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Abstract— This paper investigates a distributed bearing-
constrained formation control of continuous-time multi-agent
systems based on sampled bearing information. The problem
is considered in arbitrary dimensional spaces. Our proposed
method penalizes the control effort by L0 control cost, and
hence the obtained distributed control is enhanced to take
exactly zero value. Such a control is called maximum hands-
off control. The proposed method tracks a distributed control
for an associated discrete-time multi-agent system. Hence, we
also newly characterize a bearing-constrained formation for
discrete-time one. The analysis relies on the recently developed
bearing rigidity theory. With the results, we show the feasibility,
closed form, and stability of the proposed control.

I. INTRODUCTION

Formation control is one of the cornerstone problems of
multi-agent systems. Achieving a desired spatial configura-
tion among autonomous agents may be an explicit require-
ment of the system [1], [2], or may be viewed as a subroutine
for higher-level tasks [3], [4]. The standard setup for the
formation control problem involves a team of dynamical
systems, typically modeled as simple single- or double-
integrators, that aim to distributedly achieve some desired
spatial configuration specified by either relative positions,
interagent distances, or interagent bearings [2], [5]. In this
setting, there are numerous linear and nonlinear protocols
that can be used to solve this problem.

While the existing control strategies for formation control
do provide theoretical solutions to the problem, they often
require significant modifications when implementing on real
platforms. Challenges include adapting the control strategies
for more complicated agent models, or coping with sensing
and actuation constraints. A common approach to remedy
this problem is to search for explicit nonlinear control
strategies that address these issues [6]–[9].

In this work, we take the perspective that existing strate-
gies based on simple models are advantageous to use even
when implemented on more complicated systems. We can
consider such a system as an exogenous waypoint generator
or trajectory planner. This idea was originally proposed in
[10], [11]. The previous studies tackled a consensus problem
in which controllers have saturation constraints and can refer
to only sampled-state information. For this problem, while
they considered a continuous-time multi-agent system, they
introduced an associated discrete-time multi-agent system as
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the trajectory planner and proposed a distributed consensus
scheme satisfying the constraints.

For this work, we consider the bearing-based formation
control problem originally presented in [12], [13]. This
model assumes integrator dynamics for each agent with the
ability to sense relative-positions to neighbors. The formation
is specified by inter-agent bearings. It was shown in [12]
that a linear protocol can solve this problem. In this work,
however, we consider agents with integrator dynamics and
input-saturation constraints. In addition, the model in this
paper is assumed to be able to sense state information on
only sampling instants. In order to address this complexity,
this paper adopts the idea of a trajectory planner. As the
planner, we design an appropriate discrete-time multi-agent
system and analyze the convergence of the system. The ob-
tained result newly characterizes the bearing-based formation
control for a discrete-time system, compared to the previous
studies for a continuous-time system [12], [13].

Furthermore, we try to reduce the control effort. In par-
ticular, we consider the L0 cost minimization of the control
input. This type of optimization enhances sparsity and is
recently investigated across many fields, such as networked
control [14], system identification [15], feedback design [16],
to name a few. The control equipped with the minimum L0

cost is called sparse optimal control or maximum hands-off
control [17]. We adopt this optimal control motivated by the
following three reasons.

Firstly, the maximum hands-off control has an ecological
aspect. Indeed, this control strategy, which is also known
as gliding or coasting, is actually used in hybrid/electric
vehicles [18], railway vehicles [19], free-flying robots [20],
stop-start systems [21], and sleep mode operation in wireless
communication systems [22] for saving fuel or electricity
consumptions and reducing CO2 emissions or vibrations.
Multi-agent systems whose energy sources are constrained
may benefit from the sparse property of the maximum
hands-off control. A similar strategy can be found in event-
triggered (or self-triggered) control, which aims at increasing
“zero control (or observation) time” to reduce computa-
tional/communication resources [23]. Secondly, the maxi-
mum hands-off control takes only discrete values, as shown
in [24]. Such a discreteness is preferable for cheap actuators
since the control values are already quantized. Thirdly, the
maximum hands-off control is easily computed, since the
control can be obtained by a convex program [24].

The organization of this paper is as follows. Section II
provides mathematical preliminaries. Section III reviews the
maximum hands-off control for readability. In Section IV, we
first define the model in this paper and secondary explain
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the bearing-based formation control problem. Thirdly, we
formulate the main problem, which tries to find a hands-
off distributed formation control with input-saturation con-
straints based on sampled-state information. Section V is the
main section of this paper. We propose a control algorithm
that solves the main problem and show a condition under
which a desired formation is achieved. Section VI illustrates
the proposed control with a simulation. Section VII offers
concluding remarks.

II. MATHEMATICAL PRELIMINARIES

This section reviews basic definitions and notations that
will be used throughout the paper. The set of all real numbers
is denoted by R. The set of all positive integers is denoted by
N. For an integer N ∈ N, RN denotes the N -dimensional Eu-
clidean space. We denote the vector in RN whose elements
are all 1 by 1N . For two vectors z, w ∈ RN , the notation
z ≤ w corresponds to the component-wise inequality, i.e.,
z ≤ w if zk ≤ wk for all k = 1, 2, . . . , N . The function
max{·, ·} : RN × RN → RN returns the pointwise larger
value, i.e., for x = max{z, w}, then xk = max{zk, wk}
for each k. The function, min{z, w} is similarly defined.
We denote IN ∈ RN×N as the identity matrix and ⊗ as the
Kronecker product. Let Null[M ] be the null space and rk[M ]
be the rank of a matrix M ∈ RN×N . The Euclidean norm
in RN is denoted by ∥ · ∥, i.e., ∥x∥ ,

√
x⊤x for x ∈ RN ,

where ⊤ denotes the transpose. The ℓp-norms in RN with
p = 1 or p = ∞ are respectively defined by

∥x∥ℓ1 ,
N∑

m=1

|xm|, ∥x∥ℓ∞ , max
1≤m≤N

|xm|

for x = [x1, x2, . . . , xN ]⊤ ∈ RN .
Let T > 0. For a continuous-time signal u(t) =

[u1(t), u2(t), . . . , uN (t)]⊤ ∈ RN over a time interval [0, T ],
we define its L0 and L∞ norms respectively by

∥u∥0 ,
N∑

m=1

µ({t ∈ [0, T ] : um(t) ̸= 0}),

∥u∥∞ , max
m=1,2,...,N

ess sup
0≤t≤T

|um(t)|

with the Lebesgue measure µ on R. The sign function is
denoted by sgn, i.e., for a scalar α ∈ R, sgn(α) , α/|α| if
α ̸= 0, and sgn(0) , 0.

An undirected graph, denoted by G = (V, E), consists of
a node set V = {1, 2, . . . , N} and an edge set E ⊂ V × V ,
where if information flows from a node j ∈ V to a node
i ∈ V , then (j, i) ∈ E , and otherwise (j, i) /∈ E . The node
j ∈ V is said to be a neighbor of a node i ∈ V if (j, i) ∈ E ,
and the set of all neighbors of node i is denoted by Ni, i.e.,
Ni , {j ∈ V : (j, i) ∈ E}. We denote by |Ni| the number
of elements of the set Ni. The maximum degree of a graph
G is defined as maxi∈V |Ni| and we denote it by ∆.

III. MAXIMUM HANDS-OFF CONTROL

Here, we briefly review the maximum hands-off control
proposed in [17]. Although we focus on first-order agents

in this paper, we here discuss a more general linear time-
invariant system modeled by

ẋ(t) = Fx(t) +Gu(t), 0 ≤ t ≤ Tf , (1)

where F ∈ Rd×d, G ∈ Rd×d, and Tf > 0 is a fixed final
time of control. Note that the first-order system is modeled
with F = 0 and G = Id. For the system (1), we call a control
u feasible if it steers the state x from a given initial state
x(0) = x0 ∈ Rd to a target state xf ∈ Rd at time Tf > 0
(i.e., x(Tf ) = xf ) and satisfies the magnitude constraint
∥u∥∞ ≤ 1. We denote by U(x0, x

f , Tf ) the set of all feasible
controls for given x0 ∈ Rd, xf ∈ Rd, and Tf > 0.

The control objective in the maximum hands-off control
is to obtain a control u ∈ U(x0, x

f , Tf ) that has the smallest
support. In other words, this optimal control problem seeks
the feasible control that has the minimum L0 cost. This
optimization problem will be solved by each agent in our
proposed scheme, as described in Section V.

Problem 1 (Maximum Hands-Off Control): For a given
initial state x0 ∈ Rd, target state xf ∈ Rd, and the final time
of control Tf > 0, find a feasible control u ∈ U(x0, x

f , Tf )
that minimizes J(u) , ∥u∥0.

Solutions given by the maximum hands-off control lead to
efficient control strategies (i.e., in terms of fuel or electricity
consumption) since the actuator is inactive on the intervals
where the control is exactly zero. Also, as described in
Theorem 1 below, the maximum hands-off controls take only
three values of ±1 and 0. This property is called “bang-off-
bang” property [25], and it is preferable for cheap actuators
since the control values are already quantized.

The maximum hands-off control was recently investigated
in [17], [24], [26]. Some fundamental properties of the
optimal control is summarized below. This property will be
used to show a sufficient condition for the feasibility of the
proposed control scheme and a closed form of the proposed
distributed control (see Theorem 4 and Lemma 1).

Theorem 1: Take any Tf > 0 and xf ∈ Rd. Define

R ,
{∫ Tf

0

e−FtGu(t)dt : ∥u∥∞ ≤ 1

}
. (2)

Then, there exists at least one maximum hands-off control if
and only if the initial state x0 ∈ Rd satisfies x0−e−FTfxf ∈
R. Moreover, the hands-off controls are given by the L1

optimal controls that take only values ±1 and 0.
Proof: See the proof of [24, Theorem 3].

IV. PROBLEM FORMULATION

In this paper, we adopt the idea of the maximum hands-
off control to the bearing-based formation control problem
in multi-agent systems. Let us consider a network model
G = (V, E) consisting of n agents in Rd (n ≥ 2, d ≥ 2). We
assume each agent i ∈ V , {1, 2, . . . , n} is modeled by the
single integrator dynamics,

ẋi(t) = ui(t), (3)

where xi(t) ∈ Rd and ui(t) ∈ Rd denote the state and
the control of agent i, respectively. Note that ui(t) is a
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distributed control to be designed, which depends only on
the i’s state xi(t) and the states xj(t) of the neighboring
agents j ∈ Ni. The interaction graph G = (V, E) is assumed
to be connected, undirected, and fixed.

A. Bearing-Based Formation Control

The bearing-based formation control problem aims to drive
a team of agents with dynamics (3) to a desired spatial
configuration specified by inter-agent bearings. We briefly
describe the approach presented in [12], [13].

For a given interaction graph G, we define the bearing
between two adjacent nodes as

gij =
xj − xi

∥xi − xj∥
.

Note that gij is a unit-length vector pointing from agent i to
agent j. Furthermore, we assume bearings are measured in a
common reference frame, and thus gij = −gji. We call the
vector x(t) =

[
xT
1 (t) · · · xT

n (t)
]T

the configuration of a

team of agents, and FB(x(t)) =
[
gT1 (t) · · · gT|E|(t)

]T
∈ Rnd

the bearing function associated with the configuration x(t).
We now state the bearing-based formation control problem.

Problem 2 (Bearing-based Formation Control): Given a
set of feasible bearing constraints {g∗ij}(i,j)∈E , and a team
of n agents with dynamics (3), design a distributed control
ui for each agent based on relative-position measurements
{xi(t)− xj(t)}(i,j)∈E such that limt→∞ gij(t) = g∗ij for all
(i, j) ∈ E .

Stated in another way, we would like FB(x(t)) → FB(x
∗)

for some configuration x∗ that satisfies the desired bearing
constraints {g∗ij}(i,j)∈E . Towards solving Problem 2, the
notion of infinitesimal bearing rigidity is needed [5]. Simply
stated, the pair (G, x(t0)) is infinitesimally bearing rigid if
the only trajectories x(t) that preserve the interagent bearings
are the translations and scalings of the entire framework, i.e.,
FB(x(t)) remains constant along these trivial trajectories.

The bearing rigidity of a framework can be checked by a
rank-condition on the bearing rigidity matrix, defined as

RB(x) =
∂FB(x)

∂x
.

That is, the framework is infinitesimally bearing rigid if and
only if rk[RB(x)] = dn− d− 1 [27]. An alternative matrix
that can be used to check the bearing rigidity property is the
bearing Laplacian matrix, B(x) ∈ Rdn×dn [13]. To define
this matrix, we use the notion of an orthogonal projection
matrix. We denote Pgij , Id − gijg

T
ij as the matrix operator

projecting vectors onto the orthogonal complement of gij .
With this notion, we define the bearing Laplacian as

[Bij(x)] =


0d, i ̸= j, (i, j) /∈ E

−Pgij , i ̸= j, (i, j) ∈ E∑
k∈Ni

Pgik , i = j, i ∈ V.
(4)

Note that B(x) is a symmetric and positive semi-definite
matrix for undirected graphs. For an infinitesimally rigid
bearing configuration (G, x), we have rk[RB(x)] = rk[B(x)]
[13]. We often write B when the context is clear.

In this work we are concerned with a discrete-time formu-
lation of the bearing-based formation control law which will
serve as our trajectory planner of the system. In this direction,
we consider the discrete-time single integrator dynamics for
each agent,

zi[k + 1] = zi[k] + wi[k], (5)

where zi[k] ∈ Rd and wi[k] ∈ Rd denote the state and the
control of agent i at step k ∈ {0, 1, 2, . . . }, respectively. The
proposed distributed control is defined by

wi[k] , ε
∑
j∈Ni

Pg∗
ij
(zj [k]− zi[k]), (6)

where ε is a given positive number. This can be seen as
a discretization of the continuous time controller originally
proposed in [13].The state-space representation of the closed-
loop system is thus

z[k + 1] = (Ind − εB)z[k]. (7)

Throughout the paper, we put the following assumption.
Assumption 1: Any configuration x∗ that satisfies the

bearing constraints {g∗ij}(i,j)∈E is infinitesimally bearing
rigid.

Theorem 2: Under Assumption 1, any eigenvalue λl, l =
1, 2, . . . , nd, of the matrix B satisfies 0 ≤ λl ≤ 2d∆.

Proof: The matrix B is positive-semi definite, as
shown in [27]. Indeed, B can be written as B(x∗) =
RT

B(x
∗)RB(x

∗), showing the lower eigenvalue bound. The
upper bound follows directly from the Gershgorin circle
theorem for block operator matrices [28] and the fact that
the eigenvalues of projection matrices are either 0 or 1.

We now provide the main stability and convergence result
for the system (7). In this direction, we first define the
formation centroid (denoted c(z)), the normalized target
formation (denoted r∗) as

c(z) , (1n ⊗ Id)
⊤z

n
, r∗ , z∗ − 1n ⊗ c(z∗),

where z∗ denotes a configuration satisfying the desired bear-
ing constraints. It was shown in [12] that for infinitesimally
bearing rigid configurations, Null[B] = span{1n ⊗ Id, r

∗}.
Theorem 3: Let z∗ be a configuration satisfying the bear-

ing constraints {g∗ij}(i,j)∈E and 0 < ε < 1
d∆ . Under

Assumption 1, with the distributed control (6), the system
(5) converges from any initial point z[0] to a point

q∗ = 1n ⊗ c(z[0]) +

(
r∗⊤

∥r∗∥
z[0]

)
r∗

∥r∗∥
. (8)

Proof: Under Assumption 1, the target formation is
infinitesimally bearing rigid, and thus rk[B] = dn − d −
1. From Theorem 2, it follows that the spectrum of A =
Id − εB is contained in the closed unit disc (i.e., A is semi-
convergent). Let Q =

[
1√
n
1n ⊗ Id

r∗

∥r∗∥

]
. Then A is semi-

convergent, and lim
k→∞

Ak = QQ⊤. It follows that lim
k→∞

z[k] =

q∗ as required.
Remark 1: As discussed in [12], we require that

r∗⊤z[0] > 0 is additionally satisfied to solve Problem 2.
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Otherwise, the system converges to a point reflection of the
desired target formation (i.e., gij [k] → −g∗ij).

B. Main Problem
In this paper, we furthermore consider a sampled-data

control system. The local interactions in multi-agent systems
are usually performed on a wireless network and agents
can transmit the state information at only the sampling
times. Then, we assume that the state observation can be
executed at only the sampling time kT , k = 0, 1, 2, . . .,
where T > 0 denotes the sampling period. As a result, we
should determine the control ui(t), t ∈ [kT, (k+1)T ), based
on relative-position measurements {xi(kT )−xj(kT )}(i,j)∈E .
We also assume that the magnitude of the control is restricted
to be bounded by 1, that is,

∥ui∥∞ ≤ 1, ∀i ∈ V. (9)

In addition, it is important to take account of the control
effort reduction for real systems. This paper adopts the max-
imum hands-off control idea given in the previous section to
the sampled-data formation control. Let us denote the control
ui on the sampling interval [kT, (k+ 1)T ) by ui[k], that is,

ui[k](t) , ui(t+ kT ) (10)

on [0, T ) for i ∈ V . Then, this paper tries to find a
distributed formation control ui[k] at every discrete time k
that is equipped with small L0 norm ∥ui[k]∥0 and satisfies
∥ui[k]∥∞ ≤ 1. In summary, we formulate the maximum
hands-off distributed bearing-based formation control prob-
lem as follows:

Problem 3: Given feasible constant bearing constraints
{g∗ij}(i,j)∈E , an initial state x(0) ∈ Rnd, and a sampling
period T > 0, find a control ui(t) on [0,∞) for each agent
i ∈ V such that

i) it achieves limt→∞ gij(t) = g∗ij for all {i, j} ∈ E ,
ii) it satisfies the magnitude constraint (9),

iii) it is determined by sampled states xi(kT ) and
xj(kT )− xi(kT ) for j ∈ Ni, k = 0, 1, 2, . . . ,

iv) and it minimizes ∥ui[k]∥0 in a feasible set
U(xi(kT ), x

f
i [k], T ) with a given xf

i [k] ∈ Rd at
each k = 0, 1, 2, . . . .

Note that our proposed control steers the state of each
agent i to xf

i [k] on each sampling interval. Hence, the design
of the target xf

i [k] is obviously crucial to the final formation.
For this issue, we utilize a bearing-based formation for
discrete-time multi-agent systems that is newly analyzed in
Section IV and define xf

i [k] based on the result. In other
words, our proposed algorithm tracks a distributed formation
control for a corresponding discrete-time system.

V. MAXIMUM HANDS-OFF DISTRIBUTED
CONTROL

In this section, we design a continuous-time distributed
control that solves Problem 3. We first design a target state
xf
i [k] based on obtained results and propose a distributed

control, which we call maximum hands-off distributed con-
trol. We then analyze the feasibility of the proposed algo-
rithm and the convergence of the multi-agent system.

A. Control Protocol

From the discussion above, a system defined by

zi[k + 1] = zi[k] + ε
∑
j∈Ni

Pg∗
ij

(
zj [k]− zi[k]

)
converges to the target formation as k → ∞, under some
conditions. Hence, if we choose a continuous-time control
ui(t) that drives the state xi(t) from the current state xi(kT )
to a target state

xf
i [k] , xi(kT ) + ε

∑
j∈Ni

Pg∗
ij

(
xj(kT )− xi(kT )

)
(11)

on each sampling interval [kT, (k+1)T ), then the agents (3)
achieve a target formation at least on the sampling instants
t = 0, kT, 2kT, . . .. Note that the index [k] in (11) corre-
sponds to the current sampling instant kT , and xf

i [k] is the
target state over the current sampling interval [kT, (k+1)T ).
In particular, we are interested in a control that has the
minimum L0 cost ∥ui[k]∥0 (i.e. the maximum hands-off
control) among all feasible controls. Algorithm 1 shows the
proposed control algorithm.

Algorithm 1 Maximum hands-off distributed control for
agent i ∈ V

Given a sampling period T > 0, an initial state xi(0) ∈
Rd, and a positive number ε > 0
for k = 0, 1, 2, . . . do

Observe xi(kT ) and xj(kT ), j ∈ Ni.
Compute a maximum hands-off control

ui[k] = arg min
u∈U(xi(kT ),xf

i [k],T )

∥u∥0

where xf
i [k] is defined in (11).

Apply ui(t) = ui[k](t− kT ), t ∈ [kT, (k+1)T ] to the
agent i.

end for

B. Analysis

The proposed control algorithm is analyzed in this sub-
section. In our framework, control inputs are constrained by
the magnitude constraint (9), and they must steer agents to
given target states over a finite horizon. Hence, we need to
consider the feasibility of the algorithm, i.e., the existence of
the control ui[k] in Algorithm 1 at each step k for all i ∈ V .
In addition, we need to show that the target formation is
achievable in the continuous-time domain, since Theorem 3
refers to the convergence on the discrete sampling instants.

We first show the feasibility of Algorithm 1.
Theorem 4: Let us suppose Assumption 1. Fix an or-

thonormal system {q1, q2, . . . , qnd} consisting of the eigen-
vectors of B. Let 0 < ε < 1

d∆ and T > 0. Define a set

I , {x ∈ Rnd : x =
nd∑
i=1

yiqi, ∥y∥ℓ1 ≤ T

2εd∆
},
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where y , [y1, y2, . . . , ynd]
⊤. If the initial state x(0) satisfies

x(0) ∈ I, then there exists a maximum hands-off distributed
control ui[k] in Algorithm 1 for all i ∈ V and k = 0, 1, 2, . . . .

Proof: It follows from Theorem 1 that an agent i ∈ V
has a maximum hands-off distributed control ui[k] at a step
k ∈ {0, 1, 2, . . . } if and only if xi(kT ) − xf

i [k] ∈ R. Note
that R =

{
a ∈ Rd : ∥a∥ℓ∞ ≤ T

}
, which is obtained by (2)

with F = 0 and G = Id. Hence, it is enough to show the
inequality ∥εBx(kT )∥ℓ∞ ≤ T for any k = 0, 1, 2, . . . . This
can be shown by mathematical induction.

Theorem 4 obviously depends on the selection of the basis
{q1, q2, . . . , qnd}. Then, we here show a sufficient condition
for the feasibility that can be more easily checked.

Corollary 1: Let us suppose Assumption 1. Fix any 0 <
ε < 1

d∆ and T > 0. If the initial state x(0) satisfies

∥x(0)∥ℓ1 ≤ T

2εd∆
√
nd

, (12)

then the maximum hands-off distributed control ui[k] exists
for all k ∈ {0, 1, 2, . . . } and i ∈ V .

Proof: Fix an initial state x(0) such that (12) holds.
Let us take any orthogonal matrix Q , [q1, q2, . . . , qnd]
consisting of eigenvectors of B such that Q diagonalizes B.
Then, there exists y such that x(0) = Qy, and y = Q⊤x(0).
Denote the m-th component of ql and x(0) by qlm and
x(m)(0), m = 1, 2, . . . , nd. Then, we have

∥y∥ℓ1 ≤
nd∑
l=1

nd∑
m=1

|qlmx(m)(0)| ≤ ∥x(0)∥ℓ1
√
nd,

where we used Cauchy-Schwartz inequality in the second
inequality. Hence, it follows from (12) that ∥y∥ℓ1 ≤ T

2εd∆ ,
and x(0) ∈ I, where I is defined in Theorem 4. This with
Theorem 4 implies the existence of ui[k].

The following lemma gives the closed form of the maxi-
mum hands-off distributed control. Thanks to this character-
ization, the hands-off control can be easily obtained.

Lemma 1: Let us suppose Assumption 1. Fix an initial
state x(0) such that x(0) ∈ I for some orthonormal systems
{q1, q2, . . . , qnd} consisting of eigenvectors of B, where I is
defined in Theorem 4. Then, the set of all maximum hands-
off distributed controls ui[k] in Algorithm 1 is given by

U∗
i [k] ,

{
α = [α1, α2, . . . , αd]

⊤ :

αm = −βm sgn(θim[k]),

βm(t) ∈ {0, 1} a.e. t ∈ [0, T ],

∥βm∥0 = |θim[k]|, ∀m = 1, 2, . . . , d

} (13)

for all k ∈ {0, 1, 2, . . . } and i ∈ V , where θim[k] is the m-th
component of xi(kT )− xf

i [k].
Proof: Note that, from Theorem 4, there certainly exists

ui[k] for all k = 0, 1, 2, . . . and i ∈ V . Since any maximum
hands-off control is an L1 optimal control that takes only
values ±1 and 0 from Theorem 1, we obtain the result by
the discussion in [25, Sec. 8-2].

.

.A

.B .C

.D.E

Fig. 1. Target formation.

Finally, we show that our proposed control in Algo-
rithm 1 achieves the bearing-based formation control in the
continuous-time domain.

Theorem 5: Let 0 < ε < 1
d∆ and T > 0. Fix an

initial state x(0) such that x(0) ∈ I, which is defined in
Theorem 4. Under Assumption 1, with the maximum hands-
off distributed control in Algorithm 1, all agents converge to
the point defined in (8), where z[0] is replaced with x(0), in
the continuous-time domain.

Proof: Note that by Theorem 3 and Theorem 4 the
maximum hands-off distributed control ui[k] exists at each
sampling interval for each agent i and achieves a target
formation at least on sampling instants. Denote the final
formation by x∗ ∈ Rnd. Fix any η > 0. Then, there exists
K ∈ N such that k ≥ K implies ∥x(kT )− x∗∥ < η, where
x(t) is the state trajectory corresponding to the controls ui[k].
For any t ∈ [kT, (k + 1)T ] with k ≥ K, we have

∥x(t)− x∗∥ < ∥x(t)− x(kT )∥+ η

≤ ∥x((k + 1)T )− x(kT )∥+ η < 3η,

where we used a fact that the state xi(t) lies between xi(kT )
and xi((k + 1)T ) on each time interval [kT, (k + 1)T ],
i.e., ai[k] ≤ xi(t) ≤ ai[k] for all t ∈ [kT, (k + 1)T ]
and i ∈ V , where ai[k] , min

{
xi(kT ), xi((k + 1)T )

}
,

ai[k] , max
{
xi(kT ), xi((k + 1)T )

}
. This is observed from

Lemma 1. Hence, ∥x(t)− x∗∥ < 3η for t ≥ KT .

VI. SIMULATION EXAMPLE

We demonstrate the hands-off control strategy
with a simple example. Consider a network of
5 agents in R3. The agents should achieve a
“pyramid” shape, as shown in Figure 1. Here, the
target formation is specified by the bearings g∗12 =[
−0.4851 −0.7276 −0.4851

]T
, g∗23 =

[
1 0 0

]T
,

g∗34 =
[
0 0 1

]T
, g∗41 =

[
−0.4851 0.7276 −0.4851

]T
,

g∗13 =
[
0.4851 −0.7276 −0.4851

]T , g15 =[
−0.4851 −0.7276 0.4851

]T , g∗52 =
[
0 0 −1

]T ,
g∗54 =

[
1 0 0

]T
. Let the initial state be given

by x1(0) =
[
0 1 0

]T
, x2(0) =

[
0 0 0

]T
,

x3(0) =
[
1 0 0

]T , x4(0) =
[
0.5 0 −0.5

]T ,
x5(0) =

[
0.5 0 0.5

]T , and take ε = 0.01, T = 3. Then,
the feasibility of Algorithm 1 and the convergence of the
multi-agent system are guaranteed from Corollary 1 and
Theorem 5. In this setting, we simulated the maximum
hands-off distributed bearing-based formation control.

Figure 2 shows the simulation result on the maximum
hands-off distributed control u1 , [u11, u12, u13]

⊤ and
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the corresponding state trajectory. We can confirm that the
obtained control satisfies a magnitude constraint and is suffi-
ciently sparse. Indeed, the L0 cost of u1 is only 0.633 on the
interval [0, 300]. We can also see that the obtained distributed
control guides the system to a target formation, and the final
configuration is calculated as q∗ in (8) from Theorem 5.
For comparison, we also simulated the distributed bearing-
based control proposed in [12]. The left of Fig. 3 shows the
control v1 on the interval [0, 5] for agent 1. As we can see, the
control takes values larger than 1 or smaller than −1. This is
because the magnitude constraint was not considered in the
formulation in [12]. In addition, the distributed bearing-based
control w1[k] for the corresponding discrete-time system is
shown in the right of Fig. 3. Since the sparsity of w1 is not
taken into account, the control w1 is not sparse compared to
the control u1.

0 50 100 150 200 250 300
time [sec]

-1

-0.5

0

0.5

1
u11

u12

u13

Fig. 2. Control input u1(t) (left) and the corresponding trajectory (right).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [sec]
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1

1.5

2
v11

v12

v13

0 10 20 30 40 50 60 70 80 90 100
time step k

-0.1

-0.05

0

0.05

0.1
w11

w12

w13

Fig. 3. Control inputs v1(t) (left) and w1[k] (right).

VII. CONCLUSIONS
This paper has considered a hands-off distributed con-

trol that achieves a bearing-constraint formation based on
sampled-state observation. The proposed method uses an
associated discrete-time multi-agent system as a trajectory
planner, which suggests the target state on each sampling
interval of each agent in a continuous-time system of interest.
Then, we have analyzed the planner and have shown the
convergence. Based on the results, we have shown the
feasibility of the proposed algorithm and the convergence
of the continuous-time system.
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