, and

E(Γr)
⊤p =

 r1
...

r|EI |

 ∈ R2|EI |.

We have E(Γr)
T p = 0 iff every edge satisfies pu −

τ(γvu)pv = 0. Therefore, by Definition 4, Null(Q) coincides
with the respective set of Cn-symmetric configurations.

(iii) Under the assumption that GI is a spanning tree, for
each node i define the matrix Si ∈ SO(2), with S1 = I2,
and let

Si+1 = τ(γi(i+1))Si ∈ SO(2) (8)

be the ordered product of edge rotations along the unique
path from 1 to j. Define p1 = q ∈ R2. Then, if E(Γr)

T p =
0, by substitution we have

pi = Si q, ∀i ∈ {1, . . . , n}.

such that

E(Γr)
T


S1q
S2q

...
Snq

 = 0.

Note that q ∈ R2 has two degrees of freedom.
Hence any vector in Null(E(Γr)

T ) = Null(Q) = IM(V0)
where

V0 =


S1e1 S1e2
S2e1 S2e2

...
...

Sne1 Sne2

 , (9)

with e1 =
[
1 0

]T
and e2 =

[
0 1

]T
. Therefore,

dimNull(Q) = 2, and

rank(Q) = 2n− dimNull(Q) = 2n− 2.

We now examine the dynamics of the closed-loop system
(7) to show that the proposed distributed control law drives
the agents from any initial condition to the desired symmetric
configuration. We next show the explicit solution of (7),
showing that the limit configuration corresponds to the
orthogonal projection of the initial state onto the subspace
of Cn-symmetric formations.

Theorem 1. Consider a MAS consisting of n integrator
agents (2), whose interaction topology is defined by a span-
ning tree graph GI , and let

F = {p ∈ R2n|τ(γ)pi = pγ(i), ∀γ ∈ Γr, i ∈ V}.

Then, for any initial condition p(0) ∈ R2n, the control (7)
renders the set F exponentially stable, with p(∞) as the
orthogonal projection of p(0) onto F ,

lim
t→∞

p(t) =
1

n
V0V

⊤
0 p(0), (10)

where V0 is given in (9).
Furthermore, the steady-state of each agent is given by

lim
t→∞

pi(t) =
1

n
Si

n∑
k=1

ST
k pk(0), (11)

with Si defined as in (8).

Proof. By Proposition 1, note that V0 is the vertical stack of
the 2 × 2 blocks Si

[
e1 e2

]
= Si. Since Si ∈ SO(2) are

orthogonal matrices we have

V T
0 V0 =

n∑
i=1

ST
i Si = nI2,

which shows that the columns of V0 are orthogonal. Since
Q is PSD and the columns of V0 are orthogonal, we can
define V̂ as an orthonormal eigenbasis V̂ =

[
V̂0 V̂+

]
with

V̂0 = 1√
n
V0 and V+ the orthogonal complement of V0 (in



other words, V+ corresponding to the non-zero eigenvalues
Λ+ > 0 of Q). Hence, Q is equivalent to

Q = V̂

[
0 0
0 Λ+

]
V̂ T ,

and the closed-form solution of (7) results in

p(t) = e−Qtp(0) = V̂

[
I2 0
0 e−Λ+t

]
V̂ T p(0).

Since all non-zero eigenvalues of −Q are in OLHP, the
dynamics of p(t) exponentially converge to

lim
t→∞

p(t) = V̂0V̂
T
0 p(0) =

1

n
V0V

⊤
0 p(0) (12)

Note that V T
0 p(0) =

∑n
i=k S

T
k pk(0). Then, the block ex-

pression for each agent:

lim
t→∞

pi(t) =
1

n
Si

n∑
k=1

ST
k pk(0).

Moreover, observe that E(Γr)
T p = 0 implies pi = Siq for

some q ∈ R2. Hence, Null(Q) = IM(V0) = F , rendering F
exponentially stable as claimed.

Example 3. Consider a MAS consisting of n = 6 agents,
tasked with attaining a C6-symmetric configuration (see
Fig. 2(c)). Fig. 4 illustrates the underlying Γ-symmetric
graph, with the dashed edge being removed for the chosen
communication topology graph GI with 5 edges. Note that
by using a distance [3] or bearing [5] approach we would
require 9 edges in total to ensure the correct formation shape
in R2.

1 6

5

43

2

Fig. 4: Underlying graph G.

Fig. 5 illustrates the trajectories and resulting configura-
tion obtained by implementing the proposed control law (7),
where the corresponding matrix Q is constructed using the
rotation elements τ(γuv) = R(π/3).

IV. FORMATION MANEUVERING

Our main focus has been on achieving and maintain-
ing a target formation shape. Observe in Fig. 5 that due
to symmetry the control (7) will successfully drive the
agents to a desired formation shape but with respect to
an inertial (global) origin. This may be limiting in many
practical scenarios where the formation requires the ability
to maneuver, that is, to translate, rotate, and scale while
preserving the desired shape. To improve the flexibility of
a symmetry-based formation control approach, [6] proposed
augmenting the closed-loop dynamics for each agent (6) with
a virtual state r(t) that enables the agents to agree on a
different origin. We leverage this idea to address formation
maneuvering as well.

Fig. 5: Trajectories generated from (7).

Assumption 1. Assume each agent in the MAS has access
to a virtual trajectory, predefined by

i) a translation r(t) ∈ R2 with ṙ(t) = v(t);
ii) a rotation R(t) ∈ SO(2) with Ṙ(t) = Ω(t)R(t) where

Ω(t) =

[
0 −ω(t)
ω(t) 0

]
,

and ω(t) is the desired angular velocity of the forma-
tion;

iii) a scale factor s(t) ∈ R+, with ṡ(t) = α(t)s(t), α(t) ∈
R.

Reference trajectories are known a priori in many appli-
cations [14]. Therefore, building on Assumption 1 we can
define a shifted state for each agent, ci(t) = pi(t) − r(t).
Moreover, since the formation is specified with respect to the
origin, we define the centroid of the formation at the origin
and an axis of rotation passing through it. Under Assumption
1, we then propose the augmented control law

u(t) =−Qc(t) + 1n⊗v(t) + (In⊗Ω(t) + α(t))c(t), (13)

for the agents to converge to the desired configuration while
maneuvering along the predefined trajectory.

Theorem 2. Consider a MAS consisting of n integrator
agents (2) satisfying Assumption 1, whose interaction topol-
ogy is defined by a spanning tree graph GI , and let

Fc = {p ∈ R2n|τ(γ)ci = cγ(i), ∀γ ∈ Γr, i ∈ V}

be the set of all shifted Cn-symmetric configurations. Then,
for any initial condition p(0) ∈ R2n, the control (13) renders
the set Fc exponentially stable.

Proof. Define ζ(t) ∈ R2n to be the configuration p(t) ∈ R2n

expressed in a frame moving along the virtual trajectory,

ζ(t) =
1

s(t)

(
In ⊗R(t)T

)
c(t) ∈ R2n. (14)



We examine the derivative of each agent ζi(t) ∈ R2

(product rule),

ζ̇i(t) = − ṡ(t)

s2(t)
R(t)T ci(t) +

1

s(t)

(
Ṙ(t)T ci(t) +R(t)T ċi(t)

)
.

Note that Ṙ(t)T = −R(t)TΩ(t). Since Ω(t) and R(t)
commute in R2, we have Ṙ(t)T = −Ω(t)R(t)T . Then

ζ̇i(t) = −α(t)ζi(t)− Ω(t)ζi(t) +
1

s(t)

(
R(t)T (u̇i(t)− v(t))

)
.

By applying the control (13), we have

ζ̇i(t) = −α(t)ζi(t)− Ω(t)ζi(t)−
1

s(t)
R(t)T v(t)

+
1

s(t)
RT

( ∑
ij∈EI

(τ(γji)cj(t)− ci(t))

+ v(t) + Ω(t)ci(t) + α(t)ci(t)
)
.

Since ζi(t) = 1
s(t)R(t)ci(t), all the trajectory dependent

terms cancel, simplifying the expression to

ζ̇i(t) =
∑
ij∈EI

(τ(γji)ζj(t)− ζi(t)).

This reduces to the analysis of the agents ζ̇(t) = −Qζ(t).
By Theorem 1, the dynamics of ζ(t) ensure that the forma-
tion exponentially converges to the set

Fζ = {ζ ∈ R2n|τ(γ)ζi = ζγ(i), ∀γ ∈ Γr, i ∈ V}

From the definition of ζi(t) (14), this set is equivalent to Fc,
rendering the set Fc exponentially stable as claimed.

Example 4. Consider the same setup as in Example 3
under Assumption 1. A trajectory is predefined to enable the
formation to maneuver through obstacles along a desired
path. The blue line in Fig. 6 illustrates the trajectory state
along the path, and the scaled arrows as the rotation state
and scaling with respect to the initial state.

Fig. 6: Predefined reference trajectory implemented in con-
trol law (13).

Fig. 7 illustrates the resulting trajectories for each agent
along the virtual trajectory predefined to each agent under
control law (13).

To further evaluate the system, Fig. 8 illustrates the inter-
agent rotation symmetry errors during maneuverings (3).
The errors exponentially converge to zero, which shows the
effectiveness of the proposed method.

Fig. 7: Trajectories generated from (13) along the predefined
trajectory.

Fig. 8: Norm of the symmetry errors

V. EXTENSION TO R3

The results of Section IV are stated explicitly for for-
mations in R2. Extending these ideas to R3 is relatively
straightforward. In this section we provide a numerical
example to illustrate how this might be done, with a formal
analysis reserved for future work.

Consider a MAS consisting of n = 8 agents required to
achieve a cube formation with an underlying graph G shown
in Fig. 9(a). The target configuration can again be defined as
a τ(Γ)-symmetric framework, where the rotation elements
τ(Γ) are now given by rotation matrices R ∈ SO(3). In
R3, such rotations are defined about coordinate axes, or
general hyperplanes through the origin. For a cube formation,
a natural choice of symmetries is given by C4 rotations about
the coordinate axes (see Fig. 9(b)). For instance, the agents
{p1, p2, p3, p4} and {p5, p6, p7, p8} may each satisfy a
C4- symmetric framework about the z axis, and agents
{p2, p1, p5, p6} can be constrained to form a C4- symmetric
framework orthogonal to z. These symmetry relations suffice
for agents to exchange information according to a commu-
nication topology subgraph GI , obtained by removing the
dashed edges in Fig. 9. By construction, GI is a spanning
tree. Similar to the planar case, we now define the symmetry-
constraining matrix Qz defined by C4 symmetries about the
z axis, and Q⊥ as the corresponding matrix defined by C4
symmetries about an orthogonal axis of z. The resulting
symmetry-constraining matrix Q for the cube formation is
then obtained as a composition

Q = I2 ⊗Qz + P
[
QT

⊥ 0
]T
PT ,

where P is a permutation matrix that reorders the block
structure of Q⊥ so that the composition of Qz and Q⊥



matches the indexing of the stacked state vector in the control
law.

1 2

34

5 6

78

(a)

x

z

yp1 p2

p3p4

p5 p6

p7p8

(b)

Fig. 9: (a) The underlying graph G, and (b) is the desired
τ(Γ)-symmetric framework of the cube formation.

By construction, Q ⪰ 0, and its null-space corresponds
to the set of cube-symmetric configurations. Hence the
control (7) drives the system exponentially to the desired
configuration.

Similar to the planar case, the method can be augmented
with a virtual reference state (r(t), R(t), s(t)) to achieve
maneuvering along a predefined trajectory. Fig. 10 shows the
resulted trajectories by implementing control law (13). The
agents converge to a cube formation along the predefined
trajectory.

Fig. 10: Trajectories of the cube formation generated from
(13) along a predefined trajectory.

VI. CONCLUDING REMARKS

We have introduced a formation control method to achieve
a target formation by using only rotation symmetry con-
straints between neighboring agents. Notably, we have
demonstrated that a communication spanning tree subgraph
with (n− 1) constraints (matching the minimal connectivity
requirement) suffices for the implementation of the protocol.
By augmenting the control law with a time-varying virtual
state we also proved the flexibility of the approach by
enabling the ensemble to undergo translations, rotations,
and scalings. In addition, we presented an extension of the
method to achieve a formation in R3. This work demonstrates
the potential of symmetry constraints in addressing forma-
tion control problems. Future directions include formally
extending the framework to point group elements in R3,
exploring directed, and switching graphs, and incorporating

leader-follower configurations to generalize the approach to
broader classes of configurations and enable fully distributed
agreement on time-varying virtual trajectories.
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