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This work presents a new approach for a coverage problem for large areas and
a limited number of sensors. We consider the problem where there are not enough
sensors to provide complete coverage of the designated area at once, and therefore
the sensors should coordinate their coverage in a sequential manner. Furthermore,
we require that at each stage of coverage, a sub-region in the area is constantly mon-
itored. Our solution approach is a combination of two algorithms: the first is Lloyd’s
algorithm, which is well known and used in this field, and the second one is a modified
Lloyd’s algorithm that we term the projected Lloyd’s Algorithm. Lastly, we combine
Lloyd’s algorithm (and its projected version) with a distance based formation con-
troller. We demonstrate our results with numerical simulations.

I Introduction

The mission of monitoring some range (for example, an area) using sensors is widely spread
in various fields - it can be used for photographing a large area, receiving or sending electro-
magnetic signals, tracking targets, or even for designing an algorithm for a robotic vacuum
cleaner [1–3]. This research area is known in the scientific community as the coverage con-
trol problem [4]. Sensor coverage can be generally described as the reflection of how well a
given range is monitored by sensors. This field is well explored in the scientific community,
especially in the recent years when the fields of distributed algorithms and cooperative systems
were developed.

A concept that repeats in many works is finding a set of trajectories (at least one route for
every sensor), allowing the mobile sensors to achieve the required coverage goal. For example,
when trying to cover an area using two mobile sensors, the algorithm will define a trajectory for
each sensor such that the whole area will be covered [5,6]. Another idea that appears in most of
the relevant literature is the use of Voronoi diagrams for optimizing the sensor location [6, 7].

When coverage is required for large areas, and specifically when a single sensor cannot
provide full coverage of that area, the idea of using a deployment of mobile sensors is presented
[4, 7]. In [8], the problem is formed using a probabilistic network model and some density
function, to model detections of events. Then, an optimization algorithm is proposed to find the
optimal deployment such that maximum coverage is obtained with minimal communications
cost. In [7], Cortes et al. propose an optimization algorithm for maximal coverage using
Centroidal Voronoi Tessellations (CVT) [9]. To achieve this partitioning, they are utilizing a
continuous gradient controller implementation of the Lloyd’s algorithm [10], an algorithm that
employs a simple iterative method to compute the CVT. The former concept will be utilized
and modified in this paper to achieve new coverage capabilities that will be further described.

In this work, we formulate the coverage problem from another angle. We firstly assume
that the given range can be at most partially covered. However, we also define some sub-range
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that must be at least partially covered at all times (for example, surveillance or home-base
communications constraint). We present an algorithm for partitioning this range into tiles, such
that each tile intersects with this sub-range constraint, and then, utilizing the approach outlined
in [7] to achieve coverage of this tile. To achieve this intersection, we present a new, modified
version of Lloyd’s algorithm - the projected Lloyd’s algorithm. This new algorithm modifies
the original Lloyd’s algorithm and utilizes a specific projection function to achieve partitioning
answering the sub-range constraint. With this method, we can guarantee complete coverage of
the range by sequentially deploying the agents from each tile to tile while ensuring that these
tiles all have a non-empty intersection with the sub-range of interest.

However, there are some cases where maintaining spatial properties are also as important
as keeping the required range covered. One example is when the communications between the
sensors are limited to some range. Another example is when the spatial shape is critical for
the mission, as in geolocation missions. There are several solutions for this problem, known
generally as the formation control problem [11]. In this work, we will present a method to
combine a deployment algorithm with a distance based formation controller. Both controllers
are gradient-based controllers, therefore the combination strategy will be adding one to each
other. The combination is done using some coefficient, and its value determines weather the
results are nearing optimal deployment or optimal formation. That said, we will not provide a
condition for full coverage when this combination is in use.

The organization of this paper is as follows. Following this chapter, the problem will be
formally defined. Then, mathematical background on the main concepts of this paper will be
given, followed by the solution algorithms and control strategies. Finally, numerical simula-
tions will be shown to validate our approach.

II Problem Formulation

Let us consider an area A ⊂ R2 that we aim to cover with n ∈ N mobile sensors. Those
sensors are defined by the set S = {s1, . . . , sn} located at positions P (t) = {pi(t) ∈ R2 | i =
1, . . . , n}. The n mobile sensors have integrator dynamics, i.e., ṗi(t) = ui(t), and each sensor
can cover a region described by the abstract set Ci

(
pi(t)

)
⊂ R2, as can be seen in Figure 1.

Figure 1: A sensor and its coverage region.

A configuration c of the mobile sensors at time t is the stack of the sensor positions at time
t,

c (t) =
[
pT1 (t) · · · pTn (t)

]T
∈ R2n. (1)
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Thus the coverage of a configuration is given by

D
(
c (t)

)
= ∪Ci(pi(t)).

We also emphasize in this work that we assume it is not possible to cover the entire area A
using a single configuration.

Assumption 1. For any configuration c(t), the coverage satisfies D
(
c (t)

)
⊂ A.

We also introduce in this work a designated sub-area of the area A that must remain under
constant coverage. In this direction, let us consider a sub-area ofA, Am ⊂ A. The areaAm can
represent a ground station communication constraint, a surveillance constraint etc., that means
that Am must be partially covered at all times.

Figure 2: Two configurations built from the same sensors set.

In Figure 2, we can see how a given configuration can cover some area in different ways.
However, due to Assumption 1 we know that it isn’t possible using a single configuration.
Therefore, we shall partition the area, as can be seen in Figure 3.

Definition 1. A partition of A ∈ R2, PR(A) is a finite set built from n subsets pri ⊂ R2, i =
1, . . . , n such that:

• pri ∩ prj = ∅ ∀i 6= j.

• ∪pri = A.

Figure 3: An example of a partition of some area.

This work aims to find a partition PR(A) such that each of it’s subsets pri intersects with
Am, and that each pri is eventually covered during the deployment.

Problem 1. (a) Find a partition PR(A) such that each of the subsets pri ∈ PR(A) satisfy
pri ∩ Am 6= ∅;
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(b) Find a deployment controller for each sensor, such that

pri ⊆ lim
t→∞

D(c(t)), for i = 1, . . . , n.

In the following section, the basic mathematical concepts used in this work will be intro-
duced, following by a solution for Problem 1.

III Voronoi Diagrams and Distributed Coverage Algorithms

In this chapter we will introduce two main concepts that were used in this work. The first
is that of Voronoi diagrams, and the later Lloyd’s algorithm.

III.A Voronoi Diagrams

The basic mathematical concept that we employ in this work is the Voronoi Diagram (also
known as Voronoi partition or Voronoi tessellation). While being a method to partition an area
with some cost function, it is a widely used in the optimal coverage problem [6, 7, 9].

The Voronoi Diagram of a region Ω ⊂ R2 is the set of partitions V = {V1, . . . , Vn} gener-
ated by the generators Z = {z1, . . . , zn | zi ∈ Ω}, such that

Vi = {q ∈ Ω |‖q − zi‖ ≤
∥∥q − zj∥∥∀zi, zj ∈ Z}, (2)

and ∪iVi = Ω, where ‖·‖ denotes the Euclidean distance. A more intuitive and non-formal
definition of the Voronoi Diagram is as follows. If we take some area and place points pi in it,
then each partition is the set of all points that are closer to pi than pj , when j 6= i. An example
is the problem where there are post offices in some city, and it is needed to decide which house
will be served by which specific post office. Using Voronoi partitioning, we can determine
which houses are the nearest to each office and therefore conclude which houses each branch
will serve. A visual example can be seen in Figure 4(a).

One can also define a density function, ρi, for each Voronoi partition Vi. Then, we can
define the center of mass for each partition as,

z∗i =

∫
Vi
yρ(y)dy∫

Vi
ρ(y)dy

. (3)

If a generator zi = z∗i ∀Vi, we call this partitioning a centroidal Voronoi tessellation (CVT).
Such tessellations are useful in terms of location optimization [5, 7, 9]. A centroidal Voronoi
tessellation illustration can be seen in Figure 4(b).

While Voroni diagrams are useful for partitioning some existing range, CVT is a technique
used for (but not only) for planning in an optimal way. If in the Voronoi diagram explanation,
it was used to plan the delivery areas for each office, we will use the CVT to find where are the
optimal locations to place the post offices.

As can be seen in (2), the calculation of each Voronoi cell for some agent depends on the
other agents positions. Therefore, any sort of calculation requires sharing information. This
can be done in a centralized approach (as it was done for this research), but there exists also
decentralized calculations, for example [12]. Using decentralized calculation, each agent only
requires information from their neighbours (or any limited amount of agents). This allows
calculating huge networks, in dynamic situations where the agents’ network can be changed in
real time.
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(a) Voronoi Diagram. (b) Centroidal Voronoi Tessellations. The points
represent the center of mass, calculated using the
density function ρ = 1.

Figure 4: Illustration of Voronoi Diagram and a CVT, both from the same initial conditions

III.B Lloyd’s Algorithm

As mentioned above, the CVT’s are very useful for locational optimization. However, calcu-
lating the CVT might be a complicated task. Lloyd proposed a very simple way of calculating
the CVT [10], presented in Alogirthm 1.

Algorithm 1 Lloyd’s Algorithm
1: Calculate the Voronoi diagram for the current agents positions.
2: Calculate the center of mass for every cell.
3: Move the agents to the center of mass.
4: Repeat until converge.

Cortes et al. [7] proposed a control algorithm based on Lloyd’s algorithm. Let us define a
polygonW ⊂ R2. The basic deployment problem is finding a position p ∈ R2 to maximize the
coverage of the polygonW . According to [7], minimizing the function

H(p,W) =

∫
W
‖p− q‖2 dq (4)

will yield the requested result.
The functionH(p,W) measures the distance between a point p to any point q ∈ W . In [7],

this problem was expanded to the case of n points, such that each point pi represent the i’th
sensor position, and we are looking for the best partition (W1, . . . ,Wn) such that the coverage
is maximized. Now, the total cost function will be:

H(P,W) =
n∑

i=1

∫
W
‖pi − q‖2 dq. (5)

The solution of this problem is the voronoi partition V = (V1, . . . , Vn).
The main challenge now is finding the points that maximize (5). According to [7], when

using Voronoi partitioning, (5) can be expressed as:

H(P,V) = HV(P ) =

∫
Ω

min
i∈(1,...,n)

‖pi − q‖2 φ(q)dq, (6)
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where φ(q) represents a measure of information or probability that some event take place over
Ω. For the rest of the problem, and for the sake of simplicity, we assume that φ(q) = ρ(q) = 1.

It is possible to define the mass MVi
and the center of mass CVi

of the i’th Voronoi region:

MVi
=

∫
Vi

ρ(q)dq,

CVi
=

1

MVi

∫
Vi

qρ(q)dq.

Cortes et al. [7] showed that at least one of the solutions for the optimization of (6) is the CVT:

CVi
= arg min

pi
HV(p). (7)

Assuming that a sensor has integrator dynamics, i.e., for each sensor, ṗi = ui, [7] shows a
way to implement Lloyd’s algorithm as,

ui = −kprop
(
pi − CVi

)
, (8)

where kprop is a positive constant. Note that the dynamics in (8), which minimizing (4), is
a gradient dynamical system, and Cortes et al. [7] proved that the controller (8) is locally
asymptotically stable.

IV Proposed Solution

In this chapter, Problem 1 will be addressed. First, we will propose an algorithm to address
the special partition requirements, and then a solution for the whole problem will be shown.

IV.A Projected Lloyd’s Algorithm

In this section, a solution for Problem 1(a) under Assumption 1 will be given. Recall that in
Problem 1(a) it is required that for the partition of A, that pri ∩ Am 6= ∅ is satisfied. To show
the solution, we will first define a projection onto the area Am.

Definition 2. Consider a set Am ⊂ R2 and a point x ∈ R2. The projection of x onto Am is
given by

PROJAm(x) = arg min
y∈Am

‖x− y‖2 .

Applying the projection operator in conjunction with Lloyd’s algorithm yields the Projected
Lloyd’s Algorithm (PLA), given in Algorithm 2. This combination allows solving Problem 1(a),
and it is this work’s main contribution.

Algorithm 2 Projected Lloyd’s Algorithm
1: Calculate the Voronoi diagram for the current agents positions.
2: Calculate the center of mass for every cell.
3: Project the center of mass of every cell to the area constraint limiting polygon.
4: Move the agents the projected center of mass.
5: Repeat until converge.
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(a) CVT calculated using Lloyd’s algorithm (b) PLA solution

Figure 5: CVT and PLA solutions for initial conditions. The black box represents Am.

As one can see, two more steps were added to the original Lloyd’s algorithm - where we
project the cell center of mass to the polygon that defines the area constraint (steps number
3-4), and then moving the agents to those points. Those step allows us to ensure that at least
one agent will be on the limiting polygon, thus we will have coverage within the constraint.

In Figure 5, the PLA results can be clearly seen. For the same initial condition, Figure 5(a),
it can be clearly seen that only 3 (out of 10 tiles) intersects with Am. In Figure 5(b), the PLA
algorithm was activated and all tiles intersect with Am.

This algorithm can be also formed in a continuous time form, based on (1),

ui = −kprop
(
pi − PROJAm

(
CVi

))
. (9)

This continuous time controller, which is a modification of the controller proposed in [7], is
always converging into a solution where each tile intersects with Am.

In [7], it was proven that the controller (8) converges asymptotically to a set of critical
points. It was done using (6) as a Lyapunov candidate function, and then, using La’Salle’s
invariance principal, it was shown that the sensors converged into CVi

. We employ this same
idea to show the convergence of the projected Lloyd’s algorithm.

Theorem 1. The controller proposed in (9) is locally asymptotically stable.

Proof. Let us define a Voronoi partition moment of inertia:

JV,p =

∫
V

‖q − p‖2 ρ(q)dq. (10)

In [7] it was shown that:

HV(P ) =
n∑

i=1

JVi,CVi
+

n∑
i=1

MVi

∥∥pi − CVi

∥∥2

∂HV
∂pi

= 2MVi

(
pi − CVi

)
.

Let us define Ψ(Cv, Am) = PROJAm

(
CVi

)
. We must notice that CVi

is calculated in advance
for each iteration, and therefore it is known.
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Let us propose a candidate Lyapunov function:

HP(P ) =
n∑

i=1

JVi,CVi
+

n∑
i=1

MVi

∥∥pi −Ψ(Cv, Am)
∥∥2
, (11)

it follows that [7]:
∂HP
∂pi

= 2MVi

(
pi −Ψ(Cv, Am)

)
. (12)

According to Lyapunov direct method, to prove asymptotic stability, one must show that

(1) HP(0) = 0,

(2) HP(ζ) > 0⇔ ζ 6= 0,

(3) ḢP(ζ) < 0⇔ ζ 6= 0.

Conditions 1,2 are direct from the definition of ḢP(P ). As for condition 3, it is possible to
see [7]:

∂HP
∂pi

= −2kprop

n∑
i=1

MVi

∥∥pi −Ψ(Cv, Am)
∥∥2
< 0.

Note that both the PLA and Lloyd’s algorithm converge to some local minima of the cost
function. Lloyd’s algorithm will converge to the CVT, but the PLA converges to some other
tessellation determined by the projection onto the designated area Am.

IV.B Full Problem Solution Algorithm

The PLA is answering the question of how to partition such that pri ∩ Am 6= ∅. The second
part of the problem, which requires a deployment controller, was answered in [7]. It is possible
to utilized their solution, proposing a solution algorithm for Problem 1.

Algorithm 3 Problem 1 Solution Algorithm
1: Using some random initial guess, calculate the PLA for the whole area.
2: For each partition (assuming that the agents can actually cover each partition with their

coverage radius), calculate the CVT. The initial positions for the CVT calculation is the
previous partition CVT.

The above centralized algorithm propose a simple method to solve Problem 1. Starting
by partitioning the area while maintaining pri ∩ Am 6= ∅, and then calculating the optimal
deployment for each partition. Assuming that the sensors can cover each partition using this
deployment, the problem is solved. We must notice that in stage 1, the number of the tiles of
the PLA solution is decided by the user (and does not take into account D(c(t))). Therefore,
for the assumption in step 2 to hold, the user should wisely select the number of tiles, such that
the agents can provide full coverage to each tile using the optimal deployment calculated in
step 2.
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IV.C Results

In this sub-section, we will show results for Problem 1, using Algorithm 3. In the following
simulations, the initial conditions were identical.

Figure 6: Results without PLA. The box represents Am.

In Figure 6, we can see a simulation for 3 agents. The area is partitioned into 3 tiles using
Lloyd’s algorithm (that is CVT), and each tile is covered using the algorithm proposed in [7].
The agents moved between the tiles in arbitrary order, and one can notice that only in the last
step there was coverage of Am.

Figure 7: Results with PLA. The box represents Am.

In Figure 7, we perform another simulation with 3 agents. The area is partitioned into 3
tiles using Projected Lloyd’s algorithm, and each tile is covered using the algorithm proposed
in [7]. The agents moved between the tiles in arbitrary order, and each tile has some partial
coverage of Am, as expected by the algorithm.

V Combining Lloyd’s Algorithm and Distance-Based Formation
Control

Sometimes the agents topology should be constrained. For example, if the agent mission
is search and rescue using geolocation calculation of emitters, then the spatial structure of
the formation plays a major role in the system performance. We refer to this problem as the
formation control problem [11]. In this chapter, the Distance-based formation control will be
combined with a deployment controller.
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V.A Distance-Based Formation Control

In this section, a short mathematical background will be given, following by this work contri-
bution.

V.A.1 Mathematical Background

A graph G = (V, E) is a pair of two finite sets - the vertices (nodes) set V (|V | = n), and
edges E ⊆ V ×V . Each vertex can represent a mathematical or physical entity, for example - a
sensor. Each edge represents some relation between two entities, for example - communication
connectivity or congruent sensing range. Given a configuration as defined in (1), we can define
the connectivity graph [13]. A pair {G, c} mapping between a graph G = (V, E) and a con-
figuration c is called a framework. In [14], the properties of frameworks are defined, and the
most important definition for this work is given - a minimally infinitesimally rigid framework
(MIR). In [13] the formal definitions are given. In brief, a framework is rigid if every motion
creates a new framework that maintains the connectivity graph G unchanged (in both terms
of connections and distance between graph nodes). A minimally rigid framework is a rigid
framework such that the removal of any edge in G will result in a non-rigid framework. An
infinitesimally rigid framework is a framework that maintains its rigidity for each infinitesimal
movement of the framework nodes. A framework is minimially infinitesimally rigid (MIR) if it
is infinitesimally rigid and minimally rigid.

A useful mathematical tool in this regard is the rigidity matrix (complete definition can be
found on [15]). For this work, it will be marked as R(c) ∈ R|E|×2|V|. For example, a framework
is infinitesimally rigid if and only if rk [R] = 2|V|−3 = |E| [16]. As a result, MIR frameworks
have full row rank.

Rigidity theory has emerged as the proper tool for solving distributed formation control
problems. It provides a theory for both defining shapes based on inter-agent distances, and
deriving distributed control laws that can be used to attain these shapes. This is discussed in
the sequel.

V.A.2 Distance-Based Formation Controller

Let us define a framework {G, c}. The graph G = (V , E) is a connectivity graph, and we also
define the vectorD =

[
d1, . . . , d|E|

]T as the required length of each edge of the graph, while the
actual length is given by

∥∥pi − pj∥∥ =‖ek‖ , ek = (vi, vj) ∈ E . We can now define a formation
potential of a framework:

F (P ) =
1

4

ε∑
k=1

(
‖ek‖2 − d2

k

)2

=
1

4

ε∑
k=1

σ(pi)
2
k =

1

4
σ(P )Tσ(P ), (13)

where P is the positions vector of the agents in a configuration c, and σ(P ) = [σ1, . . . σE ] , σpi =∥∥e2
i − d2

i

∥∥. A proposed controller is a gradient-dynamics based controller [15, 17]:

ṗ = −∇F (p) = −R(p)TR(p)p−R(p)TD2, (14)

whereD2 =
[
d2

1, . . . , d
2
|E|

]T
. The controller can be also defined for each individual agent. If dij

is the required distance between agents i, j (that is the required distance assigned to the edge
ek = {vi, vj}), then

ṗi = −
∑
i∼j

(∥∥pi − pj∥∥2 − d2
ij

) (
pi − pj

)
. (15)
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Being a gradient dynamical system, it can be shown that this controller is locally asymptotically
stable if it has full row rank (that is, the framework is MIR) [15, 17].

V.B Combining Distance-Based Formation Control and Lloyd’s Algorithm

In this section, a combined deployment and formation controller will be shown. As both (8)
and (14) are locally asymptotically stable gradient descent controllers, it might be possible to
combine them. Let us define a coefficient 0 ≤ α ≤ 1. The proposed controller for each agent
is then

ui = ṗi = α
(
−kp

(
pi − CVi

))
+ (1− α)

−∑
i∼j

(∥∥pi − pj∥∥2 − d2
ij

) (
pi − pj

) . (16)

There are few interesting results regarding this controller.

Proposition 1. Let us assume that there exists a Central Voronoi Tessellation (CVT), with
CVi

such that ∀i 6= j,
∥∥CVi

− CVj

∥∥2
= d2

ij (that is CVi
satisfy the formation controller con-

straint). Then, there exists an equilibrium such that Pe = CV (where Pei = CVi
and CV =

[CV1 , . . . , CVn ]), which is locally asymptotically stable with (16) dynamics.

Proof. First of all, let us show that Pe = CV is an equilibrium point of (16). Indeed, by
assumption, we have ∀i 6= j,

∥∥CVi
− CVj

∥∥2
= d2

ij , so
∥∥pei − pej∥∥2

=
∥∥CVi

− CVj

∥∥2
= d2

ij ,
showing Pe = CV is an equilibrium point.

Now we are ready to prove that this equilibrium is stable. Let us choose a candidate Lya-
punov function for the combined controller, which is a combination of the Lyapunov functions
for each controller [7]:

Vc (P ) = α

 n∑
i=1

∫
Vi

min
i∈{1,...,n}

‖q − pi‖2 φ(q)dq

+ (1− α)

[
1

4
σ(Pe)

Tσ(Pe)

]
, (17)

where JVi,CVi
,MVi

are as defined in [7]. Since the equilibrium is Pe = CV , we will change the
variables, so ζ = Pe − CV , hence:

Vc (ζ) = α

 n∑
i=1

∫
Vi

min
i∈{1,...,n}

∥∥q − ζi − CVi

∥∥2
φ(q)dq

+ (1− α)

[
1

4
σT (ζ + CVi

)σ(ζ + CVi
)

]
.

(18)
According to Lyapunov direct method, to prove asymptotical stability, one have to show:

(1) VC(0) = 0,

(2) VC(ζ) > 0⇔ ζ 6= 0,

(3) V̇C(ζ) < 0.

For condition (1) [7],

VC(0) = α

 n∑
i=1

∫
Vi

min
i∈{1,...,n}

∥∥q − CVi

∥∥2
φ(q)dq

+ (1− α)

[
1

4
σT (CVi

)σ(CVi
)

]
.

ThL1T4.2

1018



While it is obvious that σ(CVi
) = 0, we have to look into the first term of the Lyapunov

function. It is obvious that there is a minimum at CV , therefore the integral gets him minimal
value over there. Moreover, since the function we are minimizing is for the form f(x) = x2,
the minimum is 0. Therefore, condition (1) applies.

For condition (2), it’s obvious that both terms are strictly positive for ζ 6= 0. For condition
(3), the combined derivative of the combined Lyapunov function is [7]:

V̇C(ζ) = α

−2kp

n∑
i=1

MVi

∥∥pei − CVi

∥∥2

+(1−α)
[
−σ(Pe)

TR(Pe)R
T (Pe)σ(Pe)

]
≤ 0. (19)

As we can see, this term is smaller or equal to zero. Therefore, using Lyapunov method,
this system is stable, however not asymptotically stable. That said, we can notice that the set
S = {P = CV } doesn’t contain any trajectory apart from the trivial trajectory (when ζ = 0),
therefore by LaSalle principal, the system is locally asymptotically stable.

Theorem 2. The dynamic system described by the controller (16) asymptotically converges to a
critical point of the function G(p) = αHV(p) + (1−α)F (p), where F (p) is the distance-based
formation controller (14) potential, and HV(p) is the Voronoi-based deployment controller (8)
potential function [7].

Proof. Both the formation control and the deployment controller can be expressed as a gradient
dynamics system. It is known that gradient flows converge to the critical points of the potential
function.

Remark 1. As the combination of controllers provide some interesting results, it is very impor-
tant to remember that it doesn’t necessarily solves Problem 1. The reason is that the formation
is changing the deployment, thus the condition for full area coverage might be broken. This
work does not provide a condition where the formation control holds and Problem 1 is fully
solved.

V.B.1 Combining Distance-Based Formation Control and PLA

As (9) is also a locally asymptotically stable gradient system, it can also be combined with
(14), to achieve some spatial properties while maintaining coverage of Am. Using a coefficient
0 ≤ α ≤ 1, the combined controller:

ui = ṗi = α

(
−kp

(
pi − PROJAm

(
CVi

)))
+ (1− α)

−∑
i∼j

(∥∥pi − pj∥∥2 − d2
ij

) (
pi − pj

) .
(20)

Theorem 3. The dynamic system described by the controller (20) asymptotically converges to a
critical point of the function G(p) = αHP(p) + (1−α)F (p), where F (p) is the distance-based
formation controller (14) potential, andHP(p) is the same as (11.

Proof. Both the formation control and PLA can be expressed as a gradient dynamics system.
It is known that gradient flows converge to the critical points of the potential function.
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V.C Simulations

Figure 8: Results of the combination of Lloyd’s algorithm and distance-based formation con-
troller. The black box represents Am.

In Figure 8, we can see a simulation for 3 agents where a triangular formation was defined
(d12 = d13 = 1, d23 = 2), and combined with Lloyd’s algorithm, with α = 0.5. Comparing to
Figure 6, which can be seen as the same simulation where α = 1, it is clear that the agents are
having a more triangular shape.

Figure 9: Results of the combination of PLA and distance-based formation controller. The
black box represents Am.

In Figure 9, we can see a simulation for 3 agents where a triangular formation was defined
(d12 = d13 = 1, d23 = 2), and this time combined with PLA, with α = 0.5. Comparing to
Figure 7, and similar to Figure 8, it is clear that the agents are having a more triangular shape.

VI Concluding Remarks

The deployment problem under different constraints is a well known and researched prob-
lem. This work provides a new approach for partial coverage problem. When some sub-range
should be covered constantly, this work presents a sequential coverage strategy, jumping be-
tween tiles. The Projected Lloyd’s Algorithm, presented in this work, guarantees at least partial
coverage of this sub range. Another contribution of this work is the combination of Lloyd’s al-
gorithm with a distance-based formation controller to achieve some spatial properties.

As the PLA is calculated in a centralized way, future work might include decentralizing its
calculation. Future work might also include a condition for formation and deployment solution
while maintaining some deployment and/or formation properties, as well as combining other
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types of formation controllers. Decentralizing the PLA, together with finding this condition,
can lead to some interesting results for autonomous, dynamically changed swarms.
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