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Hierarchical Clustering of Dynamical Networks
Using a Saddle-Point Analysis

Mathias Bürger, Daniel Zelazo, and Frank Allgöwer

Abstract—This paper studies cluster synchronization in dynam-
ical networks. A class of cooperative dynamical networks that ex-
hibit clustering in their asymptotic behavior is analyzed. The net-
work nodes are equipped with heterogeneous dynamics and in-
teract with a nonlinear and saturated interaction rule. It is proven
that cluster synchronization appears asymptotically independent
of the initial conditions. The clustering behavior of the dynamic
network is shown to correspond to the solution of a static saddle-
point problem, enabling a precise characterization of the clustering
structure. We show how the clustering structure depends on the
relation between the underlying graph, the node dynamics, and
the saturation level of the interactions. This interpretation leads
to deeper combinatorial insights related to clustering, including a
generalization of classical network partitioning problems such as
the inhibiting bisection problem, the min -cut problem, and
hierarchical clustering analysis. The theoretical results are applied
for the analysis of a test-case network, inspired by the IEEE 30-bus
system.

Index Terms—Cluster synchronization, dynamical networks,
saddle-point optimization.

I. INTRODUCTION

C LUSTERING, or cluster synchronization, is the phenom-
enon that in a network of dynamical systems, the net-

work partitions into several groups and all systems within the
same group agree upon a common state. Observed across di-
verse fields ranging from the brain sciences [1] to social net-
works [2], clustering has recently received significant attention
[3].
In engineering systems, clustering may represent desirable

or undesirable behaviors. The importance of clustering in en-
gineering is most readily understood by the related problem of
synchronization, where each agent in the network should agree
upon a common value. For example, the synchronization of
power networks is crucial for its stability, while frequency clus-
tering in the network can lead to catastrophic failures. Conse-
quently, for the design and the control of dynamical networks,
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it is imperative to develop analytic tools for understanding the
mechanisms leading to this behavior.
For agreement and synchronization, an advanced control

theory has been recently developed [4], including a variety of
novel stability-analysis techniques ranging from passivity [5] to
contraction analysis [6]. In contrast, the mechanisms leading to
clustering are still not fully understood, and a control-theoretic
approach to this phenomena is only beginning to emerge. For
example, [7] and [8] consider how networks can be forced to
cluster according to predefined structures using pinning control
or adaptive interaction weights. The authors of [9] study dif-
ferent mechanisms leading to clustering in diffusively coupled
networks, including structured dynamics, delays, and nega-
tive couplings. Some other models are proposed that exhibit
clustering inherently by their dynamical properties without
having the clustering structure specified a priori. One of the
most celebrated clustering models is the “bounded confidence
opinion dynamics” model [10], where clustering is caused by
a state-dependent communication graph. Although the model
itself is fairly simple, no theory currently exists that allows one
to predict the resulting clustering structure. In [11] and [12],
a clustering model is presented where the partitioning of the
network is caused by different driving forces applied to the
agents along with saturated interaction rules. The development
of the aforementioned models is driven by an increasing interest
in understanding the mechanisms leading to clustering.
Despite these advances, explaining how this behavior is

related to the topological structure of the underlying graph
remains an open problem. Problems such as these, known
as (static) community detection problems in graphs [13], are
only partially explained using the current models. In several
applications it is, for example, of interest to detect which parts
of the network are strongly connected (with respect to the
dynamic behavior) and which connections are critical, in the
sense that the network is likely to partition along them. Such an
analysis is particularly difficult if the number of partitions is not
specified. This motivates the search for hierarchical clustering
structures in dynamical networks.
This paper aims to address aspects of the aforementioned

open problems.We consider a general class of complex dynamic
networks that exhibit clustering in their steady-state behavior.
The distinguishing features in the model we adopt are: 1) the
uncoupled node dynamics have distinct equilibria and 2) the
interaction rules between neighboring agents are bounded. We
show that the network synchronizes for sufficiently large satu-
ration bounds, but partitions into clusters otherwise. To analyze
the clustering structure precisely, we connect the asymptotic be-
havior of the dynamic network model to a specific convex static
saddle-point optimization problem.We show that the solution of
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the saddle-point problem, corresponding to the Lagrange-dual
of a network optimization problem with additional constraints
on the dual variables, exhibits a clustered structure. This re-
sult allows us to exactly predict the clustering structure using
computationally efficient methods. We show then that the clus-
tering structure of the network is related to optimal graph par-
titioning: it maximizes the ratio of the “power imbalance” be-
tween the partitions over the number of edges connecting them.
This result establishes a direct connection between dynamical
clustering and graph partitioning. We show how our setup con-
nects to the inhibiting bisection problem, used in the literature
for power network analysis [14]. Furthermore, for a particular
choice of node dynamics, the clustering structure of our method
solves the min -cut problem [15]. Finally, we illustrate our
theoretical results on a test case example (i.e., the IEEE 30-bus
power system). We use the saddle-point problem to analyze the
hierarchical clustering structure of this network and perform dy-
namic simulations of our system model defined on the given
graph structure.
The remainder of the paper is organized as follows. In

Section II, some graph-theoretic results are reviewed and the
notion of clustering and hierarchical clustering, as used in
this paper, is defined. The dynamical network is presented in
Section III. Following this, the static saddle-point problem is
presented and analyzed in Section IV. The connection between
the dynamical network and the static saddle-point problem is
established in Section V. In Section VI, we discuss how the
clustering structure of the dynamical network is connected
to optimal graph partitioning and we relate our result to the
inhibiting bisection problem and the min -cut. The theory
is applied to a test-case network in Section VII and concluding
remarks are given in Section VIII.
Notation: The set of real numbers is denoted by . We write
for all non-negative real numbers. For a vector ,

its transpose is given by and the th component by . The
th element of amatrix is denoted by . The inner product

of two vectors is denoted as , and the standard
Euclidean norm is . We also sometimes use
the infinity norm and the 1-norm

. The null space and range space of a matrix
is denoted as and , respectively. The boundary of a
set is denoted as and the interior by . The vector
is the vector of all ones with length . We omit the subscript if
the dimension of the vector is unambiguous from the context.

II. PRELIMINARIES

Throughout this paper, we consider systems defined over
undirected graphs [16]. A graph consists of
a set of nodes and a set of edges

, describing the incidence relation between
pairs of nodes. For the formulation of the results, it is, however,
convenient to introduce an arbitrary orientation on the edges.
The notation denotes that node is connected (or
adjacent) to node . Equivalently, is the
directed edge connecting and . A simple path is a sequence
of distinct nodes so that consecutive nodes are adjacent to each
other in the undirected graph, and each node is used once. A

simple cycle in a graph is a path where the initial and terminal
nodes are the same. A graph is connected if a path exists
between any pair of nodes. We also use the convention that an
isolated vertex is a connected graph.
A graph is a subgraph of if and

; equivalently, we write . Subgraphs can be
induced by either a node set or an edge set.1 A disconnected
graph can be expressed as the union of connected subgraphs;
each connected subgraph is referred to as a component of .
Throughout this paper, we follow the convention that boldfaced
capital letters refer to sets, as in , and the script notation for
graphs, as in .
The incidence matrix of the graph with

arbitrary orientation, is a {0, 1} matrix with the rows and
columns indexed by the nodes and edges of so that
has value “ 1” if node is the initial node of edge , “ 1” if it
is the terminal node, and “0” otherwise. This definition implies
that for any graph, . The Laplacian matrix
of the undirected graph is defined as .
At times, we will refer to the flow space (null space) and the
cut space (range space) of the incidence matrix, defined as

and , respectively [16]. The cycles in a
graph provide an important characterization of the flow space.
Definition 2.1: A signed path vector of a connected

graph corresponds to a path so that the th element of takes
the value “ 1” if edge is traversed positively, “ 1” if traversed
negatively, and “0” if the edge is not used in the path.
Theorem 2.2 ([16]): The flow space of a connected

graph is spanned by all of the linearly independent signed path
vectors corresponding to the cycles in .
We now provide some definitions related to graph partitioning

and clustering.
Definition 2.3: A cluster is a connected subgraph of

induced by a node set .
Definition 2.4: A -Partition of the graph is a collection

of node sets with , ,
and for all , so that each subgraph
induced by the node sets is connected.
Each subgraph induced by a -partition is also a cluster.

At times, we will also refer to the -cluster of a graph to mean
the set of subgraphs induced by a -partition. For a connected
graph , the union of all clusters induced by a partition will not
reconstruct the original graph ; that is, .
This is formalized by the definition of a cutset.
Definition 2.5: A cutset of the graph is a set of edges whose

deletion leads to an increase in the number of connected com-
ponents in .
According to this definition, a cutset always induces a -par-

tition . Similarly, any -partition of a graph
will induce a cutset. In this case, the cutset is defined as

.
We denote the set of all possible -partitions that can be

formed in the graph by . Partitions of are sometimes
ordered in a hierarchical manner, with smaller partitions being
contained in the larger partitions.

1For example, the subgraph induced by the node set is
the graph , with .
Similarly, the subgraph induced by the edge set is the graph

, with being the set of all nodes incident to the edges in
.
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Fig. 1. Three simulations of the trajectories with different edge capacities. The network reaches agreement for (a) , (b) partitions into a small number of
clusters for , or (c) separates almost all nodes for .

Definition 2.6: A partition is a successor of
with , denoted by , if can be

formed by merging components from . We write if
is either a successor or exactly identical to .
Throughout this paper, we associate scalar variables with

each node and edge in a graph. For example, each component
of the vector is associated with a node .

Similarly, each component of a vector is associated
with an edge . This can be used to provide an additional
characterization of clusters and partitions of a graph.
Definition 2.7: A cluster is in agreement if

0, for all .
For a vector defined on the nodes of and a sub-

graph , we write to denote the
vector of all components associated with the nodes .
Similarly, for a vector defined on the edges of , the
vector is the vector containing all variables associatedwith
an edge of the graph . Using this notation, we can express the
values of a cluster in agreement as , where is
the cluster value.

III. DYNAMICAL NETWORK MODEL FOR CLUSTERING

We begin our study of clustering in networked dynamic sys-
tems by first presenting a general class of second-order, diffu-
sively coupled systems. Models of this type are used for var-
ious applications including vehicle platoons [17] and power net-
works [18]. This class of model is also extensively used to study
the phenomena of synchronization in networked systems [5],
[19]. The model is based on a collection of dynamic systems
that interact over an undirected graph according to
the second-order differential equation

(1)
where is the dynamic state of each agent in the ensemble.
A first result of this paper is to show that under certain assump-
tions on the functions and , the model (1) exhibits a
clustering phenomena.
Assumption 3.1: The functions and in (1) satisfy

the following properties:
• , for some and
all (i.e., each is the gradient of a strongly
convex function ).

• for each node , a unique exists for which
and , for all .

• the coupling functions vanish at the origin
, monotonically increase, and are bounded as

and (2)

As the , defined for each edge of the interaction graph
, scales the normalized nonlinearity , we refer to it as the
edge capacity.
The important features distinguishing ourmodel from general

diffusively coupled networks are: 1) each node, if uncoupled
from the network, will converge to a unique equilibrium and 2)
the coupling functions are saturated. We show that these
two properties will cause the dynamical network to cluster and
we provide a novel explanation of the mechanisms leading to
this clustering phenomenon.
As a motivating preview of the clustering behavior exhibited

by the model (1) with Assumption 3.1, Fig. 1 shows the trajec-
tories of a network with 30 nodes. We will discuss these simula-
tions in more detail in Section VII, and introduce them here only
to illustrate the observed clustering behavior. For each of the
three simulations, we use identical capacities for all the edges
in the graph , . The
three simulation scenarios differ only in the choice of the edge
capacities (i.e., ). For a sufficiently large edge
capacity , Fig. 1(a) shows that all nodes reach agreement on
their “velocities” (e.g., they form an exact 1-cluster). When
reducing the edge capacity to , as shown in Fig. 1(b), we
observe that the network forms an exact 3-cluster, comprised of
two large clusters and a single isolated node. For a smaller edge
capacity , the network partitions into a large number of clus-
ters, as shown in Fig. 1(c).
This example suggests that the clustering behavior depends

on three parameters of the system: 1) the interaction graph , 2)
the local functions of each agent, and 3) the edge capacities
. We explain how the relation between these three properties

leads to clustering. The dynamics (1), with Assumption 3.1, is
a model system that explains clustering in diffusively coupled
networks. A similar attempt has been made in [11] and [12],
where first-order dynamics with saturated interactions are used
to study the fundamental principles of clustering.
“Node-Edge” Model Representation: Although the dynam-

ical network (1) is stated in a standard form, it is advantageous
to represent it in an alternative form, which is inspired by [5].
Lemma 3.2: Themodel (1) with Assumption 3.1 is equivalent

to the following second-order model:

(3)
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Fig. 2. Block diagram of the dynamical network model with node dynamics
and edge dynamics .

(4)

where , ,
,

, and the diagonal matrix
.

Proof: Each node in the network is associated with a node
state, i.e., the “velocity” . The node states evolve ac-
cording to

(5)

where represents an external input due to the
coupling effect of neighboring nodes. The relative velocity
of neighboring nodes in the graph can be captured in a
new variable , defined as . Due to
the diffusive coupling in (1), only the relative “position” of
neighboring nodes is of importance. Therefore, we associate
with each edge the edge state that represents
the relative “position,” i.e., . The
evolution of the relative positions and their influence on the
nodes is given by the following dynamical system:

(6)

The output represents the influence of one edge to its in-
cident nodes. The overall influence of (6) on the node dynamics
(5) can be stated with the incidence matrix as

(7)

Combining (5)–(7) yields the closed-loop dynamics given in
Lemma 3.2.
The block structure of the model (3) is illustrated in Fig. 2.

The node-edge representation of the model given in Lemma 3.2,
together with Assumption 3.1, is a key feature that will facilitate
the analysis of the clustering phenomena. This is due to the sur-
prising connection between this model and a static saddle-point
problem. In the sequel, we explore this connection and use it to
identify how the local dynamics of each agent, the underlying
connection graph, and the edge capacities lead to clustering.

IV. SADDLE-POINT PROBLEMS AND STATIC
NETWORK CLUSTERING

The clustering phenomena in networks can be described by a
static optimization problem that is intimately connected to the

dynamical network (3). In particular, we examine the following
static max-min problem, referred to as a saddle-point problem:

(8)

where are decision variables as-
sociated with each node in the graph , and

are variables associated with the edges
in . The objective functions are the integral functions of

appearing in the dynamics (5). We will some-
times abbreviate the notation writing .
Note that the vector here is a static vector while the state vector

of the system (3) is dynamic.
The constraint set , with

is a box constraint. Throughout this paper, except if explicitly
stated otherwise, we assume that and, thus, is a
compact and convex set.
A special instance of the problem (8) occurs when the vari-

ables are unconstrained, corresponding to . In this
case, (8) corresponds to the Lagrange-dual problem of a net-
work optimization problem of the form

(9)

We denote as the solution to the problem (9), where
are the dual variables of (9) associated with the constraints

0. The optimal primal solution of (9) will always
form a 1-cluster in agreement (i.e., ),
for some . An optimal dual solution can then be obtained
by the first-order optimality condition .
This problem falls under a broad class of network optimization
problems and, consequently, can be solved efficiently using a
variety of methods. (See [20] for example.)
There is a game-theoretic interpretation of the saddle-point

problem. A decision maker in each node aims to minimize
its individual objective function ; simultaneously, another
decision maker, attached to an edge, penalizes any deviation
between the decision variables of its incident nodes. For the
problem (9), the dual variables associated with the constraints
will force the decision makers on the nodes to reach an exact
agreement on their values. However, the saddle-point problem
formulation (8) does not allow the edge decision makers to
arbitrarily penalize the deviation between neighboring agents
(e.g., the penalty variables are restricted to be contained in
the set ). This additional constraint has a strong impact on the
structure of the primal solution .
Saddle Points: Here, we provide some properties of the

saddle points associated with (8).
Definition 4.1: A point is a saddle point of (8) if

for all

We will denote the set of all saddle points in the following text
by .
Lemma 4.2: The set of all saddle points for (8) is nonempty.
Proof: The set is nonempty, convex, and compact. The

function is convex for each fixed , and concave
for each . Furthermore, for some and , the
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level sets are nonempty and compact since each is a strongly
convex function. The statement follows from the Saddle Point
Theorem [21, Prop. 4.7].
Saddle points also admit some first-order optimality condi-

tions. Let be a saddle point, then [22]

and
(10)

Lemma 4.3: Let be a saddle point of (8), then
and .

Proof: We first show the uniqueness of the saddle point in
the -coordinate. Suppose and are saddle points
with . Then, and, furthermore,

. The first-order optimality condi-
tions state that and ,
implying that

On the other hand, due to the strong convexity of , we have

This is a contradiction, proving that and, thus, .
The nonuniqueness of remains to be shown. If is
nontrivial, then for any vector , one has

. Any vector satisfies the saddle-point
and first-order optimality conditions.
The result states that there is a unique vector at which a

saddle point can be attained, whereas can be in a set . How-
ever, the set of all saddle points depends on the structure of the
graph and, in particular, its flow space.
Lemma 4.4: For , the set contains more than one

point if and only if contains at least one cycle.
Proof: From Theorem 2.2, the flow space of is non-

trivial if and only if contains at least one cycle. .
Observe that for , the problem (8) is equivalent

to the Lagrange dual for (9). The additional restrictions on
subsequently change the structure of . Note that there are a
variety of computational methods readily available for saddle-
point problems [23]. Furthermore, the problem proposed in (8)
enables computationally tractable solutions by observing that
themaximization component is over the Lagrange-dual function
of a strictly convex program (9) with a box constraint on the dual
variables.
Network Clustering: Having established the existence and

uniqueness properties of the saddle points for (8), we now show
how these solutions lead to clusters in the graph . First, we
introduce the notion of a saturated edge in the graph.
Definition 4.5: An edge is said to be saturated if for

all , (e.g., ).
Note that, in general, for a particular does not

imply that the edge is saturated. For an edge to be saturated, the
constraint associated with that edge must be active for all pos-
sible saddle points in the set . The following lemma connects
the definition of saturated edges to graph properties.
Lemma 4.6: Any cycle in contains either zero or at least

two saturated edges.
Proof: Assume by contradiction that edge is the only

saturated edge contained in a cycle with a corresponding
signed path vector . Then, and from Theorem 2.2,

. From Lemma 4.3, a exists that is suffi-
ciently small such that and . But
this contradicts the definition of a saturated edge. Therefore,
cannot be saturated. Thus, if a cycle contains a saturated edge,
it must contain at least two saturated edges.
We now show that if the set contains saturated edges, then

there is a corresponding cutset for the graph comprised of those
edges.
Lemma 4.7: The set of saturated edges in forms a cutset

for the graph.
Proof: First, assume that an edge in the graph is satu-

rated and is not contained in any cycle in . Then,
and its deletion from the graph must result in an increase in the
number of components, thus forming a cutset. Now assume that
a saturated edge is contained in one or more cycles. Then,
by Lemma 4.6, any cycle contains at least one other saturated
edge. The deletion of two or more edges from a cycle results in
an increase in the number of components in the graph and, thus,
each saturated edge in a cycle is included in a cutset.
Lemma 4.7 makes a strong connection between the saddle

points of (8), saturated edges, and cutsets. We are now able to
state the main result of this section, relating clustering to saddle
points.
Theorem 4.8 (Saddle-Point Clustering): Let be

the saddle points of (8), and let be the set of saturated
edges. Then, induces a -partition and
each cluster induced by the set is in exact agreement.

Proof: Let be a saddle point with
for all nonsaturated edges. Note that stating cluster is in
agreement and is equivalent to . Assume that
in order to arrive at a contradiction, some exists such
that . Denote as the subgraph induced by
. Function (8) can then be written as

(11)

Since all clusters except are assumed to be in agree-
ment, the second summand of (11) can be written as

. Assume without loss of gen-
erality that only the edge in connects two
nodes that are not in agreement with a positive difference (e.g.,

). Then, exists such that and
. Let be the edge value

after adding to only edge value as described before. Then,
contradicts the assumption that is a

saddle point. Therefore, each cluster must be in agreement.

With this theorem, we can directly draw a conclusion about
the clustering structure of the network. The network will parti-
tion along the saturated edges contained in the saddle points of
(8). Note that Theorem 4.8 can be used to express any saddle
point in the form , for some

. The clusters are the connected components of the
graph after deleting all of the saturated edges.
Analysis of the Network Clustering: We are now prepared to

characterize the network clustering.We first provide a necessary
and sufficient condition for the network to fully synchronize. In
the following equation, denote again as the set
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of saddle points for (8) and as the primal and dual
optimal solution sets to the network optimization problem (9).
Theorem 4.9 (Synchronization Condition): The solution
of the saddle-point problem (8) forms a 1-cluster in agreement

if and only if .
Proof: If , a exists which is also con-

tained in . Since is the optimal dual solution to (9), we know
that the corresponding optimal primal solution is . This
solution satisfies the first-order optimality conditions
for (8) and
. Thus, is also a saddle point of (8) and, therefore,

. Now suppose that . There exists such
that . Since also satisfies the second
condition of optimality for (9), . Thus,

is also a saddle point of (9) and, therefore, . This
shows that and concludes the proof.
The importance of Theorem 4.9 is that it provides a condi-

tion for achieving a 1-cluster for (3) in terms of the solution
of an unconstrained network optimization problem (9). Consid-
ering that there are many efficient algorithms for solving (9),
checking whether the saddle-point problem achieves a 1-cluster
is equivalent to solving the unconstrained problem.
We can now also characterize the agreement values of

the clusters. Assume that the network forms a -cluster
. We have already shown that . For

notational simplicity, define and
. The notation is introduced to

prepare an alternative representation of the first-order opti-
mality condition (10) in terms of the network partitions. Recall
also that each edge in the cutset that induces the -cluster is
saturated; each component of the vector is either or

.
Consider the incidence matrix induced by the cutset

and note that each row corresponds to a node of the graph. We
can re-sort the rows so that those corresponding to nodes in the
same partition are grouped together, and express the incidence
matrix as . where is a
matrix formed by all rows of the matrix corresponding to
nodes in .
Now we define the vectors

. Note that for all edges in that are not incident to
any nodes in , the corresponding value of is 0. Otherwise,
the corresponding value of is for an edge that is in
the cutset and incident to nodes in .
Lemma 4.10: The agreement value for the cluster is given

by , where is the convex conjugate of
the function .

Proof: We can rewrite the standard conditions of opti-
mality using the cluster notation as

Note that the previous equation can be derived by taking the
sum of all first-order optimality conditions corresponding to the
nodes in the cluster . Considering now that 0 and
that the gradient of the convex conjugate function is the inverse
of the gradient of the function ([24]), the statement follows di-
rectly.
This result highlights that the cluster agreement value de-

pends only on the objective functions of the cluster nodes
and the edge capacities of the edges separating the cluster

from neighboring clusters. It is independent of the distribution
of the dual variables or the edge capacities within a cluster.

V. DYNAMIC NETWORK CLUSTERING AND

SADDLE-POINT PROBLEMS

The results of Section IV provided a rigorous analysis of clus-
tering within the framework of a static optimization problem.
The main purpose of this paper is, however, to explain the clus-
tering behavior observed in the dynamical network (1). A con-
tribution of this work is to show how the static analysis can be
related to the asymptotic behavior of the dynamical network.
The connection between the static saddle-point problem and the
dynamical network can be established considering the network
in the node-edge representation (3). Recall, for the connection
to the original model representation (1) that as well
as .
Theorem 5.1 (Convergence): Let the network (3) be defined

according to Assumption 3.1 and let be the set of
saddle points of problem (8). Then, the trajectories of (3)
and of (6) remain bounded and

Proof: We assume throughout the proof without
loss of generality that the vector corresponds to a
-partition in exact agreement of the network. The set

is invariant under
the dynamics (3) as the following discussion shows. Within the
set, the dynamics (3) satisfy

and, therefore, as a result of Lemma 4.3, . In addition,
for , we have the dynamics (4) as .
Contrary to the dynamics of (3), a saddle point is,
in general, not an equilibrium point for (4), since the vector
corresponds to some -partition, for all edges

connecting nodes within the same partition. Meanwhile, for
edges connecting two nodes, say and , in different
partitions, . Suppose now, without loss
of generality, that . Then, the dynamics (4) are
such that . Since by the first-order
optimality conditions (10) in this situation , for
all , we can conclude the invariance of the desired set.
We now show that the set
is reachable from the dynamics (3). As the nonlinear func-

tions need not attain their limit, the points on the boundary
of can, at best, be approached asymptotically. Note also that
due to the structure of the dynamics (4) the state is con-
strained to be such that for all times. The
following proposition shows that there exists at least one trajec-
tory of that asymptotically approaches a point in .
Proposition 5.2: Sequences and exist

such that and as
.

The proof of the proposition is presented in the Appendix.
The intuition behind the proof is that the nonlinear map is
a homeomorphism, (i.e., is homeomorphic to ) [20].
Let the following be the limit point of a sequence as
considered in Proposition 5.2, i.e., such that implies
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that and let be the convergence point
of .
To show convergence and boundedness of the trajectories of

(3) to this set, we use a storage function which decreases
along the trajectories of (3)

(12)
Clearly, is strictly positive for any .
The second part of (12) vanishes for . To see this, define

and note that
. Also, the gradient of this function vanishes at the point
(i.e., ). One can see
now that the function is positive (semi) definite since
the second derivative is everywhere non-negative

due to the monotonic property of . We
conclude that is a positive semidefinite function and is a
suitable storage function candidate. We consider the directional
derivative of along the trajectories

(13)

We now add zero to obtain

Using the first-order condition of optimality
, we can write this as

Due to strong convexity,
, one obtains

and, thus, .
Note that is a vector with one entry for each edge of
. The entry of this vector is nonzero if and only if
the edge is saturated . Thus, we can write

(14)

with all entries of having the value “ ” or “ .”
It remains to be shown that the right-hand side of (14) is

nonpositive. The entries of the vector
have the same sign as the corresponding entries of the
vector . In particular, if then

for all . Note
that the entries of the vector have the same sign as

. This is a condition of optimality. If ,
the solution cannot be optimal since a simple change in
the sign would increase the value of . Taking these

observations into account, we conclude that each component
for all and conse-

quently

(15)

We conclude with Barbalat’s Lemma that all trajectories
remain bounded converge to the unique saddle point [25]. The
largest invariant set contained in is, in fact,

and all trajectories will
converge to this set.
The previous proof establishes the connection between the

dynamical network (3) and the static saddle-point problem
(8). It seems remarkable that the clustering in the saddle-point
problem was caused by the fact that the Lagrange multipliers
were constrained and could not compensate for the imbalance
between the node objectives. The same mechanism leads to
clustering in the dynamical network (3). The influence of
the -dynamics (4), which is driven by the state deviation of
neighboring nodes, only has a bounded influence on the node
dynamics (3) and can therefore not fully compensate for the
inhomogeneous node dynamics. The connection between (3)
and (8) provides, therefore, a novel interpretation along with a
profound understanding of a mechanism leading to dynamical
clustering.

VI. HIERARCHICAL ANALYSIS AND COMBINATORIAL ASPECTS
OF CLUSTERING

We will in the following exploit the tight connection to the
saddle-point problem to reveal how the clustering structure of
our model is related to an optimal graph partitioning. For the
clarity of the results, we focus the analysis on the particular
situation where all edges in the network have the same capacity
(i.e., , for ). When considering only
identical edges, the edge capacity becomes a single parameter
for the network behavior. We first observe the following result.
Lemma 6.1: For any two scalars , let and

be the partitions induced by the solution of the saddle-point
problem (8) with . Then, it
holds that .

Proof: We first note that . Let denote the set
of saddle-point solutions to (8) computed with . It naturally
holds that . Therefore, any edge that is saturated in

must be saturated in . On the other hand, edges can be
saturated in , which are not saturated in . Thus, can
either be identical to or it must be a successor .
Thus, for identical edges, a variation of the edge capacity un-

covers a hierarchical clustering structure of the dynamical net-
work (3). The complete hierarchical clustering structure can be
detected, for example, by decreasing from a large value to 0
and computing the corresponding saddle-point solutions re-
peatedly. Nodes that are separated only for very small can be
considered to be strongly connected to each other, whereas other
nodes which are separated earlier for large are only loosely
connected. We will return to the idea of hierarchical clustering
later on in Section VII, where we analyze the hierarchical struc-
ture of a power systems network. Let us note first another im-
plication of Lemma 6.1.
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Theorem 6.2 (Minimal Agreement Capacity): A minimal
agreement capacity exists, such that for any edge capacity

, the network (3) reaches agreement and .
Proof: For a given edge capacity , the constraint set for

the saddle-point problem (8) is given by
. Recall that the solution to (8) forms a

1-cluster if and only if . Now for any , we
have the set , which is a
subset of the intersection (i.e., for any

, the elements are contained in the inter-
section). On the other hand, for all , the intersection

. According to Theorem 4.9, is thus the min-
imal agreement capacity.
For the considered setup with identical capacities, the min-

imal agreement capacity can be computed as follows.
Corollary 6.3: Let be the set of dual solutions to the

network optimization problem (9). The minimal agreement ca-
pacity can be computed as

(16)

Recall that the minimal agreement capacity provides the
smallest saturation bounds for the interaction functions in the
dynamics (3) for which the network reaches full agreement on
the node states. Surprisingly, there is a direct connection be-
tween the minimal agreement capacity and weighted partitions
of the graph.
Let us consider a network in agreement with agreement state
and interpret this network as a node-weighted graph, with

weights corresponding to . We consider now the com-
binatorial problem of partitioning the graph into 2-partitions. In
order to compare different partitions, we need to define a mea-
sure which quantifies the quality of partitions.
Definition 6.4: Consider a 2-partition with

the corresponding cutset . Let
and assume

without loss of generality that . The quality of is
defined as

(17)

where denotes the number of edges in the cutset .
Note that due to the optimality property, .

The definition of the partition quality can be understood in
the following way. The quality measures the “imbalance”
between the two clusters over the number of edges connecting
them. A high-quality partition is one where the two partitions
are strongly imbalanced and only connected by a few edges.
The problem of detecting the 2-partition of a network with
maximal quality is a combinatorial problem. However, there is
an intimate connection to the minimal agreement capacity, as
the following duality-like relation shows.
Theorem 6.5 (Combinatorial Equivalence): Let be the set

of all solutions to the network problem (9) and let be the
set of all possible 2-partitions of . Then

Remark 6.6: The previous statement has the flavor of a du-
ality relation. In fact, the dual to in the linear

programming sense is , s.t. .
It is discussed, for example, in [26] that a solution to the latter
problem corresponds to a partition of the graph . Our result,
however, states the relation of the linear program to the combi-
natorial problem more explicitly.

Proof: Before presenting the main idea of the proof,
we need some preliminary discussion. Assume that a par-
tition and the corresponding cutset are
given. For a given solution to the network optimization
problem (9), one directly obtains the vector , which
is defined on the node space. Without loss of generality,
one can apply a permutation, resorting the nodes, and write

, where is a
vector consisting of all entries of which correspond to
nodes in the partition . With only a slight abuse of our con-
ventional notation, we rewrite the incidence matrix of the sub-
graph induced by the cutset as ,
where is formed by all rows corresponding to nodes
in the partition . We now write the first-order optimality
conditions for (9) in the form

(18)
where and are the incidence matrices of the sub-
graphs induced by the partitions and , respectively. Note
that any , which satisfies the first-order condition (18),
is an optimal solution to (9) and is thus in the set .
We aim to derive a condition relating and . To begin,

multiply (18) from the left with the matrix

to obtain the condition

(19)

Let us shortly discuss the properties of the vector .
One can directly see that , with

if edge originates in par-
tition and 1, otherwise. Furthermore, it holds that

. Analogous to this vector,
we define a new vector , which extends

to the complete edge space, representing the cutset
in the following sense: takes the value “ 1” if edge
originates in , “ 1” if the edge terminates in , and “0” if

. Note that has exactly nonzero entries.
Now we can derive from (19) the following condition which

must hold for all :

(20)

We are now ready to prove the main statement. Therefore, we
define (as we defined the minimal
agreement capacity) and (i.e.

for all ).
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First, we use to provide an upperbound for the
right-hand side of (20). For all ,

and thus

(21)

Next, we provide a lower bound for . We assume, by contra-
diction, that . Then, for all and all

We can now choose . Since then for
all edges , , it must be possible to choose for any
2-partition in the graph , . This implies
that no cutset exists so that , , which,
in turn, requires that every edge for which
is contained in at least one cycle with for all

. With the same argumentation as used to prove
Lemma 4.6, we can conclude that another vector must exist

such that for all . But this contradicts
the assumption that . Having shown a
contradiction, we conclude that

(22)

The two conditions (21) and (22) finally lead to the desired con-
clusion .
The connection between the minimal agreement capacity and

optimal graph partitions has a direct consequence for the dy-
namical network (3).
Theorem 6.7 (Combinatorial Clustering Condition): The dy-

namical network (3) with identical edge capacities is clus-
tering (i.e., is forming a -partition with ) if and only if a
2-partition exists with a quality exceeding the edge
capacity

(23)

Proof: The statement follows directly from Theorem 6.2
and Theorem 6.5.
Wewant to emphasize again that the given result explicitly re-

lates the purely graph theoretic concept of optimal partitioning
to the behavior of the dynamical network. The connection be-
tween the clustering structure of the network (3) is even stronger
than the necessary and sufficient clustering condition defined in
the previous theorem. To characterize the connection explicitly,
we consider the following concept.
Definition 6.8: The first-cut of the network pertains to

the edges that are saturated for .
The name “first-cut” emphasizes that this is the first set of

edges to become saturated as is decreased from a large value.
Corollary 6.9: Assume the first-cut induces a 2-partition
, then

(24)
This statement is a direct consequence of the proof for The-

orem 6.5. It shows that the partition with the highest quality
is the one which is “most likely” to appear in the clustering
structure of the network. We can additionally characterize the
first-cut precisely in terms of the quality of all partitions in
a network.

Proposition 6.10: Assume are all 2-parti-
tions maximizing in (17) and let be
the corresponding cut-sets. Then, the first-cut is given by

.
Proof: Denote the optimal quality by . By assumption,

we have , . Furthermore,
exists with , , such that

For this to be true, it must hold that for all
.

The implications of this result are two-fold. On the one hand,
it emphasizes how important the partitions with high quality
are for the clustering structure. On the other hand, the first-cut
can be considered as a computational means to find the optimal
partitioning of the graph.
Clustering and Graph Partitioning Problems: To further il-

lustrate the significance of the previous results, we show that
the clustering structure of the network is inherently related to
well-established partitioning problems. We show that there is a
close relation of our results to two problems: the inhibiting bi-
section problem and the min s-t-cut.
First, we clarify the relation of our first-cut to the inhibiting

bisection problem studied in [14] and [27]. The motivation for
the mentioned work is to use graph partitioning methods for
computing the critical lines in large-scale power networks. The
authors formulate a variation of the classical bisection problem
by searching for the cut separating the network into two groups
which: 1) has the minimal cut size and 2) leads to the maximal
power imbalance between the two clusters. The following re-
sult shows that the mathematical formulation of our problem is
closely connected to the one studied in [27].
For the presentation of the result, we need the notion of indi-

cator vectors. A vector is said to be an indicator
vector for a two partition if if and

if . The set of indicator vectors for all possible
2-partitions is denoted by .
Lemma 6.11: Assume that the first-cut induces a 2-partition

and let be the indicator vector of this 2-partition. Then is
a minimizer of

(25)

where is the minimal agreement capacity and is the
Laplacian of .
Remark 6.12: If is interpreted as the vector of power

supplies and demands on the nodes, then problem (25) corre-
sponds to the inhibiting bisection problem studied in [27].

Proof: Given a 2-partition and the corresponding indi-
cator vector , it follows that , and

. Thus, we can rewrite
the combinatorial problem formulated in Theorem 6.5 as

Recall that Theorem 6.5 states that the value of the op-
timal 2-partition (which is induced by the first-cut) is

. Thus, we know that for the optimal cut
and the corresponding indicator vector it must hold that
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. The problem to solve
is therefore the feasibility problem of finding so that

.
We show now by contradiction that for all ,

it holds that . Assume that
exists such that . Then,

it must also hold that . But
this contradicts that is the optimal value of all partitions.
The case with equality is excluded by the assumption that the
first-cut induces a 2-partition, which implies that there is a
unique partition with maximal quality. Keeping this in mind,
we can again rewrite the original problem (24) as the new
optimization problem

(26)

with a maximal value of exactly 0. This, however, is equivalent
to the optimization problem formulated in the statement.
The connection to the inhibiting bisection problem is remark-

able for two reasons. First, our setup generalizes the problem
studied in [27] since it allows not only to compute the first-
cut, but to detect the complete hierarchical clustering structure.
Second, it connects the inhibiting bisection problem to a dynam-
ical network model.
To further emphasize the relevance of our setup, we show

that the clustering structure of our dynamical network model (3)
corresponds, for a certain setup, to the min -cut. The min

cut is one of the most basic graph partitioning problems,
dating back to Ford and Fulkerson [15].
Definition 6.13 (min-s-t cut): Given a sink node and a

source node , the min- cut is the cut with the minimal
number of edges that separates and .
For a particular setup, our first-cut corresponds exactly to the

min -cut. The correspondence holds, however, only for a
particular choice of the objective functions. To define the objec-
tive functions, we choose a constant and set

if

if

if

(27)

Lemma 6.14: Consider the problem (8) with the objective
functions defined as in (27). Let be all minimal

-cuts. Then, the first-cut is the union of all min
-cuts (i.e., ).
Proof: We note that the solution to (9) is . There-

fore, , and .
This implies that for any 2-partition that sep-
arates the nodes and (i.e. and ), the value

. Any partition that does not separate
and gives . Theorem 6.5 states that

the first-cut will maximize the quantity . We know that
the quantity is zero for any partition not separating and
and it will thus be maximized by a partition separating the
two nodes. We conclude that the first-cut is the cut maximizing

over all cuts separating and . The maximum
is achieved for the cut with a minimal number of edges (i.e.,
for the cut minimizing which is the min -cut).
Proposition 6.10 follows that the first-cut will be the union of
all min cuts.

It clearly matches the intuition that a dynamical network will
cluster along the edges of the minimal cut, and we clarify here
the assumptions under which this will occur. In summary, the
previous results show that the clustering structure of our dynam-
ical network model (3) is strongly connected to the properties of
the underlying graph topology.

VII. STRUCTURAL ANALYSIS OF THE IEEE 30-BUS ELECTRIC
POWER SYSTEM

Dynamic clustering is a well-known instability phenomenon
in power networks where, in the case of failures, the network
partitions into groups, and generators within one group synchro-
nize their frequencies but are out of synch with generators in
other groups. Although often observed, it is a difficult problem
to relate the graph topology and the expected clustering struc-
ture of power networks.
A standard dynamical model for power systems in the general

form (1) that exhibits such clustering behavior for certain net-
work configurations is the structure preserving model proposed
by Bergen and Hill [18]

(28)

Here, is the rotor angle at bus , are the inertia
constants of the generators, are the damping coefficients of
the load or generator , and is a coefficient computed from
the voltage of the incident buses and the impedance of the line
and is symmetric (i.e., ). The power supply or demand
at bus is .2 The clustering structure observed in the model
(28) is related to the network topology, the edge capacities ,
and the power supply. Identifying clustering structures based
on the dynamical model (28) is considered a hard problem (see,
e.g., [28]). The main difference between (1) and (28) is the cou-
pling nonlinearity. One can therefore interpret the model (1) as
a simplified model, which, in contrast to a linearized model, still
maintains the ability to cluster.
From a computational perspective, the structural analysis of

power systems has attained significant attention aiming to de-
tect strongly connected components and critical cut-sets (see,
e.g., [27] and [29]). In this example, we show that our anal-
ysis provides a bridge between purely graph theoretical analysis
methods for power networks and the study of dynamical net-
work models. We demonstrate how our results relate to the com-
putation approach for identifying critical cut-sets proposed in
[27]. Note that [27] considers a purely computational approach,
whereas our analysis is directly connected to a dynamcial net-
work model. In order to obtain comparative results, we use the
same problem setup as [27] (i.e., a modified version of the IEEE
30-bus power network).
The graph topology and the considered network data are sum-

marized in Fig. 3(a) and(b), respectively. In [27], the nodes {22,
23, 24, 25, 26, 27, 29, 30} as well as the single node {13} were
identified to be loosely connected to the rest of the network.
Following [27], we take to be the power injection, and we

2We only sketch the power network model here since the purpose of this paper
is to explain the mathematical basics of clustering and not to provide a detailed
analysis of power systems.
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Fig. 3. Graph structure and network data of the IEEE 30-bus system. Node 13
is the single node which is separated by the first-cut. The nodes {22, 23, 24,
25, 26, 27, 29, 30} are separated by the second-cut. (a) Network structure. (b)
Network data.

Fig. 4. Optimal solution to the saddle-point problem (8) as a function of the
edge capacities .

choose the damping as . To detect the clustering struc-
ture of the network using our novel saddle-point analysis, we
consider identical edge capacities (i.e., for all ),
which we vary continuously. Fig. 4 visualizes how the optimal
solution of the saddle-point problem (8), , varies as a func-
tion of the edge capacities . Observe the characteristic den-
dogram structure of the function illustrated in Fig. 4. For very
large values of , the entire network is in agreement, while as
decreases, a partitioning of the network appears (represented

by multiple values for for a fixed in Fig. 4). This shows that
our saddle-point problem provides a hierarchical clustering of
the network. A deeper analysis of the clustering structure re-
veals that the first-cut partitions only a single node, node 13,
from the network. The “second-cut,” occurring at 223.5,
however, separates the network nodes {22, 23, 24, 25, 26, 27,
29, 30}. Our saddle-point analysis computes therefore the same
critical cut-sets and strongly connected components as the ap-
proach proposed in [27]. Please note that our analysis provides
significantly more information, since it uncovers not only one
partition, but a complete hierarchical clustering structure.
We cannot expect our model to show exactly the same be-

havior as the power network model (28). However, our dynam-

ical model (1) still captures the hierarchical clustering struc-
ture. Recall now the motivating example given in Section III
and Fig. 1. The trajectories were generated using our simplified
version of (28) with . For each simulation, the
initial conditions were chosen randomly, whereas is
always set to zero. The edge capacities for each simulation are,
respectively, 500, 180, and 20. The sim-
ulation results clearly show that our dynamical model is a rea-
sonable attempt to bridge the existing gap between graph-based
network analysis and the widely observed cluster synchroniza-
tion phenomenon. While this work does not claim to provide a
formal analysis of the power network model (28), we believe the
qualitative similarity with our model is of value. Indeed, the un-
derstanding of the simplified dynamical model with clustering
behavior can provide new insights.

VIII. CONCLUSIONS

This paper examined the phenomena of clustering within a
coupled dynamical system. The main principle leading to clus-
tering, as considered in this paper, is as follows. Every node
has an individual preference and is attracted to its neighbors
by a bounded interaction force. If the interaction between two
neighboring nodes is large enough, they will agree on a common
value, if not, they will split. This intuitive idea leads to the de-
velopment of a static saddle-point problem, which can explain
clustering from a computational perspective. The saddle-point
problem has an interpretation as a Lagrange-dual problem to
a network optimization problem with additional constraints on
the dual variables. This result provides a novel perspective on
clustering and establishes a direct connection between graph-
based, static clustering algorithms, and the behavior of dynam-
ical networks.

APPENDIX

A. Proof of Proposition 5.2

Proof: We consider a convergent sequence such
that and . We define

and note that due to the first-order saddle-point op-
timality conditions, as . Consider now
the sequence of optimization problems

(29)

where is chosen such that . Any
problem in the sequence has a finite optimal solution
since, for any , some exists

such that and
for all . Therefore, the

objective of the optimization problem is bounded from below
and, thus, a finite optimal solution always exists.
The Lagrangian of the problem is defined as

, and the KKT conditions then
tell us that for any optimal point ,

This leads us to
from which we conclude
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. In addition,
shows that

Together with , we can conclude that
. Since , for , the sequence

converges such that as .
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