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1 Introduction
There is currently a rapid growth in the usage of multi-
agent systems in many modern technologies. As the com-
plexity and size of such networked systems increases, ex-
tensive analysis and simulation become computationally
infeasible. Therefore, it is desirable that reduced order
models are found that still preserve, in some sense, the
network and dynamic properties of the original system.

If we consider networked systems as MIMO systems, var-
ious reduction methods can be performed at the transfer
function level [Benner and Quintana-Ort́ı (2005)], or di-
rectly on the state space realization [Van Dooren et al.
(2008)]. In both cases, the resulting reduced order system
realizations will generally not be in the functional form of
a multi-agent system realization. In [Monshizadeh et al.
(2014)], a projection reduction of the controlled consen-
sus protocol is performed based on partitioning of the
graph vertices. The resulting reduced order system is then
interpreted as an input-output consensus system over a
directed graph, and it is shown that the reduction error
is H2-optimal for a special class of partitions. In [Ishizaki
et al. (2014)], a similar partition-based projection method
is used for reduction of a single input networked dynamic
system, resulting in a reduced networked system over a
non-simple graph with H∞ reduction error bounds.

In this work, we require the model reduction to preserve
the functional form of the original controlled consensus
system, which results in a reduction of the underlying
network structure. As the reduced system preserves a
structure of a multi-agent system we can simulate and
analyse it with techniques tailored for multi-agent systems.

The main contributions of this work are:

i) The formal definition of graph-based model reduction
of the controlled consensus protocol as a graph-based
optimization problem.

ii) Derivation of new reduction techniques performed
directly on the network structure and of a sub-optimal
tree-based greedy-edge reduction algorithm which is
computationally efficient.

iii) Demonstration of H2 graph-based model reduction of
the controlled consensus protocol.

We formulate the model reduction over simple weighted
graphs as a graph reduction optimization problem. In
order to allow a constructive solution, we first restrict the
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search for optimal graph reductions to the class of graph
contractions based on a partition of the graph vertices.
Vertex partitions have been extensively studied in graph
theory in the context of graph clustering and network com-
munities [Newman and Girvan (2004); Schaeffer (2007);
Spielman and Teng (2008)]. The combinatorial nature of
such problems requires us to further restrict the graph
reduction problem to a class of edge-based contractions
and we derive a sub-optimal greedy-edge efficient reduc-
tion method.

The remaining sections of this paper are as follows. In
Section 2, we formulate the general graph-based reduction
of the controlled consensus protocol. In Section 3, graph
contractions are presented as a class of graph reductions
based on vertex partitions; we introduce the classes of
edge-based and tree-based graph contractions and derive
two suboptimal efficient graph contraction methods. In
Section 4, an analysis of the reduced Laplacian is per-
formed. In Section 5, we construct the H2 reduction op-
timization problem of the controlled consensus protocol
as a case study for graph-based model reduction. Finally,
Section 6 provides some concluding remarks.

Preliminaries A graph G = (V, E ,W) consists of a vertex
set V (G), an edge set E (G) = {ε1, . . . , ε|E|} ⊂ V [2], and
a set of positive edge weights, W (G) = {w1, . . . , w|E|}.
The order of the graph is defined as the number of nodes.
We assign an orientation to the edges using head and
tail functions, hE , tE : E → V where hE (εk) and tE (εk)
return, respectively, the head and tail nodes of edge ek.
If G is an undirected graph then the head and tail of
each edge are arbitrary; if G is a directed graph (digraph)
then the head and tail define the direction of the edge. A
self-loop is an edge εk ∈ E such that hE (εk) = tE (εk),
and duplicate edges are any pair εi, εj ∈ E such that
i �= j, tE (εi) = tE (εj) and hE (εi) = hE (εj). A simple
graph does not include self-loops. A multi-graph is a
graph that includes duplicate edges. The head and tail
functions can be used to define the incidence function
fE : V (G) × E (G) → {±1, 0}, with fE (vi, εj) = 1 if
hE (εj) = vi, fE (vi, εj) = −1 if tE (εj) = vi, and 0
otherwise. The incidence function can be used to define
the corresponding incidence matrix, E (G) ∈ R|V|×|E|, with
entries [E(G)]ij = fE (vi, εj). For a simple undirected

graph, the Laplacian matrix L (G) ∈ R|V|×|V| is defined

as L (G) = E (G)W (G)E (G)T [Godsil and Royle (2001)].
For a connected graph, the incidence matrix can always be
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expressed as E (G) = [E (T ) E (C)] = E (T )
[
I|T | T(T ,C)

]
︸ ︷︷ ︸

=R(T ,C)

,

where T(T ,C) = EL (T )E (C), 1 and T = (V, Eτ ) is a
spanning tree of G with T ∪ C = G [Zelazo et al. (2013)].
The essential edge Laplacian Less (G) ∈ Rn−1×n−1 is

the product Less (G) = L̂e (T )Q (G) where L̂e (T ) �
ET (T )E (T ) and Q (G) � R(T ,C)W (G)RT

(T ,C).

2 Problem Formulation

Let G = (V, E ,W) be a simple connected undirected
graph of order n with a subset U ⊆ V of agents subject
to external inputs, and let M � (G,U) be the network
structure . We consider the following controlled consensus
model over a network structure M

ΣM

{
ẋ = −L (G)x+B (U)u
y = W

1
2 (G)ET (G)x , (1)

where x ∈ R|V| is the system state, y (t) ∈ R|E| are
weighted outputs on the edges, u (t) ∈ R|U| are the
inputs, and B (U) ∈ R|V|×|U| maps each of the inputs
to the corresponding leader’s node in the network, i.e.,
[B (U)]ij = 1 if vi is the j’th input node and 0 otherwise.

As shown in [Zelazo et al. (2013)], the system (1) is not a
minimal realization; however, applying the transformation
xτ = ET (T (G))x leads to the so-called edge agreement
protocol which is minimal. Observe also that the output
y includes cycle edges, which was shown to be linearly
dependent on the spanning tree. In this direction, for the
model reduction we will monitor the signal zτ = Q

1
2 (G)xτ

corresponding only to the outputs on T (i.e., we use zτ in
place of the output y in (2) below). The edge agreement
protocol with the monitor signal zτ is then

Σ̂M

{
ẋτ = −Less (G)xτ + ET (T (G))B (U)u

zτ = Q
1
2 (G)xτ

, (2)

and the transfer-function matrix (TFM) representation of
(2) is,

Σ̂M (s) = Q
1
2 (G) (sI + Less (G))−1 ET (T (G))B (U) . (3)

In this work, we consider the model reduction problem on
this minimal realization, where the reduction is performed
on the network structure, that is, we approximate a set
of n agents with a smaller set of r agents over a reduced
graph Gr with input set Ur ⊆ Vr. The resulting reduced
network structure, Mr = (Gr,Ur), is then the underlying
structure of the reduced-order edge agreement protocol,

Σ̂Mr

{
ẋτr = −Less (Gr)xτr + ET (T (Gr))B (Ur)ur

zτr = Q
1
2 (Gr)xτr

, (4)

and the reduced system TFM, Σ̂Mr (s), is defined analo-
gously to (3). Unlike a standard MIMO model reduction,
where the number of inputs and outputs is preserved, the
reduced system (4) has a reduced number of outputs and
may not preserve the number of inputs.

Let Sn
G be the set of simple connected graphs, and let Pn be

the power set of n vertices. We define two model reduction
optimization problems for some chosen reduction cost

function J
(
Σ̂Mr

, Σ̂M

)
, which can be formulated in terms

of the TFMs or using the state-space realizations.

1 Here, EL = (E(T )TE(T ))−1E(T )T is the left-inverse of E(T ).

Problem 1. Target structure reduction:

min
Mr ∈

(
Sr
G ,Pr

) J
(
Σ̂Mr

, Σ̂M

)
. (5)

Problem 2. Total structure reduction:

min
r≤n

{
Mr ∈

(
Sr
G ,Pr

)
|J

(
Σ̂Mr

, Σ̂M

)
≤ Jreq

}
. (6)

The target structure reduction requires the optimal re-
duced model to be of a specified order r < n with minimal
reduction error, where the total structure reduction speci-
fies a tolerated reduction error and minimizes the reduced
model order. In this study, we will focus on solutions to
the target structure reduction, which may then be used for
finding solutions to the total structure reduction.

Given a structure M and an admissible set of reduced
graphs Sr

G , finding a solution to Problem 1 may become
numerically intractable for a moderate number of nodes,
as the number cr of simple unweighted connected graphs
increases exponentially [Wilf (1994)], e.g., for r = 1, . . . , 6,
cr = 1, 1, 4, 38, 728, 26704. In the following section we
will restrict the class of graph reductions in a way that
will allow us to find a suboptimal constructive solution.

3 Reduction by Graph Contractions

The general statement of Problem 1 does not suggest any
constructive way to find the optimal structure reduction.
However, it is expected that an optimal reduced structure
M∗

r will have some functional dependency on the full
structure M. Vertex partitions have been widely used in
graph theory, e.g., for graph clustering [Schaeffer (2007)]
and in the study of network communities [Newman and
Girvan (2004)]. Vertex partitions have been also used for
constructing projection-based model reductions of multi-
agent systems of the consensus protocol [Monshizadeh
et al. (2014)] and bidirectional networks [Ishizaki et al.
(2014)]. Here we use vertex partitions as a basis for a
constructive method for performing structure reduction.
We now define several graph operations that will be used
in this section.

Definition 1. [Vertex Partition] Let Vn = {1, . . . , n} and
Vr = {1, . . . , r} be vertex sets of order n and r with

r < n. We define an r-partition π (Vn) � {Ci}ri=1 as
the set of r cells with Ci ⊆ Vn, such that Ci ∩ Cj = ∅
and ∪r

i=1Ci = Vn. The corresponding partition function,

fπ : Vn → Vr, is defined as fπ (v) � {i ∈ Vr|v ∈ Ci}
and the corresponding partition index vector pπ ∈ Rn is
[pπ]k = fπ (k). The set of all r-partitions of the vertex set

Vn is Πr (Vn) � {{Ci}ri=1 |Ci ∩ Cj = ∅, ∪r
i=1Ci = Vn}.

Definition 2. [Edge Merging] Let G = (V, Ẽ) be a multi-

graph with head and tail functions, hẼ , tẼ : Ẽ → V , then
the merged edge set E = EM(Ẽ) is the edge set

E = {{u, v} ∈ V2| ∃ε̃ ∈ Ẽ , s.t. tẼ (ε̃) = u, hẼ (ε̃) = v}. (7)

Definition 3. [Edge Undirecting] Let G = (V, Ẽ) be a

digraph with head and tail functions, hẼ , tẼ : Ẽ → V , then
the undirected edge set E = EUD(Ẽ) is the edge set

E = {{u, v} ∈ V2| ∃ε̃ ∈ Ẽ , s.t. tẼ (ε̃) = u, hẼ (ε̃) = v or

hẼ (ε̃) = u, tẼ (ε̃) = v}. (8)

Definition 4. [Self-loop Elimination] Let G = (V, Ẽ) be a

graph with head and tail functions, hẼ , tẼ : Ẽ → V , then
E = SLE(Ẽ) is the edge set obtained by eliminating all
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expressed as E (G) = [E (T ) E (C)] = E (T )
[
I|T | T(T ,C)

]
︸ ︷︷ ︸

=R(T ,C)

,

where T(T ,C) = EL (T )E (C), 1 and T = (V, Eτ ) is a
spanning tree of G with T ∪ C = G [Zelazo et al. (2013)].
The essential edge Laplacian Less (G) ∈ Rn−1×n−1 is

the product Less (G) = L̂e (T )Q (G) where L̂e (T ) �
ET (T )E (T ) and Q (G) � R(T ,C)W (G)RT

(T ,C).

2 Problem Formulation

Let G = (V, E ,W) be a simple connected undirected
graph of order n with a subset U ⊆ V of agents subject
to external inputs, and let M � (G,U) be the network
structure . We consider the following controlled consensus
model over a network structure M

ΣM

{
ẋ = −L (G)x+B (U)u
y = W

1
2 (G)ET (G)x , (1)

where x ∈ R|V| is the system state, y (t) ∈ R|E| are
weighted outputs on the edges, u (t) ∈ R|U| are the
inputs, and B (U) ∈ R|V|×|U| maps each of the inputs
to the corresponding leader’s node in the network, i.e.,
[B (U)]ij = 1 if vi is the j’th input node and 0 otherwise.

As shown in [Zelazo et al. (2013)], the system (1) is not a
minimal realization; however, applying the transformation
xτ = ET (T (G))x leads to the so-called edge agreement
protocol which is minimal. Observe also that the output
y includes cycle edges, which was shown to be linearly
dependent on the spanning tree. In this direction, for the
model reduction we will monitor the signal zτ = Q

1
2 (G)xτ

corresponding only to the outputs on T (i.e., we use zτ in
place of the output y in (2) below). The edge agreement
protocol with the monitor signal zτ is then

Σ̂M

{
ẋτ = −Less (G)xτ + ET (T (G))B (U)u

zτ = Q
1
2 (G)xτ

, (2)

and the transfer-function matrix (TFM) representation of
(2) is,

Σ̂M (s) = Q
1
2 (G) (sI + Less (G))−1 ET (T (G))B (U) . (3)

In this work, we consider the model reduction problem on
this minimal realization, where the reduction is performed
on the network structure, that is, we approximate a set
of n agents with a smaller set of r agents over a reduced
graph Gr with input set Ur ⊆ Vr. The resulting reduced
network structure, Mr = (Gr,Ur), is then the underlying
structure of the reduced-order edge agreement protocol,

Σ̂Mr

{
ẋτr = −Less (Gr)xτr + ET (T (Gr))B (Ur)ur

zτr = Q
1
2 (Gr)xτr

, (4)

and the reduced system TFM, Σ̂Mr (s), is defined analo-
gously to (3). Unlike a standard MIMO model reduction,
where the number of inputs and outputs is preserved, the
reduced system (4) has a reduced number of outputs and
may not preserve the number of inputs.

Let Sn
G be the set of simple connected graphs, and let Pn be

the power set of n vertices. We define two model reduction
optimization problems for some chosen reduction cost

function J
(
Σ̂Mr

, Σ̂M

)
, which can be formulated in terms

of the TFMs or using the state-space realizations.

1 Here, EL = (E(T )TE(T ))−1E(T )T is the left-inverse of E(T ).

Problem 1. Target structure reduction:

min
Mr ∈

(
Sr
G ,Pr

) J
(
Σ̂Mr

, Σ̂M

)
. (5)

Problem 2. Total structure reduction:

min
r≤n

{
Mr ∈

(
Sr
G ,Pr

)
|J

(
Σ̂Mr

, Σ̂M

)
≤ Jreq

}
. (6)

The target structure reduction requires the optimal re-
duced model to be of a specified order r < n with minimal
reduction error, where the total structure reduction speci-
fies a tolerated reduction error and minimizes the reduced
model order. In this study, we will focus on solutions to
the target structure reduction, which may then be used for
finding solutions to the total structure reduction.

Given a structure M and an admissible set of reduced
graphs Sr

G , finding a solution to Problem 1 may become
numerically intractable for a moderate number of nodes,
as the number cr of simple unweighted connected graphs
increases exponentially [Wilf (1994)], e.g., for r = 1, . . . , 6,
cr = 1, 1, 4, 38, 728, 26704. In the following section we
will restrict the class of graph reductions in a way that
will allow us to find a suboptimal constructive solution.

3 Reduction by Graph Contractions

The general statement of Problem 1 does not suggest any
constructive way to find the optimal structure reduction.
However, it is expected that an optimal reduced structure
M∗

r will have some functional dependency on the full
structure M. Vertex partitions have been widely used in
graph theory, e.g., for graph clustering [Schaeffer (2007)]
and in the study of network communities [Newman and
Girvan (2004)]. Vertex partitions have been also used for
constructing projection-based model reductions of multi-
agent systems of the consensus protocol [Monshizadeh
et al. (2014)] and bidirectional networks [Ishizaki et al.
(2014)]. Here we use vertex partitions as a basis for a
constructive method for performing structure reduction.
We now define several graph operations that will be used
in this section.

Definition 1. [Vertex Partition] Let Vn = {1, . . . , n} and
Vr = {1, . . . , r} be vertex sets of order n and r with

r < n. We define an r-partition π (Vn) � {Ci}ri=1 as
the set of r cells with Ci ⊆ Vn, such that Ci ∩ Cj = ∅
and ∪r

i=1Ci = Vn. The corresponding partition function,

fπ : Vn → Vr, is defined as fπ (v) � {i ∈ Vr|v ∈ Ci}
and the corresponding partition index vector pπ ∈ Rn is
[pπ]k = fπ (k). The set of all r-partitions of the vertex set

Vn is Πr (Vn) � {{Ci}ri=1 |Ci ∩ Cj = ∅, ∪r
i=1Ci = Vn}.

Definition 2. [Edge Merging] Let G = (V, Ẽ) be a multi-

graph with head and tail functions, hẼ , tẼ : Ẽ → V , then
the merged edge set E = EM(Ẽ) is the edge set

E = {{u, v} ∈ V2| ∃ε̃ ∈ Ẽ , s.t. tẼ (ε̃) = u, hẼ (ε̃) = v}. (7)

Definition 3. [Edge Undirecting] Let G = (V, Ẽ) be a

digraph with head and tail functions, hẼ , tẼ : Ẽ → V , then
the undirected edge set E = EUD(Ẽ) is the edge set

E = {{u, v} ∈ V2| ∃ε̃ ∈ Ẽ , s.t. tẼ (ε̃) = u, hẼ (ε̃) = v or

hẼ (ε̃) = u, tẼ (ε̃) = v}. (8)

Definition 4. [Self-loop Elimination] Let G = (V, Ẽ) be a

graph with head and tail functions, hẼ , tẼ : Ẽ → V , then
E = SLE(Ẽ) is the edge set obtained by eliminating all
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Fig. 1. Graph contraction operator combinations

self-loops in Ẽ ,

E =
{
ε̃ ∈ Ẽ| tẼ (ε̃) �= hẼ (ε̃)

}
. (9)

Definition 5. [Edge Reconnecting] Let G = (V, E) be a
graph of order n with head and tail functions, hE , tE :
E → V , and let π ∈ Πr (V (G)) with partition function

fπ. Then the edge reconnecting Ẽr = ER (E , fπ) is the

edge set Ẽr =
{
ε̃1, . . . , ε̃|E|

}
with head and tail functions,

hẼr
, tẼr

: Ẽr → Vr, where tẼr
(ε̃k) = fπ (tE (εk)) and

hẼr
(ε̃k) = fπ (hG (εk)) for εk ∈ E .

Given a graph G ∈ Sn
G and a partition π ∈ Πr (V (G)), we

construct the graph contraction operation GC : Sn
G → Sr

G
as the composition of edge reconnecting, edge merging, self-
loop elimination and edge undirecting operation; this is
visualized in Fig.1.

In this study we require the contracted graph to be in
the set of simple undirected graphs, and the resulting
graph contraction operation is given in Algorithm 1. As
seen in Fig. 1, it is possible to obtain a simple undirected
graph through different sequences of reduction operations.
A similar framework can be derived for directed graphs or
multi-graphs (both simple and non-simple) by redefining
the graph contraction operation.

Algorithm 1 Graph contraction

Input: A graph G = (V, E) with n vertices and head and
tail functions, hG , tG : E → V , an r-partition π ∈ Πr (V)
(1) Construct the partition function fπ : V → Vr and the

partition index vector pπ ∈ Rn.
(2) Perform edge reconnecting and obtain the edge set

Ẽr = ER (E , fπ).
(3) Perform edge merging, followed by self-loop elimina-

tion and edge undirecting, and obtain Er.
Output: The reduced graph Gr = (Vr, Er).
Notation: Graph contraction operation - Gr = GC (G, π).

The following result shows that graph contractions pre-
serve connectedness.
Lemma 6. If G is connected then the graph contraction
Gr = GC (G, πr) is connected.

Proof. If G is connected then ∀u, v ∈ V, there is a
path uu1u2 . . . upv. For any ur, vr ∈ Vr we can find
u, v ∈ V such that fπ (u) = ur and fπ (v) = vr and a
path uu1u2 . . . upv. If we apply the partition function on
the path we obtain a walk (including self loops) in Gr,
urfπ (u1) fπ (u2) . . . fπ (up) v

r, therefore, Gr is a connected
graph. �

Using the graph contraction operation we can define
corresponding input and structure contractions.
Definition 7. Let M = (G,U) and let Gr = GC (G, π) for
π ∈ Πr (V (G)). The input contraction Ur = IC (Gr,U)
is the set of partition cells containing at least one input
node, Ur = {vri ∈ Vr| |U ∩ Ci| > 0, Ci ∈ π} , and the re-

sulting structure contraction Mr = SC (M, π) is Mr =
(Gr, IC (Gr, π)) .

The graph contractions considered thus far did not include
the edge weights. Given a weighted graph G = (V, E ,W)
and a graph contraction (Vr, Er) = GC (G, π) we are free

to choose a new set of weights Wr ∈ ΩWr
⊆ R|Er|

+ in an
admissible set ΩWr . We denote the resulting contracted
weighted graph as Gr = GC (G, π,Wr), and the corre-
sponding structure contraction as Mr = SC (M, π,Wr).
Using this notion, the target structure contraction problem
is to find the optimal r-partition and optimal reduced
graph edge weights:

Problem 3. Target structure contraction :

min
Wr ∈ ΩWr

π ∈ Πr

J
(
Σ̂Mr

, Σ̂M

)
(10)

where Mr = SC (M, π,Wr).

We observe that the number of r-partitions is |Πr (G)| =
S (n, r) where S (n, r) =

r∑
k=1

(−1)
r−k kn

k!(r−k)! is the Stirling

number of the second kind (Wilf, 1994, p.18), which for

r  n is asymptotically S (n, r) ∼ rn

r! .

Definition 8. Let G = (V, E) with an input set U ⊆ V ,
then

i) Π̄r (V,U) � {π ∈ Πr (V) | |IC (Gr,U)| = |U|} is the
set of input invariant r-partitions.

ii) Π̃r (V,U) � {π ∈ Πr (V) | |U ∩ Cj | ≤ 1} is the set of
input singleton r-partitions.

Note that even if we restrict structure contractions to be
based on input singleton r-partitions, solving Problem 3
is combinatorially hard, and we must further restrict the
class of reductions.

3.1 Edge-Based Contractions

The contractions discussed in the previous section are
based on vertex partitions. For the reduction of the edge
agreement protocol, we might prefer an edge-based reduc-
tion method rather than vertex-based, e.g., in [Jongsma
et al. (2015)], removal of cycle completing edges was sug-
gested for simplification of the consensus protocol.

Definition 9. Let G = (V, E) be a graph with edge contrac-
tions Ec =

{
ec1, . . . , e

c
n−r

}
⊂ E (G) and let Gc = (V, Ec),

then we define the induced edge partition πc (G, Ec) as
the set of connected components of Gc. The set of all
n − r edge contractions is then defined as Ξn−r (G) �
{Ec ⊂ E| |Ec| = n− r}.

We propose Algorithm 2 as an edge-based graph contrac-
tion algorithm.

In Algorithm 2 the contraction was based on a chosen
edge set; however, the actual contraction operation was
performed with the induced edge partition. It is possible to
derive an equivalent recursive edge contraction algorithm
without using the intermediate vertex partition.

Problem 4. Target edge-based structure contraction :

min
Wr ∈ ΩWr

Ec ∈ Ξn−r

J
(
Σ̂Mr

, Σ̂M

)
(11)

where Mr = SC (M, πc (G, Ec) ,Wr).
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Algorithm 2 Edge-based graph contraction

Input: a graph G = (V, E) with n vertices, an edge
contraction set Ec (G) ∈ Ξn−r (G).
(1) Construct the graph Gc = (V (G) , Ec).
(2) Calculate the connected components of Gc, and obtain

the induced edge partition πc (G, Ec).
(3) Perform the graph contraction Gr =

GC (G, πc (G, Ec)).
Output: Reduced graph Gr; induced edge partition πc.
Notation: Edge-based contraction - (Gr, πc) =
EBC (G, Ec).
We observe that the number of n− r edge contractions is

|Ξn−r (G)| =
(

|E|
n− r

)
.

Definition 10. Let G = (V, E) with an input set U ⊆ V,
then we define the set of input free n-r edge contractions
Ξ̂n−r (G,U) �

{
Ec ∈ Ξn−r (G) |Ec ∩ U2 = ∅

}
.

Proposition 11. Let G = (V, E) with an input set U ⊆ V,
we denote G [U ] as the input induced subgraph of G and

dU =
m∑

k=1

d (Uk) is the sum of input nodes degrees. Then

the number of input free n-r edge contractions for m ≤ r

input nodes is
∣∣∣Ξ̂n−r (G,U)

∣∣∣ =

(
efree (G,U)

n− r

)
where

efree (G,U) = |E (G) | − dU + |E (G [U ])|.

Proof. The number of edges with input endpoints is the
sum of degrees of all input nodes, minus the edges that
where counted twice because both endpoints are input
nodes, which is the number of edges of the input-induced
subgraph of G, therefore, the number of input free edges
is efree (G,U) = |E (G)| − dU + |E (G [U ])| and we have

|Ξ̂n−r (G,U) | =
(
efree (G,U)

n− r

)
. �

For a complete graph Kn with m input nodes we have

|E (Kn)| = n2−n
2 , dU = mn and |E (G [U ])| = m2−m

2 ,

such that efree (Kn,U) = (n−m)2−(n+m)
2 . We conclude

that even if we restrict the edge-based structure contraction
to be based on input free n-r edge contractions, solving
Problem 4 might still introduce a computational overload,
and we must further restrict the class of reductions.

3.2 Tree-Based Contractions

The edges of a spanning tree are the state variables of the
edge agreement protocol, therefore, a tree-based reduction
method might be advantageous. Here we provide some tree
terminology that will assist us in the derivation of a tree-
based contraction method.

Definition 12. Let G = (V, E) be a simple connected graph
of order n with spanning tree T (G). Then we denote the
set of all spanning trees of G as T (G) and the number of

spanning trees is defined as t (G) � |T (G)|.
Proposition 13. Let G = (V, E) be a simple connected
graph of order n and let T ∈ T (G) with an n − r edge
contraction set Ec (T ) ∈ Ξn−r (T ), and let (Gr, πc) =
EBC (T , Ec). Then Gr is a tree Tr of order r.

Proof. A tree of order n has n − 1 edges, and by con-
tracting n− r tree edges we are left with (n− 1)− (n− r)
edges, such that |E (Gr)| = r−1. From Lemma 6 we obtain
that Gr is connected, therefore, Gr is a connected graph of
order r with r − 1 edges, which is a tree of order r. �

Since G and T ∈ T (G) share the same vertices, they have
equal partitions, Πr (G) = Πr (T ). Given a graph G, if
we perform an edge-based contraction of T (G), (Tr, πc) =
EBC (T , Ec), we obtain πc as a partition of G. This leads
us to a tree-based graph contraction operation given in
Algorithm 3.

Algorithm 3 Tree-based graph contraction

Input: a graph G = (V, E) of order n, a tree T ∈ T (G),
and an n− r edge contraction set Ec (T ) ∈ Ξn−r (T )
(1) Perform the edge-based graph contraction (Tr, πc) =

EBC (T , Ec (T )).
(2) Perform the graph contraction of G with πc, Gr =

GC (G, πc).
Output: Reduced graph Gr; tree Tr; partition πc
Notation: Tree-based contraction - (Gr, Tr, πc) =
TBC (G, T , Ec (T )).

We notice that the outputs Tr and Gr of Algorithm 3
share the same vertices, therefore, Tr is a spanning tree
of Gr, T (Gr) = Tr. The input-free tree-based contraction
optimization problem is then to find the optimal spanning
tree T ∗ ∈ T (G) and the optimal n−r input-free edge con-

traction set E∗
c ∈ Ξ̂n−r (T ∗) that minimize the reduction

cost.

Problem 5. Target tree-based structure contraction :

min
Wr∈ΩWr

Ec∈Ξ̂n−r(T ,U)
T ∈T(G)

J
(
Σ̂Mr , Σ̂M

)
,

where Mr = SC (M, πc (T , Ec) ,Wr) .

From Proposition 11 we obtain that
∣∣∣Ξ̂n−r (T ,U)

∣∣∣ =(
efree (T ,U)

n− r

)
with efree (T ,U) = n−1−dU+|E (T [U ])|.

The number of contractions is then t (G)×
(
efree (T ,U)

n− r

)

and Problem 5 might still be unfeasible. Here we suggest
the greedy tree-based contraction algorithm as a sub-
optimal contraction method.

In Algorithm 4, we do not specify the choice of spanning
tree and the algorithm can be repeated to other spanning
trees in the graph.

4 The Reduced Laplacian Matrix

The Laplacian matrix plays a key role in the controlled
consensus protocol. In this section we present the general
algebraic relation between the Laplacian and essential edge
Laplacian matrices of the full graph G and those of the
reduced graph Gr = GC (G, π).
Definition 14. [partition characteristic matrix] Let π be
an r-partition of a vertex set V with partition function fπ,
we define Pπ ∈ Rn×r, the partition characteristic matrix
with [Pπ]ij = 1 if fπ (vi) = vrj , and 0 otherwise.

Under the graph contraction operation, each edge of the
full graph that connects two vertices in two different
partition cells is mapped to an edge in the reduced graph,
and each edge connecting two vertices in the same cell is
mapped to a self loop and omitted. We now define the edge
reduction matrix.

Definition 15. [Edge reduction matrix] Let Gr = GC (G, π)
with arbitrary head and tail functions hEr

,tGr
. Then the

edge reduction matrix, P(E,Er) ∈ R|E|×|Er|, is defined
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Algorithm 2 Edge-based graph contraction

Input: a graph G = (V, E) with n vertices, an edge
contraction set Ec (G) ∈ Ξn−r (G).
(1) Construct the graph Gc = (V (G) , Ec).
(2) Calculate the connected components of Gc, and obtain

the induced edge partition πc (G, Ec).
(3) Perform the graph contraction Gr =

GC (G, πc (G, Ec)).
Output: Reduced graph Gr; induced edge partition πc.
Notation: Edge-based contraction - (Gr, πc) =
EBC (G, Ec).
We observe that the number of n− r edge contractions is

|Ξn−r (G)| =
(

|E|
n− r

)
.

Definition 10. Let G = (V, E) with an input set U ⊆ V,
then we define the set of input free n-r edge contractions
Ξ̂n−r (G,U) �

{
Ec ∈ Ξn−r (G) |Ec ∩ U2 = ∅

}
.

Proposition 11. Let G = (V, E) with an input set U ⊆ V,
we denote G [U ] as the input induced subgraph of G and

dU =
m∑

k=1

d (Uk) is the sum of input nodes degrees. Then

the number of input free n-r edge contractions for m ≤ r

input nodes is
∣∣∣Ξ̂n−r (G,U)

∣∣∣ =

(
efree (G,U)

n− r

)
where

efree (G,U) = |E (G) | − dU + |E (G [U ])|.

Proof. The number of edges with input endpoints is the
sum of degrees of all input nodes, minus the edges that
where counted twice because both endpoints are input
nodes, which is the number of edges of the input-induced
subgraph of G, therefore, the number of input free edges
is efree (G,U) = |E (G)| − dU + |E (G [U ])| and we have

|Ξ̂n−r (G,U) | =
(
efree (G,U)

n− r

)
. �

For a complete graph Kn with m input nodes we have

|E (Kn)| = n2−n
2 , dU = mn and |E (G [U ])| = m2−m

2 ,

such that efree (Kn,U) = (n−m)2−(n+m)
2 . We conclude

that even if we restrict the edge-based structure contraction
to be based on input free n-r edge contractions, solving
Problem 4 might still introduce a computational overload,
and we must further restrict the class of reductions.

3.2 Tree-Based Contractions

The edges of a spanning tree are the state variables of the
edge agreement protocol, therefore, a tree-based reduction
method might be advantageous. Here we provide some tree
terminology that will assist us in the derivation of a tree-
based contraction method.

Definition 12. Let G = (V, E) be a simple connected graph
of order n with spanning tree T (G). Then we denote the
set of all spanning trees of G as T (G) and the number of

spanning trees is defined as t (G) � |T (G)|.
Proposition 13. Let G = (V, E) be a simple connected
graph of order n and let T ∈ T (G) with an n − r edge
contraction set Ec (T ) ∈ Ξn−r (T ), and let (Gr, πc) =
EBC (T , Ec). Then Gr is a tree Tr of order r.

Proof. A tree of order n has n − 1 edges, and by con-
tracting n− r tree edges we are left with (n− 1)− (n− r)
edges, such that |E (Gr)| = r−1. From Lemma 6 we obtain
that Gr is connected, therefore, Gr is a connected graph of
order r with r − 1 edges, which is a tree of order r. �

Since G and T ∈ T (G) share the same vertices, they have
equal partitions, Πr (G) = Πr (T ). Given a graph G, if
we perform an edge-based contraction of T (G), (Tr, πc) =
EBC (T , Ec), we obtain πc as a partition of G. This leads
us to a tree-based graph contraction operation given in
Algorithm 3.

Algorithm 3 Tree-based graph contraction

Input: a graph G = (V, E) of order n, a tree T ∈ T (G),
and an n− r edge contraction set Ec (T ) ∈ Ξn−r (T )
(1) Perform the edge-based graph contraction (Tr, πc) =

EBC (T , Ec (T )).
(2) Perform the graph contraction of G with πc, Gr =

GC (G, πc).
Output: Reduced graph Gr; tree Tr; partition πc
Notation: Tree-based contraction - (Gr, Tr, πc) =
TBC (G, T , Ec (T )).

We notice that the outputs Tr and Gr of Algorithm 3
share the same vertices, therefore, Tr is a spanning tree
of Gr, T (Gr) = Tr. The input-free tree-based contraction
optimization problem is then to find the optimal spanning
tree T ∗ ∈ T (G) and the optimal n−r input-free edge con-

traction set E∗
c ∈ Ξ̂n−r (T ∗) that minimize the reduction

cost.

Problem 5. Target tree-based structure contraction :

min
Wr∈ΩWr

Ec∈Ξ̂n−r(T ,U)
T ∈T(G)

J
(
Σ̂Mr , Σ̂M

)
,

where Mr = SC (M, πc (T , Ec) ,Wr) .

From Proposition 11 we obtain that
∣∣∣Ξ̂n−r (T ,U)

∣∣∣ =(
efree (T ,U)

n− r

)
with efree (T ,U) = n−1−dU+|E (T [U ])|.

The number of contractions is then t (G)×
(
efree (T ,U)

n− r

)

and Problem 5 might still be unfeasible. Here we suggest
the greedy tree-based contraction algorithm as a sub-
optimal contraction method.

In Algorithm 4, we do not specify the choice of spanning
tree and the algorithm can be repeated to other spanning
trees in the graph.

4 The Reduced Laplacian Matrix

The Laplacian matrix plays a key role in the controlled
consensus protocol. In this section we present the general
algebraic relation between the Laplacian and essential edge
Laplacian matrices of the full graph G and those of the
reduced graph Gr = GC (G, π).
Definition 14. [partition characteristic matrix] Let π be
an r-partition of a vertex set V with partition function fπ,
we define Pπ ∈ Rn×r, the partition characteristic matrix
with [Pπ]ij = 1 if fπ (vi) = vrj , and 0 otherwise.

Under the graph contraction operation, each edge of the
full graph that connects two vertices in two different
partition cells is mapped to an edge in the reduced graph,
and each edge connecting two vertices in the same cell is
mapped to a self loop and omitted. We now define the edge
reduction matrix.

Definition 15. [Edge reduction matrix] Let Gr = GC (G, π)
with arbitrary head and tail functions hEr

,tGr
. Then the

edge reduction matrix, P(E,Er) ∈ R|E|×|Er|, is defined
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Algorithm 4 Input-free greedy tree-based contraction

Input: a structure M = (G,U) with G of order n, a tree

T ∈ T (G), reduction cost function J (Σ̂Mr
, Σ̂M), required

reduction order r
(1) For k = 1, 2, . . . , n− 1 do:

(a) check if eTk ∈ T includes an input node, if yes,
set Jk = ∞ and skip to the next edge.

(b) perform the single tree-based graph contraction(
Gk
n−1, T k

n−1, π
k
c

)
= TBC

(
G, T , eTk

)
.

(c) obtain the structure contraction Mk
n−1 =

SC
(
M, πk

c ,W
(
Gk
n−1

))
.

(d) calculate the reduction cost J ∗
k =

min
W(Gk

n−1
)
J

(
GMk

n−1
, GM

)
.

(2) Construct the contraction set Ec (T ) from the n − r

edges with lowest reduction cost in {J ∗
k }

n−1
k=1 .

(3) Perform the tree-based contraction (Gr, Tr, πc) =
TBC (G, T , Ec (T )).

(4) Obtain the structure contraction Mr =
SC (M, πc,W (Gr)).

(5) Calculate the reduction cost JGTC =
min
W(Gr)

J (GMr
, GM).

Output: Graph Gr; tree Tr; partition πc; reduction cost
JGTC
Notation: We denote the greedy tree contraction as
(Gr, Tr, πc,JGTC) = GTC (M, T ,J (, ) , r).

such that
[
P(E,Er)

]
km

= 1 if fπ (hE (εk)) = hEr
(εrm),

fπ (tE (εk)) = tEr
(εrm),

[
P(E,Er)

]
km

= −1 if fπ (hE (εk)) =

tEr (ε
r
m), fπ (tE (εk)) = hEr (ε

r
m), and 0 otherwise.

The corresponding normalized edge reduction matrix is
U(E,Er) � P(E,Er)D

−1
Er

withDEr
� PT

(E,Er)
P(E,Er), a diagonal

matrix where each entry on the diagonal is the number of
edges mapped to an edge in the reduced graph.

Proposition 16. Let G be an n order simple graph and
let Gr = GC (G, π,Wr) be a graph contraction of G for
π ∈ Πr (G) and chosen edge weights Wr. Then the graph
contraction incidence matrix for arbitrary head and tail
functions hEr ,tEr takes the form

E (Gr) = PT
πE (G)U(E,Er), (12)

and the reduced Laplacian matrix is

L (Gr) = PT
πE (G)U(E,Er)W (Gr)U

T
(E,Er)

ET (G)Pπ. (13)

Proof. Let ej ∈ Rn be the j’th column of E (G) corre-
sponding to edge εj ∈ E (G), [ej ]k = 1 if hE (εj) = vk,
[ej ]k = −1 if tE (εj) = vk and 0 otherwise, and let
pi ∈ Rn be the i’th column of Pπ corresponding to the
i’th cell Ci ∈ π, [pi]k = 1 if [pi]k and 0 otherwise. Then
we obtain that pTi ej = 1 if tE (εj) /∈ Ci, hE (εj) ∈ Ci,
pTi ej = −1 if tE (εj) ∈ Ci, hE (εj) /∈ Ci, and pTi ej = 0

otherwise. Let G̃r =
(
Ẽr,Vr

)
be the r order multi-graph

with Ẽr = ER (E , fπ) the edge reconnecting (Definition
5), where fπ is the partition function of π. From the
edge reconnecting definition of head and tail, tẼr

(ε̃k) =

fπ (tE (εk)) and hẼr
(ε̃k) = fπ (hG (εk)) for εk ∈ E (G), we

can construct ẽj ∈ Rr, the j’th column of E
(
G̃
)
, such

(a) Graph with 6
nodes, 8 edges, and 2
inputs (red).

(b) Optimal contrac-
tion (J2 = 0.0711).

(c) Optimal edge-
based contraction
(J2 = 0.2266).

Fig. 2. H2 reduction of a controlled consensus protocol.

that [ẽj ]k = 1 if tẼ (ε̃j) �= vrk, hẼ (ε̃j) = vrk, [ẽj ]k = −1 if
tE (ε̃j) = vrk, hẼ (ε̃j) �= vrk, and [ẽj ]k = 0 otherwise.

We obtain that [ẽj ]k = pTi ej , and therefore, E(G̃r) =

PT
πE (G) where Pπ is the partition characteristic matrix.

The reduced graph Gr = GC(G, π) is obtained from G̃r =

(Ẽr,Vr) by performing edge merging, self-loop elimination
and edge undirecting. It is readily seen from the definition
of the edge reduction matrix that U(E,Er) operates on

the columns of E(G̃r) the algebraic equivalence of edge
merging, self-loop elimination and edge undirecting, such
that E (Gr) = E(G̃r)U(E,Er) = PT

πE (G)U(E,Er). With

E (Gr) = PT
πE (G)U(E,Er), L (Gr) = E (Gr)W (Gr)E

T (Gr)
takes the form of (13). �

Without loss of generality, we can order the edges of the
graph and the reduced graph to spanning tree edges and
cycle completing edges E (G) = E (T )∪E (C) such that the
edge reduction matrix takes the form

P(E,Er) =

[
P(T ,Tr) P(T ,Cr)
P(C,Tr) P(C,Cr)

]
, (14)

where P(T ,Tr) ∈ R|E(T )|×|E(Tr)|, P(T ,Cr) ∈ R|E(T )|×|E(Cr)|,

P(C,Cr) ∈ R|E(C)|×|E(Cr)| and P(C,Tr) ∈ R|E(C)|×|E(Tr)|

are the corresponding tree edges and cycle complet-
ing edges reduction matrices. We define the two diago-
nal matrices DTr

� PT
(T ,Tr)

P(T ,Tr) + PT
(C,Tr)

P(C,Tr) and

DCr
� PT

(T ,Cr)
P(T ,Cr) + PT

(C,Cr)
P(C,Cr), such that DEr

=

diag (DTr , DCr ) and the normalized edge reduction matrix
takes the form

U(E,Er) =

[
P(T ,Tr)D

−1
Tr

P(T ,Cr)D
−1
Cr

P(C,Tr)D
−1
Tr

P(C,Cr)D
−1
Cr

]
. (15)

Using E(Gr)=PT
πE (G)U(E,Er) and E(Gr)=[E (Tr) E (Cr)]

we get E (Gr) = [E (Tr) E(Cr)] = PT
π [E (T ) E(C)]U(E,Er),

from which we obtain E (Tr) = PT
πE (T )T(T ,Tr) and

E (Cr) = PT
πE (T )T(T ,Cr), where we define

T(T ,Tr) �
(
P(T ,Tr) + T(T ,C)P(C,Tr)

)
D−1

Tr
, (16)

T(T ,Cr) �
(
P(T ,Cr) + T(T ,C)P(C,Cr)

)
D−1

Cr
. (17)

The reduced essential edge Laplacian is then Less (Gr) =
TT
(T ,Tr)

ET (T )PπP
T
πE (T )T(T ,Tr)Q (Gr).

5 H2 Graph-Based Model Reduction of the Controlled
Consensus Protocol

In this section, we study a reduction cost function based on
the H2 performance of the controlled consensus protocol.
In order to examine the reduction error we compare the
outputs of the full and reduced systems. Using the tree
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to reduced tree mapping T(T ,Tr) (16) we can define a
difference signal xτ − T(T ,Tr)xτr , and an output difference

signal Q
1
2 (G)

(
xτ − T(T ,Tr)xτr

)
. We can then construct

a reduction error system with augmented state xe =[
xT
τ xT

τr

]
∈ Rn+r−2,

Σe (M,Mr)

{
ẋe = Aexe +Beu
ze = Cexe

, (18)

where Ae = Diag {−Less (G) ,−Less (Gr)},
Be =

[
B

T
(U)E (T )B

T
(Ur)E (Tr)

]T
, Ce =

[
Q

1
2 (G)−Q

1
2 (G)T(T ,Tr)

]

Performing a reduction based on a contraction π ∈
Π̄r (G,U), we define a reduction error cost using the H2-
norm of system (18),

J2 (GMr , GM) =
‖Σe (M,Mr)‖2H2

‖Σ̂ (M) ‖2H2

. (19)

Given a stable linear system with state-space realization
Σ : (A,B,C), the H2-norm of Σ can be calculated

from ‖Σ‖H2
=

√
Tr (BTXB) with X the solution to the

Lyapunov equation ATX +XA+ CTC = 0.
Proposition 17. Let M = (G,U) with G of order n and
|U| = m. Then the H2 performance of the edge agreement

protocol (2) is ‖Σ̂M‖2H2
= m

2

(
1− 1

n

)
.

Proof. With A = −Less (G) and C = Q
1
2 (G) the so-

lution to the Lyapunov equation is X = 1
2 L̂

−1
e . Sub-

stituting X and ET (T (G))B (U) in Tr
(
BTXB

)
we

get
∥∥Σ̂ (M)

∥∥2

H2
= 1

2
Tr

(
B (U)T E (T )

[
L̂e (T )

]−1
ET (T )B (U)

)
.

From L̂e = ET (T )E (T ) and using E (T ) L̂−1
e ET (T ) =

In×n − 1
n1n1

T
n , with 1n ∈ Rn a vector of ones, we obtain

‖Σ̂ (M) ‖2H2
= 1

2Tr
(
B (U)T B (U)

)
− ‖B(U)T 1n‖2

2n . From

the definition of B (U) we obtain ‖Σ̂ (M) ‖2H2
= m

2

(
1− 1

n

)
.

�

Similarly to the full system, the H2 performance of the
reduced system (4) is ‖Σ̂ (Mr) ‖2H2

= m
2

(
1− 1

r

)
.

For the reduction error system (18) we obtain ‖Σe‖2H2
=

Tr
(
BT

e XBe

)
with X the solution to the Lyapunov equa-

tion AT
e X +XAe + CT

e Ce = 0.

5.1 Case Studies

As a first example, consider the controlled consensus
system (2) over a graph of order 6 with 8 unit-weight edges
and two input nodes (Fig.2a).

We require the reduced system to be of order 4 with
unit edge weights. In this case, the number of possible
partitions is S (6, 4) = 65 and we can find the optimal

contraction (Fig.(2b)). There are
(
6
2

)
= 15 possible edge-

based contractions, and we can obtain the optimal one
(Fig.(2c)). Choosing a spanning tree (solid blue edges),
we perform the greedy input-free tree-based contraction
(Algorithm (4)), and obtain the exact same reduced graph
as the optimal edge-based contraction in Fig. (2c).

Next we apply the greedy tree-based algorithm 4 on the
consensus system over a Buckminster Fuller (“Bucky”)
graph with 5 inputs (Fig.3a). The Bucky graph is of order
60 with 90 unit-weight edges and we require the reduced

(a) Bucky graph with 5 inputs. (b) Reduced graph of order 30
with 49 edges.

Fig. 3. Reduction of the consensus system over a Bucky
graph.

graph to be of order 30 with unit-weight edges. In order
to find the optimal structure contraction for this case we
would have to examine S (60, 30) = 9.5635 · 1053 possible
contractions. If we restrict to edge-based contractions we

have
(
90
30

)
= 6.7313 ·1023 cases. Therefore, a sub-optimal

reduced structure is obtained with the greedy tree-based
contraction (Algorithm 4), and we obtain the reduction
error J2 = 0.0294 (Fig.3b).

6 Conclusions

We have defined the graph-based model reduction of
the controlled-consensus protocol. The greedy tree-based
contraction algorithm has been suggested as a suboptimal
efficient solution and demonstrated with an H2 reduction
error.

The same graph-based model reduction framework can
be applied to the reduction of other multi-agents system.
Various other suboptimal structure reduction methods
can be derived for the problem, as well as methods for
optimization of non-unit edge-weights. Other reduction
error metrics may be considered for the reduced consensus
system.
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to reduced tree mapping T(T ,Tr) (16) we can define a
difference signal xτ − T(T ,Tr)xτr , and an output difference

signal Q
1
2 (G)

(
xτ − T(T ,Tr)xτr

)
. We can then construct

a reduction error system with augmented state xe =[
xT
τ xT

τr

]
∈ Rn+r−2,

Σe (M,Mr)

{
ẋe = Aexe +Beu
ze = Cexe

, (18)

where Ae = Diag {−Less (G) ,−Less (Gr)},
Be =

[
B

T
(U)E (T )B

T
(Ur)E (Tr)

]T
, Ce =

[
Q

1
2 (G)−Q

1
2 (G)T(T ,Tr)

]

Performing a reduction based on a contraction π ∈
Π̄r (G,U), we define a reduction error cost using the H2-
norm of system (18),

J2 (GMr , GM) =
‖Σe (M,Mr)‖2H2

‖Σ̂ (M) ‖2H2

. (19)

Given a stable linear system with state-space realization
Σ : (A,B,C), the H2-norm of Σ can be calculated

from ‖Σ‖H2
=

√
Tr (BTXB) with X the solution to the

Lyapunov equation ATX +XA+ CTC = 0.
Proposition 17. Let M = (G,U) with G of order n and
|U| = m. Then the H2 performance of the edge agreement

protocol (2) is ‖Σ̂M‖2H2
= m

2

(
1− 1

n

)
.

Proof. With A = −Less (G) and C = Q
1
2 (G) the so-

lution to the Lyapunov equation is X = 1
2 L̂

−1
e . Sub-

stituting X and ET (T (G))B (U) in Tr
(
BTXB

)
we

get
∥∥Σ̂ (M)

∥∥2

H2
= 1

2
Tr

(
B (U)T E (T )

[
L̂e (T )

]−1
ET (T )B (U)

)
.

From L̂e = ET (T )E (T ) and using E (T ) L̂−1
e ET (T ) =

In×n − 1
n1n1

T
n , with 1n ∈ Rn a vector of ones, we obtain

‖Σ̂ (M) ‖2H2
= 1

2Tr
(
B (U)T B (U)

)
− ‖B(U)T 1n‖2

2n . From

the definition of B (U) we obtain ‖Σ̂ (M) ‖2H2
= m

2

(
1− 1

n

)
.

�

Similarly to the full system, the H2 performance of the
reduced system (4) is ‖Σ̂ (Mr) ‖2H2

= m
2

(
1− 1

r

)
.

For the reduction error system (18) we obtain ‖Σe‖2H2
=

Tr
(
BT

e XBe

)
with X the solution to the Lyapunov equa-

tion AT
e X +XAe + CT

e Ce = 0.

5.1 Case Studies

As a first example, consider the controlled consensus
system (2) over a graph of order 6 with 8 unit-weight edges
and two input nodes (Fig.2a).

We require the reduced system to be of order 4 with
unit edge weights. In this case, the number of possible
partitions is S (6, 4) = 65 and we can find the optimal

contraction (Fig.(2b)). There are
(
6
2

)
= 15 possible edge-

based contractions, and we can obtain the optimal one
(Fig.(2c)). Choosing a spanning tree (solid blue edges),
we perform the greedy input-free tree-based contraction
(Algorithm (4)), and obtain the exact same reduced graph
as the optimal edge-based contraction in Fig. (2c).

Next we apply the greedy tree-based algorithm 4 on the
consensus system over a Buckminster Fuller (“Bucky”)
graph with 5 inputs (Fig.3a). The Bucky graph is of order
60 with 90 unit-weight edges and we require the reduced

(a) Bucky graph with 5 inputs. (b) Reduced graph of order 30
with 49 edges.

Fig. 3. Reduction of the consensus system over a Bucky
graph.

graph to be of order 30 with unit-weight edges. In order
to find the optimal structure contraction for this case we
would have to examine S (60, 30) = 9.5635 · 1053 possible
contractions. If we restrict to edge-based contractions we

have
(
90
30

)
= 6.7313 ·1023 cases. Therefore, a sub-optimal

reduced structure is obtained with the greedy tree-based
contraction (Algorithm 4), and we obtain the reduction
error J2 = 0.0294 (Fig.3b).

6 Conclusions

We have defined the graph-based model reduction of
the controlled-consensus protocol. The greedy tree-based
contraction algorithm has been suggested as a suboptimal
efficient solution and demonstrated with an H2 reduction
error.

The same graph-based model reduction framework can
be applied to the reduction of other multi-agents system.
Various other suboptimal structure reduction methods
can be derived for the problem, as well as methods for
optimization of non-unit edge-weights. Other reduction
error metrics may be considered for the reduced consensus
system.
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