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Graph-Theoretic Analysis and Synthesis
of Relative Sensing Networks

Daniel Zelazo and Mehran Mesbahi

Abstract—This work provides a general framework for the anal-
ysis and synthesis of a class of relative sensing networks (RSNs) in
the context of its � and performance. We consider RSNs
with homogeneous and heterogeneous agent dynamics. In both
cases, explicit graph theoretic expressions and bounds for the �

and performance are derived. The � performance turns
out to be a function of the number of edges in the graph, whereas
the performance is structure dependent and related to the
spectral radius of the graph Laplacian. The analysis results are
then used to develop synthesis methods for RSNs. An optimal
topology is designed using the Kruskal’s Algorithm for � per-
formance, and a semi-definite program for the performance
of uncertain RSNs.

Index Terms—Combinatorial optimization, graph theory, �

and performance, relative sensing networks, semi-definite
programming.

I. INTRODUCTION

M ULTI-AGENT systems pose significant challenges for
control systems analysis and synthesis due to their in-

herently distributed sensing architectures. In particular, sensors
must be associated with individual agents and their ability to
measure state information from the entire ensemble—often in
their local frames—can be limited by spatial constraints (such as
orientation), range, and power requirements [35]. Fundamental
questions such as how the sensing architecture affects the per-
formance of the interconnected system and how control and es-
timation algorithms should be synthesized that exploit their dis-
tributed structure are the subjects of research across a wide range
of disciplines.

In this work we focus on systems that rely on relative sensing
to achieve their mission objectives; we call such systems
relative sensing networks (RSNs). Relative sensing networks,
in their most general form, are a collection of autonomous
agents1 that use sensed relative state information to achieve
higher level objectives. In such systems, a sensing topology (or
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1An autonomous agent, depending on the application, may include unmanned
vehicles, mobile sensors, or distributed computing nodes.

graph) is induced by the spatial orientation of the agents and the
capabilities of the relative sensor. In this way, the underlying
sensing topology couples the agents at their outputs. Note that
this type of model is in contrast to other multi-agent systems
where the network coupling is introduced at the state level;
see, for example, multi-agent consensus and synchronization
problems [26], [31].

Relative sensing has become an important feature of many
multi-agent systems. Space applications relying on relative
sensing include spacecraft constellations for studying the struc-
ture of the heliopause, stereographic imaging and tomography
for space physics, and space borne optical interferometry for
probing the origins of the cosmos and identifying Earth-like
planets [9], [12], [19], [25], [39]. Specifically, formation flying
applications in deep space or GPS-denied environments must
rely on relative sensing to achieve their objectives [8], [16],
[28], [32], [33]. More fundamentally, these types of networks
are relevant for applications involving distributed sensing for
purposes of estimation and control with applications ranging
from environmental surveillance, modeling, localization,
and collaborative information processing [2], [4], [5], [22],
[23], [30].

Fundamental to all these systems is the implicit presence of a
“network.” The exchange of information between each agent in
an RSN describes an underlying connection topology. Studying
system-theoretic notions from the perspective of the underlying
topology can lead to interpretations that explicitly characterize
the effects of the network on the behavior of the system. For
linear time-invariant systems, all the essential systems theoretic
properties can be derived from the quadruple system matrices

. When considering multi-agent systems, the un-
derlying connection topology, denoted as , can typically be
embedded into the system matrices. It becomes enlightening to
consider how certain properties of the system depend on that
topology. Therefore, for linear multi-agent systems, one can
consider the quintuple to emphasize the depen-
dence of the overall system on its interconnections. Recent ex-
amples of such graph-centric analysis include relating closed-
loop stability properties of multi-agent systems to the spectral
properties of the graph Laplacian [11], relating controllability
in consensus seeking systems to graph symmetry [29], [36],
graph-theoretic analysis and performance bounds for consensus
systems [7], [42], and graph-centric observability properties of
relative sensing networks [37], [41].

The main contribution of this paper is a graph-centric char-
acterization of the system and norms of RSNs for both
analysis and synthesis purposes. A distinction is made between
RSNs with homogeneous agent dynamics and RSNs with het-
erogeneous agent dynamics. Although homogeneous RSNs can
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be considered as a subset of heterogeneous RSNs, it is more illu-
minating to consider these cases separately due to the algebraic
simplicity of the former case.

For the synthesis portion of this paper we consider three gen-
eral design scenarios. In the first, we examine how to design
the connection topology to minimize the and norms
of the overall RSN. This will point to an interesting connec-
tion between results in combinatorial optimization and systems
theory. The second scenario is an inner-loop type control, where
a local controller for each agent is designed such that its local
performance is minimized in addition to a global performance
metric focusing on the relative sensed output. Finally, we ex-
plore a decentralized outer-loop control using the sensed output
as feedback to achieve higher order objectives, such as forma-
tion control.

The paper is organized as follows. Section I-A gives a brief
overview of notions from algebraic graph theory and proper-
ties of the Kronecker product for matrices. In Section II, gen-
eral models for homogeneous and heterogeneous RSNs are de-
veloped. Section III-A derives expressions for the and
norms of homogeneous and heterogeneous RSNs, with an em-
phasis given to the role of the underlying topology. Section IV
presents synthesis procedures for RSNs, and a few numerical
examples are given in Section V.

A. Preliminaries and Notations

We provide some mathematical preliminaries and notations
here. Matrices are denoted by capital letters (e.g., ), and vec-
tors by lower case letters (e.g., ). Diagonal matrices will be
written as ; this notation will also be
employed for block-diagonal matrices and linear operators. A
matrix and/or a vector that consists of all zero entries will be de-
noted by ; whereas, ‘0’ will simply denote the scalar zero. Sim-
ilarly, the vector denotes the vector of all ones, and .
The identity matrix is denoted as ; we also append a
subscript to , , and to denote its dimension when it is not
clear. The set of real numbers will be denoted as , and de-
notes the standard Euclidean 2-norm for vectors and matrices.
For -dimensional finite energy signals, that is signals in the
space , the norm is induced by the inner-product and denoted
as . The

and norms for linear operators will be denoted as
and . The adjoint of a linear operator is denoted by .
The notation denotes the Hadamard product of the two
matrices [20]. The Kronecker product of two matrices and
is written as [18].

An important result on Kronecker products relates the sin-
gular values of to the matrices and

;
[18]. An immediate consequence of this is

the following result on the matrix 2-norm, .
We also make extensive use of the Kronecker product matrix
multiplication property, , where
the matrices are all of commensurate dimensions.

Graphs and the matrices associated with them will be widely
used in this work. The reader is referred to [14] for a detailed
treatment of the subject. An undirected (simple) graph is spec-
ified by a vertex set and an edge set whose elements char-
acterize the incidence relation between distinct pairs of . Two

Fig. 1. Example of regular graphs. (a)� graph; (b) A 4-regular graph.

vertices and are called adjacent (or neighbors) when
; we denote this by writing . An orientation of an undi-

rected graph is the assignment of directions to its edges, i.e.,
an edge is an ordered pair such that and are, respec-
tively, the initial and the terminal nodes of .

In this work we make extensive use of the inci-
dence matrix, , for a graph with arbitrary orientation. The
incidence matrix is a {0, 1}-matrix with rows and columns in-
dexed by the vertices and edges of such that has the
value ‘ 1’ if node is the initial node of edge , ‘ 1’ if it is
the terminal node, and ‘0’ otherwise. The degree of vertex , ,
is the cardinality of the set of vertices adjacent to it. The degree
matrix, , and the adjacency matrix, , are defined in
the usual way [14].

The (graph) Laplacian of

(1.1)

is a rank deficient positive semi-definite matrix. The eigenvalues
of the graph Laplacian are real and will be ordered and denoted
as .

In order to apply the framework developed in this paper to
specific graphs, we will work with the complete graph and its
generalization in terms of -regular graphs, which are defined
as follows. The complete graph on nodes, , is the graph
where all possible pairs of vertices are adjacent, or equivalently,
if the degree of all vertices is . Fig. 1(a) depicts , the
complete graph on 10 nodes. When every node in a graph with

nodes has the same degree , it is called a -regular
graph. Fig. 1(b) shows a 4-regular graph.

II. RELATIVE SENSING NETWORK MODEL

In this section we derive a general plant model for relative
sensing networks. An RSN consists of two system layers. The
first can be considered a local layer corresponding to the dy-
namics of the individual agents in the ensemble, whereas the
global layer represents the coupling of each agent through the
interconnection topology.

We identify two classes of RSNs in this paper: 1) homoge-
neous RSNs, and 2) heterogeneous RSNs. For both cases, we
will work with a group of dynamic systems (the “agents”),
each modeled as a linear and time-invariant system

(2.2)
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Fig. 2. Block diagram of global RSN Layer; the integrator feedback connection
represents an upper fractional transformation [10].

where each agent is indexed by the sub-script . Here,
represents the state, the control,

an exogenous input,2 the controlled variable, and
the locally measured output.

We denote the transfer-function representation of as

(2.3)

the transfer function for a particular input-output channel is de-
noted, for example, as .

In the homogeneous case, it is assumed that each dynamic
agent in the RSN is described by the same set of linear state-
space dynamics (e.g., for all ). When working with
homogeneous RSNs, we drop the sub-script for all state-space
and operator representations of the system. We will also assume
no feed-forward terms of the control to the measured output.
Additionally, we assume a minimal realization for each agent
with compatible outputs for all agents, e.g., system outputs will
correspond to the same physical quantity. It should be noted that
in a heterogeneous system, the dimension of each agent need
not be the same; however, using a “padding argument,” it can
be assumed that all agents have identical dimensions for their
respective state space (e.g., , for all ). We denote
the map from to as .

The parallel interconnection of all the agents can be ex-
pressed by a concatenation of the corresponding system
states, inputs, and outputs, and through the block diagonal
aggregation of each agent’s state-space matrices. We use the
bold-face notation to denote the expanded state-space, e.g.,

and .
The global RSN layer we examine in this paper is motivated

by the relative sensing problem discussed in Section I. The
sensed output of the RSN is the vector containing relative
state information of each agent and its neighbors. The incidence
matrix of a graph naturally captures state differences and will
be the algebraic construct used to define the relative outputs
of RSNs. For example, the output sensed between agent and
agent could be of the form , and can be compactly
written for the entire RSN as

(2.4)

Here, is the graph the describes the connection topology of
the RSN; the node set is given as . The global
layer is visualized in the block diagram shown in Fig. 2.

When considering the analysis of the global layer, we are in-
terested in studying the map from the agent’s exogenous inputs

2The choice of what “kind” of exogenous input we consider will depend on
the performance metric. For example, in the � case it is natural to consider
� ��� as a Gaussian white noise.

to the RSN sensed output. Using the above notations we can ex-
press the heterogeneous RSN in a compact form

(2.5)

The homogeneous RSN, , can be expressed using Kro-
ncker products. For example, and

. Note that the local observation matrix for each
agent, , need not be the same as the observation matrix for
the relative sensed measurement . For example, a rela-
tive position measurement would be of the form

, while the local measurement might contain additional
information.

Similarly, the transfer function representation is denoted as
and is defined as in (2.3). As in the state space model, bold

faced transfer functions denotes the block diagonal aggregation
of each agent’s corresponding transfer function, e.g.,

. The homogeneous system, ,
can also be written using the Kronecker product in a similar
manner as described above.

For notational simplicity, we denote and as
the map from the exogenous inputs to the RSN sensed output
for homogeneous and heterogeneous systems respectively, e.g.,

. We also use transfer function
and state-space representations interchangeably noting the ap-
propriate realization can be inferred by context. For example,

will be used to represent both the state-space and transfer
function representation of the open-loop map from the exoge-
nous inputs to the measurement of agent .

A. Observability Properties of RSNs

Examining the observability properties of RSNs can give both
qualitative and quantitative insights about the utility of the sensed
output for use in estimation and observer design. A natural ques-
tion, therefore, is whether the initial condition of each agent in
an RSN can be inferred from their relative outputs [41]. For such
an analysis we work with a simplified version of (2.5)

(2.6)

Recall that the observability gramian of a linear system with
state matrix and observation matrix is

(2.7)

The observability as well as the relative degree of observability
of different modes in a linear system can be inferred from the
gramian. For this analysis, we will assume that each agent is
stable (e.g., is Hurwitz) and that is an observable
pair.

1) Observability of Homogeneous RSNs: For homogeneous
RSNs, the observability gramian can be immediately written as

(2.8)
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where is the gramian for an individual agent in the RSN. This
expression has the following immediate consequence.

Theorem 2.1: The homogeneous RSN in (2.6) is unobserv-
able.

Proof: Using (2.8) and the properties of the Kronecker
product we conclude that has precisely eigenvalues at the
origin, leading to an unobservable system.

The unobservable modes of (2.6) in fact, correspond to the
“inertial state” of the formation; these modes lie in the subspace

. The importance of this observation is that when
each agent has identical dynamics, relative measurements alone
are not sufficient to reconstruct the inertial state of each agent.
If in addition to the relative output, a measurement such as the
inertial state of a single agent is available, then the observability
of the system can be recovered.

This observation also highlights how the underlying connec-
tion topology can influence the relative degree of observability
of the observable modes. Denote and index each singular values
of as , and using the properties of the Kronecker product,
we can express the non-zero singular values of as
for and all . The eigenvalues of the graph Lapla-
cian, therefore, can amplify or attenuate the observability of
certain modes in the system. For example, the complete graph
shown in Fig. 1(a), has for all . In
this case, the connection topology does not favor any particular
mode of the system. Conversely, when the graph is disconnected
with two connected components, then and addi-
tional unobservable modes are introduced into the system.

2) Observability of Heterogeneous RSNs: In the heteroge-
neous case, the observability gramian of (2.6) has a non-trivial
form. Let us define the observability operator for an individual
agent as , and its adjoint as

. The gramian of (2.6) can now be written
as

where [41].
Theorem 2.2: The heterogeneous RSN in (2.6) is unobserv-

able if and only if the following conditions are met:
1) There exists an eigenvalue of that is common to each

.
2) For all , and would imply

that .
Proof: For the necessary condition, recall the pair

is unobservable if and only if there exists a non-zero vector
such that and , i.e., the Popov-Hautus-Bele-
vitch test (PHB) [21]. For the system (2.6), the PHB test shows
that unobservability implies conditions 1 and 2 above. For suf-
ficiency, suppose that there exists a common eigenvalue for
all ’s. We can then construct an eigenvector for the matrix
as , with vectors ’s for which .
By condition 2, we have that , where
for all . Using properties of the Kronecker product we then have

.
This shows the system is unobservable with as the corre-
sponding unobservable mode.

Theorem 2.2 reinforces that a heterogeneous RSN is unob-
servable only when the outputs of each agent associated with a

certain initial direction becomes indistinguishable. This condi-
tion is rather strict, emphasizing that most real-world instances
of a heterogeneous RSN is observable, allowing its inertial state
to be reconstructed solely from the corresponding relative mea-
surements.3

As in the homogeneous case, the underlying connection
topology can have a profound affect on the relative degree of
observability of the RSN. The form of (2.9) is appealing in how
it separates the role of the network from the agents dynamics.
Although the precise characterization of the eigen-values of
(2.9) is non-trivial, bounds on those values can be derived, as
presented in [20].

Corollary 2.3: The smallest and largest eigenvalues of the
observability gramian (2.9) are bounded as

(2.9)

where and correspond to, respectively,
the smallest and largest singular values of , and

, ; the
quantities and correspond to the minimum and maximum
degree vertices of the underlying graph.

This result points to an interesting connection between the
degree of each agent in the ensemble and the relative observ-
ability of the modes of the system. This theme will be revisited
when we study the performance of heterogeneous RSNs. For
a more in depth study on the observability of RSNs, the reader
is referred to [41]. A similar analysis on the controllability of
systems with input coupling is also presented in [43].

III. GRAPH THEORETIC BOUNDS ON RSN PERFORMANCE

In this section we explore a graph-theoretic characterization
of the and performance of the RSN model presented in
Section II. The main goal is to highlight the role of the under-
lying connection topology on the system norms mapping the ex-
ogenous inputs to the relative sensed output , .
For both the and analysis, the homogeneous and hetero-
geneous cases are presented separately. We also assume that the
observation matrix for the sensed output is the same as for the
local measurement; that is and . Addi-
tionally, we assume throughout this section that the underlying
connection graph is connected and . For anal-
ysis, we finally assume that each agent is stable; an assump-
tion that will be relaxed in Section IV in the context of RSN
synthesis.

A. Performance

We first recall that one interpretation of the performance
of a linear system characterizes how a (Gaussian) exogenous
noise propagates throughout the system and effects the energy
of the monitored output. In the context of RSNs, therefore, the

system norm can be employed to reason about how noise,
corrupting each agent’s dynamics in the network, results in the
asymptotic deviation of the sensed output of the entire network.
This section aims to explicitly characterize the effect of the net-
work structure on the norm of the system.

3This assumes the linear dynamics of each agent are derived in the same co-
ordinate frame.
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The norm of a system can be calculated in a variety of
ways. One description involves the observability gramian of the
system, as discussed in Section II-A. Another description in-
volves the controllability gramian of the system. The controlla-
bility gramian for an individual agent (from the exogenous input
channel) based on the dynamics in (2.2) is defined as

(3.10)

The norm of each agent from the exogenous input
channel to the measured output can be expressed in terms of
the gramians as

(3.11)

Using the above description we can begin to understand how
the underlying network topology influences the system norm.
Subsequently, we assume that and for
our analysis, as the corresponding norm of the network will
otherwise be unbounded.

1) Homogeneous RSN Performance: The norm of the
homogeneous RSN described in (2.5) can be derived using the
observability gramian (2.8) to obtain the following result.

Theorem 3.1: The norm of the homogeneous RSN (2.5)
is given as

(3.12)

Proof: The norm can be written directly from (2.8)
as . Using
the properties of the Kronecker product defined in Section I-A
and the definition of the Frobenius norm of a matrix,

, leads to the expression in (3.12).
Here, represents the -th column of .

The expression in (3.12) gives an explicit characterization of
how the network affects the overall gain of the RSN. In the ho-
mogeneous case, we can thereby focus on how the Frobenius
norm of the incidence matrix changes with the addition or re-
moval of an edge. Recall that each column of the incidence ma-
trix represents an edge of the graph. Therefore, the Frobenius
norm of the incidence matrix can be expressed in terms of the
number of edges in the graph, , as . An im-
mediate consequence of this description is that norm of the
RSN is only dependent on the number of edges in the network
rather than its the actual structure.

If we consider only connected graphs, we arrive at the fol-
lowing corollary providing lower and upper bounds on the
norm of the system.

Corollary 3.2: The norm of the homogeneous RSN (2.5)
for an arbitrary connected graph is bounded from below by
an RSN where is a spanning tree and bounded from above by
an RSN where , the complete graph

(3.13)

2) Heterogeneous RSN Performances: For the heteroge-
neous case we rely on the identity (3.11) to derive the norm.
The connection topology only couples agents at the output

leading to a block diagonal description for the controllability
gramian, with each block corresponding to (3.10).

Theorem 3.3: The norm of the heterogeneous RSN (2.5)
is given as

(3.14)

where is the degree of the -th agent in the graph and
.

Proof: The norm expression in (3.14) can be derived using
(3.11) as,

, where denotes the block diagonal aggregation of each
agent’s controllability gramian, as defined in (3.10). In this
direction, observe that .
Using the cyclic property of the trace operator [44] and ex-
ploiting the block diagonal structure of the matrix arguments
leads to the desired result.

When each agent has the same dynamics, (3.14) reduces to
the expression in (3.12). This characterization paints a clear pic-
ture of how the placement of an agent within a certain topology
affects the overall system gain. In order to minimize the network
gain, it is beneficial to assign low connectivity to systems with
large norm.

For certain graph structures, a more explicit characterization
of the performance can be derived, leading to the following
corollaries.

Corollary 3.4: The norm of the heterogeneous RSN (2.5)
when the underlying connection graph is -regular is

(3.15)

where every node has degree .
Note that having regularity in the connection topology intro-

duces ‘homogeneity’ into an otherwise heterogeneous RSN. As
in the homogeneous case, the placement of an agent in such
a network will not affect the overall performance; in fact, the
system norm becomes a scaled version of the parallel connec-
tion of the subsystems.

B. Performance

We first recall that the norm for a dynamic system
captures how a measurable signal with finite energy, i.e., a
signal in , is amplified at the monitored output of the system.
Moreover, this norm has implications for robustness, distur-
bance rejection, and uncertainty management for dynamic
systems. Specifically, the norm of a linear system with
transfer-function representation is characterized as

(3.16)
where denotes the largest singular value of the matrix .
The induced-norm description allows us to state the sub-mul-
tiplicative property of the norm for two operators as

.
In the context of RSNs, therefore, the system norm can be

used to capture how disturbances and finite energy exogenous
signals result in the asymptotic deviation of the sensed output
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of the network from the origin. This section aims to explicitly
characterize the effect of the network on the norm of the
system. As in Section III-A, we separate our analysis into the
homogeneous and heterogeneous cases.

1) Homogeneous RSN Performance: Given the transfer
function representation of the homogeneous RSN, we can
write the map from the disturbances to the networked output as

.
Theorem 3.5: The norm of the homogeneous RSN (2.5)

is given as

(3.17)

Proof: The norm expression follows directly from the def-
inition in (3.16) and the matrix 2-norm of Kronecker products.

The expression (3.17) states that the overall gain of the
system is proportional to the matrix 2-norm of the incidence ma-
trix. In fact, since , the behavior of
the largest eigenvalue of the graph Laplacian is of particular in-
terest. Moreover, an important observation is that certain graph
structures will naturally lead to a smaller norm. If we re-
strict our topology to spanning trees we can state a stronger set
of results.

Corollary 3.6: When the underlying topology is a spanning
tree, the path graph is the topology resulting in the smallest
norm for the homogeneous RSN (2.5). Moreover, the star graph
is the topology resulting in the largest norm for the homo-
geneous RSN (2.5).

Proof: In [34] it has been shown that the path graph has
the smallest spectral norm for the graph Laplacian among all
spanning trees. On the other hand, the star graph has the largest
spectral norm for the graph Laplacian among all spanning trees
[15]. These facts combined with the expression (3.17) conclude
the proof.

Contrary to the results of Section III-A, we note that the
structure of the graph plays a significant role in the system
performance as opposed to the norm for homogeneous
RSNs.

2) Bounds on the Heterogeneous RSN Performance: We
follow a similar procedure for the heterogeneous case. Using the
transfer function representation of the heterogeneous RSN, we
can write the map from the disturbances to the networked output
as . Calculating the
norm involves finding the singular values of the transfer function

(3.18)

In general, an analytic expression for the singular values of
the system in (3.18) is difficult to obtain. However, it is possible
to derive bounds on the norm, leading to the following result.

Theorem 3.7: The norm of the homogeneous RSN (2.5)
is bounded as

(3.19)
where .

Proof: The upper-bound immediately arises from the sub-
multiplicative property of the matrix 2-norm as

. Since is a diagonal matrix we conclude that

. To show the lower-bound we follow
the following chain of inequalities as

(3.20)

where the second to last inequality follows from the prop-
erty that for Hermitian matrices, and ,

, and the last identity follows from the prop-
erty that the positive-definite ordering

holds for all .
Corollary 3.8: When each agent in (2.5) is a single-input

single-output (SISO) system, the norm bound in (3.19) is tight.
An interesting implication of the norm bounds developed in

the proof relates the gain of a heterogeneous RSN to that
of a homogeneous RSN. Consider an ordering of each agent
in a heterogeneous RSN by the value of the norm of each
agent, , where

maps the old index set to the norm-ordered one. The
norm of the heterogeneous system can be bounded

from above and below by homogeneous systems as

This inequality suggests that in addition to the structure of the
underlying topology, one can consider the dynamic differences
between agents as an important factor in the performance of the
overall system.

IV. SYNTHESIS OF RELATIVE SENSING NETWORKS

In this section we explore various scenarios for the synthesis
of RSNs using the results of Section III to motivate appropriate
graph-centric objective functions. We consider three general
type of synthesis problems: (1) Topology design, (2) Inner-loop
control design for each agent, (3) Decentralized outer-loop
control design. In each design scenario, we are primarily con-
cerned with minimizing the performance objective ;
each objective function will contain an element related to the
sensed output . We will assume for the remainder of this
section that the relative output of the RSN corresponds to a
relative ‘position’ measurement between each agent as

(4.21)

here we have assumed the states corresponding to the position
of each agent are the first states of .
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A. Topology Design

We now consider the synthesis of the underlying connection
topology and where to place agents within that topology. As we
are only considering the topology, we use the following hetero-
geneous state-space model for the RSN

(4.22)

We would like to find topologies that minimize the effect of
disturbances entering each agent on the relative sensed output of
the entire system, that is minimizing the performance objective

. This can be considered a problem in combinatorial
optimization [24], as the decision to include an edge in the graph
is binary. The general synthesis problem can be written as

The challenge, therefore, is to find numerically tractable al-
gorithms to solve (4.23). In what follows, we show that the
topology synthesis problem can be solved using the celebrated
Kruskal’s algorithm for finding a minimum weight spanning
tree when . For , we solve a variation of (4.23)
that minimizes the robust performance of a weighted version of
(4.22) with uncertainty on the edge weights.

1) Topology Design: Recall from Section III-A that in
terms of the norm objective, an optimal topology should
always correspond to a spanning tree. The design problem,
therefore, is to determine which spanning tree will achieve the
smallest norm for the RSN (4.22).

The design of the topology reduces to the design of the inci-
dence matrix, . This problem is combinatorial in nature, as
there are only a finite number of graphs that can be constructed
from a set of nodes. As the number of agents in the RSN be-
comes large, solving this problem becomes prohibitively hard
[24]. However, we find that with an appropriate modification of
the problem statement, results from combinatorial optimization
can be used, leading to a polynomial-time algorithm.

Specifically, the minimum spanning tree (MST) problem can
be adapted to solve (4.23). The MST can be efficiently solved
using Kruskal’s algorithm in time. The proce-
dure is given in Algorithm 1 and a proof of its correctness can
be found, for example, in [24].

Algorithm 1: Kruskal’s Algorithm

Data: A connected undirected graph and weights
.

Result: A spanning tree of minimum weight.

begin

Sort the edges such that

, where

Set

for to do

if contains no cycle then

set

In order to apply the MST to the synthesis problem we
must reformulate the original problem statement. To begin, we
first write the expression for the norm of the system in (4.22)
as ,
where is the map from the exogenous input entering agent

to its position, . We reiterate here that the RSN norm
description is related to the degree of each node in the network.
Using the weighted incidence graph interpretation of the norm,
as in (3.14), we see that the gain of each agent, , acts
as a weight on the nodes.

As each agent is assumed to have fixed dynamics, the problem
of minimizing the RSN norm reduces to finding the degree
of each agent while ensuring that the resulting topology is a
spanning tree. This objective is related to properties of the nodes
of the graph. To use the MST results, we must convert the ob-
jective from weights on the nodes to weights on the edges.

To develop this transformation, consider the graph
with fixed weights on each node .

The node-weighted Frobenius norm of the incidence matrix is
then , where .
Next, consider the effect of adding an edge to
in terms of the Frobenius norm of the augmented incidence
matrix, , where
represents the degree of node before adding the new edge .
This shows that each edge contributes to
the overall norm. Therefore, weights on the edges, which we
denote as , can be constructed by adding the node
weights, denoted as , corresponding to the
nodes adjacent to each edge as, .

This result can be used to generate an equivalent characteri-
zation of the -norm

(4.23)

where .
Using the above transformation from node weights to edge

weights, we arrive at the following result.
Theorem 4.1: The connection topology that minimizes

the norm of (4.22), can be found using Kruskal’s
MST algorithm with input data , and edge weights

.
Proof: The proof follows from Theorem 3.3 and the trans-

formation from node weights to edge weights.
Remark 4.2: The choice of the input graph may be applica-

tion specific, and can capture certain communication or sensing
constraints between agents. For example, one may consider a
scenario where agents are randomly distributed, e.g., as a geo-
metric random graph, upon deployment and can then only sense
neighboring agents within a specified range. The results of The-
orem 4.1 can be used to determine the optimal spanning tree for
that initial configuration.

Remark 4.3: There are a number of distributed algorithms
for solving the MST problem [3], [13]. These could be used
in place of the centralized version when the optimal spanning
tree topology needs to be reconfigured. This scenario can arise
due to the initialization problem discussed in Remark 4.2, or in
situations when certain agents are disabled, lost, or reallocated
for different mission purposes.
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If there are no initial constraints on the input graph for The-
orem 4.1, then we arrive at the following result.

Corollary 4.4: When the input graph in Theorem 4.1 is the
complete graph, then the star graph with center node corre-
sponding to the agent with minimum norm is the (non-unique)
optimal topology.

Proof: The degree of the center node in a star graph is
, and all other nodes have degree one. Assuming the node

weights are sorted as , then the norm of
the RSN is . Any other tree
can be obtained by removing and adding a single edge, while
ensuring connectivity. With each such operation, the cost is non-
decreasing, as any new edge will increase the degree of node

and by assumption .
Corollary 4.4 shows that if there are no restrictions on the ini-

tial configuration, the optimal topology can be obtained without
the MST algorithm. The computational effort required is only
to determine the agent with smallest norm. The non-unique-
ness of the star graph can occur if certain agents have identical
norms, resulting in other possible configuration with an equiva-
lent overall cost.

2) Topology Design: Motivated by the results of
Section III-B, we find that (4.23) reduces to the minimization of
the spectral norm of the weighted incidence matrix, ,
where was defined in Theorem 3.7. Minimization of this
objective can be formulated as a mixed-integer semi-definite
program. For reasonably sized problem instances this can be
solved using, for example, branch-and-bound algorithms [24].

While topology design is an important application, the
framework allows us to consider the robustness of certain topolo-
gies. In this direction, we consider a variation of (4.23) that
aims to minimize the robust performance of the RSN in (4.22).
For such an analysis, we adjust the RSN model to allow for
uncertainty in the sensing protocol. Specifically, we introduce
the notion of a weighted edge for the sensed output. This model
might be used to capture the fidelity of a relative measurement

(4.24)

In (4.24), each diagonal entry of
represents the nominal weights on each edge in the graph. A
weight of zero corresponds to the absence of an edge. We will
also assume all the weights are non-negative. The model (4.24)
relates to (4.22) through the output as

.
Using (4.24), we can introduce a structured uncertainty on

each edge weight. The uncertainty set is defined as

(4.25)

The true edge weight can thus be written as , for
. This can be considered as an output-multiplicative

uncertainty, as shown in Fig. 3.
The problem (4.23) can now be restated as the robust opti-

mization problem [6]

(4.26)

This problem can be solved as a semi-definite program, the
procedure of which is outlined in [6]. To apply these results, we

Fig. 3. Multiplicative uncertainty for NDS.

must express the objective and constraints of (4.26) as a per-
turbed LMI in the form

(4.27)

where each is a symmetric matrix and affine in the vari-
able .

First, we scalarize the objective function by introducing a new
variable and noting that can be
written (via the Schur complement) as the LMI

(4.28)

Defining the matrices and as

otherwise,
(4.29)

we can express (4.28) in the form (4.27) as

(4.30)
Similarly, the robust connectivity constraint can also be ex-

pressed in the form (4.27). Recall that for a connected graph,
, and the eigenvector associated with

is the vector of all ones, . Defining the matrix such that
, we obtain

(4.31)

Using (4.30) and (4.31) we define ,
, and4

(4.32)

The above expressions can now be applied to the results in
[6] to obtain the following SDP:

...
. . .

(4.33)

4Here we streamline our notation as � � ����
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Fig. 4. Optimal weighted topology; only edges with � � ��� are drawn in
the corresponding weighted complete graph.

where the last two constraints, respectively, constrain the aggre-
gate edge weight sum and the edge weight range.

To illustrate this procedure, we consider an RSN with
heterogeneous SISO systems (generated randomly

in MATLAB). The input graph is the complete graph, ,
allowing the program in (4.33) to select the optimal weights on
every possible edge combination. For and ,
(4.33) was solved using SeDuMi and YALMIP [27] in Matlab.
The resulting weighted topology is shown in Fig. 4. Note that
every edge has a positive weight (a complete weighted graph),
however, only edges with were drawn. The thickness
of the line indicates a larger weight.

Remark 4.5: The formulation of the robust topology design
does not include any constraints enforcing sparsity for the graph.
The thresholding of edge weights discussed above is for visual-
ization purposes. Indeed, thresholding the edge weights to gen-
erate sparse graphs can be done only with a loss of guarantees
on connectedness and performance.

Remark 4.6: The above problem formulation can be extended
to include dynamic edge weights. For example, each relative
sensor may be characterized by a frequency dependent weight,

, and the corresponding uncertainty can be considered as
an unstructured norm-bounded uncertainty.

Remark 4.7: It should be noted that due to the auxiliary vari-
ables defined in (4.33), the size of this problem can grow large
with the number of nodes. While interior-point methods offer
polynomial-time algorithms, for excessively large problem in-
stances, solving the corresponding SDP (4.33) might lead to nu-
merical issues.

B. Inner-Loop Controller Design

We now consider the problem of designing a local control
for each agent such that both local performance objectives are
achieved in addition to the global RSN objective, , as
shown in Fig. 5. In this scenario, the connection topology is given
and fixed. From a synthesis point of view, each agent behaves
independently and does not use information from the RSN for
its control; this can be considered an inner-loop type of control
design. Therefore, the general synthesis problem has the form

Fig. 5. Inner-loop design; the feedback connection represents an upper frac-
tional transformation [10].

We note that while represents a purely local objec-
tive for each agent, the term introduces a coupling
between all the agents.

For , we present a semi-definite program that solves
(4.34) with the additional feature of having a decentralized
structure.

1) Inner-Loop Design: For the duration of this section,
we will assume that each agent has full-state feedback available
for its control . The model we consider is (2.5), with

defined in (4.21). Note that will be treated as an
additional controlled variable for the synthesis problem.

The state-feedback optimal control problem for a single
agent, without considering the global RSN objective, can be for-
mulated as an SDP; see for example [10]. The global RSN per-
formance objective can be appended to the standard SDP for-
mulation for the control of all agents connected in parallel,
thus introducing a coupling constraint between each agents. The
modified SDP formulation leads to the following result.

Theorem 4.8: Given the RSN system described in (2.5), a
local state-feedback controller of the form that
minimizes local performance objectives in addition to the global
RSN performance objective can be found by solving

(4.34)

(4.35)

(4.36)

(4.37)

with .
Proof: Consider the control implemented,

where . The closed-loop system
becomes

(4.38)

To guarantee the stability of the closed loop system, we require
that be Hurwitz. This is guaranteed by the LMI
given in (4.35) by noting the block diagonal structure of the
matrix, and defining . In fact, we note that is
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the generalized controllability gramian for the system in (4.38).
In the meantime, the norm of (4.38) can be calculated as

(4.39)

where . The first term on the right-
hand side corresponds precisely to the norm of the parallel
interconnection of all agents when the feedback law

implemented. The second term is the norm of .
Using the results from Section III-A we can thereby express the
performance as .

The objective is to minimize , which can be accom-
plished by minimizing both terms in the right-hand side of
(4.39). Using the matrix Schur-complement [18], we note that

We now note that if , then
. A similar derivation is used to arrive at the LMI in

(4.36).
Remark 4.9: The full-state feedback assumption can be re-

laxed without loss of generality using an LMI formulation for
the more general output-feedback problem (such as LQG) [38].
The LMI (4.36) will consequently be modified, but the LMI cor-
responding to the global RSN performance (4.37) remains the
same.

A striking feature of the SDP (4.34)–(4.37) is its structure. Al-
though the global RSN layer couples each agent, we see that the
coupling can be removed via the formulation of the norm.
The SDP is therefore ‘separable’ across each of the agents which
has implications for the parallelization of the computation and
decision-making process.

C. Outer-Loop Controller Design

In this section we consider the scenario where the sensed
output is used for feedback to each agent’s control. This
can be likened to an outer-loop control design where the RSN
output may be used to achieve higher level objectives such as
formation control. A desirable feature for this problem is to de-
sign a decentralized controller, i.e., the controller should
only use measurements local to each agent as determined by the
connection topology .

A natural choice for a decentralized controller is one that in-
herits the underlying connection topology of the graph. Just as
the incidence matrix captures the action of a relative position
sensor, it can also be used as a means to distribute information
to each node. A well studied model that employs such a pro-
tocol is the consensus protocol and its generalization [26], [31],
[42]. In consensus type problems, each agent, via local interac-
tions, reach agreement on a particular value of interest (e.g., a
heading angle for a team of UAVs). Consider a collection of
agents each with first-order integrator dynamics corrupted with
process noise as

(4.40)

The objective of the team is for each agent to reach a common
value for their state. This objective is naturally captured
by the relative state information, and when the connection
topology is given the controlled variable can be written as

.
When the performance variable is also available for feedback,

a natural choice for a decentralized controller utilizes the under-
lying connection topology, such as . This, in
turn, results in the closed-loop system

(4.41)

While the rate of convergence of (4.41) is one of the most
studied aspect of consensus problems, it becomes immediately
apparent that when cast as an RSN, allows for richer notions of
performance to be examined. When the connection topology is
permitted to be designed, the framework presented here allows
to consider both the traditional aspects of consensus (e.g., rate
of convergence) along with additional notions of performance,
such as or . The implications of this type of analysis in
consensus problems have been explored in [42].

V. AN EXAMPLE

In this section we consider an application of our results to a
mission scenario related to the Autonomous NanoTechnology
Swarm project, or ANTS, currently under investigation by
NASA [1]. One component of the ANTS mission involves
the deployment of 1,000 pico-satellites to the asteroid belt for
observational study. En-route to the asteroid belt the spacecraft
must organize into smaller teams that will coordinate to search
for various resources and materials.

For the formation of teams, a scenario might be to consider a
formation topology that minimizes the performance of the
team, corresponding to the results developed in Section IV-A-1.
For this example, we will consider a system comprised of 75
heterogeneous pico-satellites. Each agent’s state-space was gen-
erated randomly using MATLAB, with a single input and a
single output (corresponding to the position variable, as in
defined in (4.21)). The agents are randomly distributed and the
initial topology is determined by assigning an edge between
two agents if their Euclidean distance is less than .
This could correspond to the relative sensing capabilities avail-
able on each spacecraft. The initial connection graph is given
in Fig. 6(a), and the resulting MST is given in Fig. 6(b). A key
point in this example is to highlight the non-triviality of the re-
sulting topology.

Another component of the mission involves collecting data
from an asteroid that requires the pico-satellite team to ren-
dezvous with an asteroid. For this scenario, we first consider
a rendezvous problem for each pico-satellite individually. Each
satellite is assumed to have continuous actuation on each axis.
We also introduce disturbances in the form of process noise
for the actuators and measurement noise for the sensors. The
noises are assumed to be white Gaussian with for
the process and for the sensors. Contrary to the pre-
vious example, we will assume homogeneous agent dynamics
generated by the Hill’s equations which are used to describe the
linearized relative dynamics of the agents with respect to the
circular orbit, visualized in Fig. 7(a) [40]. The target asteroid is
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Fig. 6. Application example for Theorem 4.1: (a) random geometric graph with
� � ����; (b) optimal spanning tree.

Fig. 7. (a) Hill frame for a circular orbit, (b) variance of � ��� for a system with
RSN performance constraints (solid) and without (dashed), (c) performance of
the system for increasing sensor noise with and without the RSN constraint.

assumed to be in a circular orbit around the Sun with radius of
. We next generate a random spanning tree

graph and the results of Theorem 4.8 are applied to generate a
control for each pico-satellite to drive them to the asteroid. We
also address the issue in Remark 4.9 regarding the full-state in-
formation. For this example we employ LQG for estimation and
control while including the additional performance constraint
for the network. Fig. 7(b) depicts the variance of the RSN output

for the system using the network performance constraint

and the system without the constraint. This shows that the in-
clusion of the network performance constraint will tend to keep
the agents closer together even in the presence of noise.

Remark 5.1: This example demonstrates that by including
the network performance constraint in the objective, a greater
sense of “team cohesiveness” can be achieved. This property
is gained even without the active use of the relative measure-
ments in the control. To further illustrate this point, Fig. 7(c)
shows how the system norm , changes as the noise
on each satellite’s sensor increases. In this figure, the solid line
is the norm value for the system without the network perfor-
mance constraint, while the dashed line includes this constraint,
showing a better performance across all noise levels.

VI. CONCLUDING REMARKS

This paper focused on the development of graph theoretic per-
formance bounds and synthesis techniques for distinct classes of
relative sensing networks (RSN). The results of this paper high-
light an important connection between certain graph-theoretic
concepts and systems-theoretic properties. In particular, for the

performance, we find that spanning trees and the node de-
gree of each agent are the defining features. In contrast, the
performance depends on the spectral norm of a node-weighted
incidence matrix, a property dependent on the structure of the
graph.

When minimizing an performance objective for synthesis,
it was shown that application of Kruskal’s algorithm for finding
the minimum weight spanning tree can be employed to design
the optimal topology. Using methods from robust semidefinite
programming, a synthesis procedure was then developed that
aims to minimize the performance of an RSN with un-
certainty on the edge weights. For closing the inner-loop with

performance, an SDP approach was presented that had the
feature of being separable across each agent. We also showed
that with an appropriate choice of decentralized controllers, the
well-studied consensus algorithm can be obtained, leading to a
new interpretation of such systems.

This work also suggests that the relationship between sys-
tems-theoretic properties and graph properties in RSNs can be
examined further in the systems and control community. In fact,
we believe that developing efficient solution methods for the
synthesis of such systems will involve further reinterpretations
of results from graph theory and combinatorial optimization in
the context of systems and control theory.
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