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Abstract: This paper presents a geometric input-output analysis of hidden modes in distance-
based formation control. We study the linearized dynamics under a gradient control law to
characterize the system’s structural limitations and their dynamic consequences. Our main
contribution is a unified geometric framework for uncontrollable modes. We first prove that
uncontrollable rigid-body modes are pure rotations about the input node, defining a global
rotational subspace Ri. To generalize this, we introduce the local rotational subspace, Ti, which
contains all motions, including deformations, that are locally invisible to the controller at node i.
These two geometric objects provide a complete decomposition of the uncontrollable subspace.
Finally, we demonstrate the dynamic implications of this structure by proving that the system’s
ability to recover its shape is determined by an input’s alignment with the local component
of the standard rotational rigid-body mode, directly linking the geometry of hidden modes to
disturbance rejection. We illustrate our results with a case study.
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1. INTRODUCTION

The coordination of multi-agent systems (MASs) is a
cornerstone of modern engineering, enabling applications
from satellite formation flying to drone swarms and robotic
teams (Chung et al. (2018)). A fundamental task in this
domain is formation control, where agents must achieve
and maintain a specific geometric pattern. In many real-
world scenarios, such as indoor or underwater environ-
ments, global positioning is unavailable, forcing agents to
rely on local, relative sensing. Distance-based formation
control, where the desired shape is defined by a set of
inter-agent distances, provides a robust and decentralized
solution for such settings (Oh and Ahn (2011)).

A standard approach to this problem employs a gradient-
based control law, where each agent adjusts its motion
to minimize the error in its local distance measurements
(Krick et al. (2009)). While the stability and convergence
properties of these controllers are well-understood Oh
et al. (2015), their dynamic performance under external
disturbances remains an open area of investigation. How
does a localized disturbance, such as a wind gust affecting
a single drone, propagate through the formation? How do
the placement of actuators and sensors and the geometry
of the formation itself affect the system’s ability to reject
such disturbances? To answer these questions, a formal
input-output modeling framework is required.

The analysis of controllability and observability in net-
worked systems has a rich history, particularly for linear
consensus-type dynamics. Foundational work has estab-
lished deep connections between a network’s controlla-
⋆ This work was supported by the Israel Science Foundation grant
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bility and its underlying graph topology, including the
role of graph symmetries Rahmani et al. (2009) and the
placement of leader agents Tanner (2004). However, these
classical results are often tailored to systems with sim-
ple, unweighted graph Laplacians. They do not directly
address the challenges posed by distance-based formation
control, where the system dynamics are governed by a
configuration-dependent, weighted Laplacian that intro-
duces geometric constraints and nonlinearities.

This paper develops such a framework to analyze the
input-output properties of distance-based formations. We
begin by linearizing the nonlinear gradient dynamics
around a target equilibrium configuration. This yields a
linear time-invariant (LTI) model whose system matrix is a
configuration-dependent, weighted graph Laplacian. This
model, while an approximation, allows us to leverage the
powerful tools of classical systems theory to analyze the
formation’s controllability and observability.

The main contributions of this paper are twofold. First,
we develop a unified geometric framework that provides
a complete decomposition of the uncontrollable subspace.
We define the global rotational subspace, Ri, to char-
acterize uncontrollable rigid-body modes, and the local
rotational subspace, Ti, to characterize locally hidden de-
formations. Second, we analyze the dynamic implications
of this structure, demonstrating that the system’s ability
to recover its shape is determined by the alignment of
a disturbance with the local component of the standard
rotational rigid-body mode. This establishes a direct link
between the geometry of hidden modes and disturbance
rejection.
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The remainder of this paper is organized as follows.
Section 2 provides the necessary background on rigidity
theory and system-theoretic concepts. Section 3 formally
defines the problem, introducing the nonlinear dynamics
and the linearized model used for analysis. Section 4
presents our main theoretical contribution: a complete
geometric characterization of the uncontrollable subspace.
Finally, Section 5 analyzes the dynamic implications of
this geometric structure and illustrates the results with a
case study.

Notations Throughout, Id denotes the identity matrix
in Rd, ek is the k-th standard basis vector in Rn, and
Ω denotes a d × d skew-symmetric matrix representing
an infinitesimal rotation. For d = 2, this is uniquely
represented (up to a scalar) by Ω =

(
0 −1
1 0

)
. The Kronecker

product is denoted by ⊗. For a stacked vector v ∈ Rnd, its
component corresponding to agent i is denoted vi ∈ Rd.
The standard Euclidean inner product is denoted by ⟨·, ·⟩.

2. PRELIMINARIES

This section provides the necessary background on graph
rigidity and system-theoretic concepts that form the basis
of our analysis.

2.1 Rigidity of Graphs

A formation of n agents is modeled as a framework (G, p),
where G = (V, E) is an undirected graph with a vertex set
V = {1, . . . , n} and an edge set E of size m = |E|. The
vector p ∈ Rnd is the stacked vector of agent positions.
A reference configuration, used to define the desired inter-
agent distances, is denoted p∗.

The shape of the framework is encoded by the vector
of squared inter-agent distances, known as the rigidity
function, r(p) : Rnd × G → Rm, with

[r(p)]k = ∥pi − pj∥2, for each edge k = (i, j) ∈ E . (1)

The first-order change in these distances due to an in-
finitesimal motion v ∈ Rnd about the reference configura-
tion p∗ is given by the Taylor expansion r(p∗+tv)−r(p∗) =
tR(p∗)v+ o(t2), where the Jacobian R(p∗) := ∇pr(p)|p=p∗

is the rigidity matrix evaluated at p∗.

An infinitesimal motion v that preserves all edge lengths
to first order is called an infinitesimal flex, and must
satisfy R(p∗)v = 0. The set of all such flexes forms the
nullspace ker(R(p∗)). Any rigid body motion (RBM) of
the entire framework is a trivial infinitesimal flex - these
are the rotations and translations of the configuration. A
framework is infinitesimally rigid if the only infinitesimal
flexes are the RBMs, meaning the nullspace of the rigidity
matrix is precisely the space of infinitesimal RBMs. For
a generic framework in R2, this is equivalent to the rank
condition rank(R(p∗)) = 2n− 3.

The rigidity matrix also defines two other fundamental
subspaces. The nullspace of its transpose, ker(R(p∗)⊤),
is the space of self-stresses. A non-zero self-stress is a
set of tensions and compressions on the edges that self-
equilibrate at every node. By the fundamental theorem of
linear algebra, the image of the transpose, Im(R(p∗)⊤),

is the orthogonal complement to the space of RBMs. It
therefore represents the space of all infinitesimal deforma-
tions. For a comprehensive treatment of rigidity theory,
see Asimow and Roth (1979); Connelly (2005).

2.2 Controllability and Observability of LTI Systems

Consider a general LTI system ẋ = Ax + Bu, y = Cx.
The system’s controllability and observability properties
determine which internal modes can be influenced by the
input or seen at the output. A key tool for this analysis
is the Popov-Belevitch-Hautus (PBH) test. For a mode of
the system represented by an eigenvector v of A, the PBH
test provides a direct algebraic condition:

i) The mode v is uncontrollable if and only if it lies in the
nullspace of B⊤, i.e., B⊤v = 0.

ii) The mode v is unobservable if and only if it lies in the
nullspace of C, i.e., Cv = 0.

These conditions allow for a formal decomposition of the
state space into four fundamental subspaces. We denote
the controllable subspace as C and the observable subspace
as O. Their orthogonal complements, the uncontrollable
and unobservable subspaces, are denoted C and O, respec-
tively. Any eigenvector v can be classified based on its
membership in the intersection of these subspaces:

• Controllable and observable: v ∈ C ∩ O.
• Uncontrollable but observable: v ∈ C ∩ O.
• Controllable but unobservable: v ∈ C ∩ O.
• Uncontrollable and unobservable: v ∈ C ∩ O.

A mode that is not both controllable and observable is
often called a hidden mode (Skogestad and Postlethwaite
(2005)).

3. PROBLEM FORMULATION

We consider a formation of n agents in Rd (typically
d = 2) with single-integrator dynamics, ṗi = ui, a standard
model in the distance-based formation control literature
(Krick et al. (2009); Oh and Ahn (2011); Babazadeh and
Selmic (2019)). The agent interactions are described by an
undirected sensing graph G.
The control objective is to steer the formation to a
configuration p that satisfies a desired set of inter-agent
distances, defined by a reference configuration p∗. This is
achieved using a standard gradient-descent control law. We
define a potential function based on the collective error in
squared edge lengths:

V (p) =
1

2
∥r(p)− r(p∗)∥2, (2)

where r(p) is the rigidity function defined (1). The con-
trol law is the negative gradient of this potential, ṗ =
−∇pV (p), which is a standard approach in the literature
(see, e.g., Krick et al. (2009); Olfati-Saber and Murray
(2002); Oh et al. (2015)). This yields the closed-loop dy-
namics:

ṗ = −R(p)⊤
(
r(p)− r(p∗)

)
. (3)

To analyze the system’s response to external disturbances,
we augment these dynamics to create an input-output
model. To build intuition, we focus on the case of a single



actuated agent i and a single measured agent j. The
nonlinear input-output model is:

ṗ = −R(p)⊤
(
r(p)− r(p∗)

)
+Bw, (4)

y = Cp, (5)

where w ∈ Rd and the input and output matrices are
B = ei ⊗ Id and C = e⊤j ⊗ Id.

Direct analysis of the nonlinear model (4) is challenging.
To gain tractable insights, we linearize the system around
the equilibrium point (p∗, w = 0). Letting δp = p− p∗, the
first-order Taylor expansion of the dynamics yields the LTI
model:

δṗ = Aδp+B δw, δy = C δp, (6)

where the system matrix A is the weighted graph Lapla-
cian, or ”stiffness matrix,” given by:

A = −R(p∗)⊤R(p∗). (7)

This LTI model forms the basis of our system-theoretic
analysis in the following sections.

4. GEOMETRIC CHARACTERIZATION
OF HIDDEN MODES

This section develops a geometric characterization of the
hidden modes for the linearized system (6). We first
establish their existence and algebraic structure before
revealing their geometric form.

4.1 Algebraic Foundations of Hidden Modes

We begin by establishing that for an infinitesimally rigid
formation, hidden modes are an unavoidable consequence
of using a single actuator.

Proposition 1. (Existence of Hidden RBMs). Consider the
linearized system (6) for an infinitesimally rigid framework
in Rd with d ≥ 2, actuated at a single node i. Let C be
the uncontrollable subspace and E0 = ker(R(p∗)) be the
RBM eigenspace. Then the dimension of the uncontrol-
lable RBM subspace satisfies

dim(C ∩ E0) ≥
d(d− 1)

2
.

Since d ≥ 2, this guarantees the existence of at least one
uncontrollable RBM.

Proof. The RBM eigenspace E0 corresponds to the zero-
eigenspace of the system matrix A = −R(p∗)⊤R(p∗). For
an infinitesimally rigid framework in Rd, this space has
dimension dim(E0) = d(d + 1)/2. By the PBH test, the
uncontrollable subspace is C =

⊕
λ(Eλ ∩ ker(B⊤)). The

uncontrollable part of the RBM eigenspace is therefore
E0 ∩ ker(B⊤). The dimension of this subspace is given by:

dim(E0 ∩ ker(B⊤)) ≥ dim(E0)− rank(B)

=
d(d+ 1)

2
− d =

d(d− 1)

2
.

For any d ≥ 2, we have d(d − 1)/2 ≥ 1, which proves the
existence of at least one uncontrollable RBM. 2

Having established their existence, we now seek to under-
stand their structure.

Proposition 2. (Uncontrollable Subspace Decomposition).
The total uncontrollable subspace C can be decomposed
into its RBM and deformational components as:

C =
(
ker(R(p∗)) ∩ ker(B⊤)

)
⊕
(
Im(R(p∗)⊤) ∩ ker(B⊤)

)
,

(8)
where ker(R(p∗)) is the RBM subspace and Im(R(p∗)⊤) is
the subspace of shape-changing deformations.

Proof. The proof follows from the spectral properties of
the symmetric matrix −R(p∗)⊤R(p∗). The eigenspace for
λ = 0 is E0 = ker(R(p∗)), and the direct sum of all
other eigenspaces is

⊕
λ̸=0 Eλ = Im(R(p∗)⊤). Since these

two subspaces are orthogonal, the total uncontrollable
subspace can be partitioned as:

C = (E0 ∩ ker(B⊤))⊕

⊕
λ̸=0

(Eλ ∩ ker(B⊤))


= (ker(R(p∗)) ∩ ker(B⊤))⊕ (Im(R(p∗)⊤) ∩ ker(B⊤)),

where the second equality holds because the intersec-
tion distributes over the direct sum of orthogonal sub-
spaces. 2

This decomposition provides the algebraic foundation. To
find a geometric interpretation for each term in (8), we
use the PBH test, which states that an eigenvector v of A
is uncontrollable if and only if B⊤v = 0. For our single-
actuator system with B = ei⊗ Id, this condition simplifies
to a direct ”pinning” constraint at the agent level.

Lemma 3. (Pinning Constraint). An eigenvector v is un-
controllable from an input applied at agent i if and only if
its component at that agent vanishes, i.e., vi = 0. Likewise,
v is unobservable from an output measured at agent j if
and only if vj = 0.

Proof. From the PBH test, a mode v is uncontrollable if
and only if B⊤v = 0. For a single actuator at node i, the
input matrix is B = ei ⊗ Id. The condition becomes:

B⊤v = (e⊤i ⊗ Id)v = vi = 0.

The proof for the unobservable case is dual, with C = e⊤j ⊗
Id. 2

4.2 Geometric Characterization of the Uncontrollable RBM

We now use pinning constraint formulated in Lemma
3 to find a geometric interpretation for the RBM and
deformational components of the uncontrollable subspace.
We first ask: what is the geometric form of the guaranteed
hidden RBM from Proposition 1? Applying the pinning
constraint to a general RBM reveals its structure.

Proposition 4. (Uncontrollable RBM is a Pure Rotation).
The uncontrollable RBM subspace, ker(R(p∗))∩ ker(B⊤),
is the d(d− 1)/2-dimensional rotational subspace Ri(p

∗).
This subspace consists of all infinitesimal motions corre-
sponding to a pure rotation of the framework about the
actuator node i,

Ri(p
∗) :=

{
v ∈ Rdn | vk = Ω(p∗k − p∗i ), ∀k ∈ V

}
,

as illustrated in Figure 1.



Fig. 1. Geometric interpretation of the hidden RBM sub-
spaces, illustrated for the planar case (d = 2). The
dashed gray lines show the framework’s configuration
for visual context. The red arrows depict a motion in
the uncontrollable rotational subspace Ri(p

∗), a pure
rotation of the entire framework about the actuated
node i (red). The dashed red lines emphasize that
this global rotation depends on the relative position
of every node with respect to node i. Similarly, the
blue arrows and dashed lines illustrate a motion in
the unobservable rotational subspace Rj(p

∗), a pure
rotation about the measured node j (blue).

Proof. An arbitrary RBM v ∈ ker(R(p∗)) can be uniquely
decomposed into a translation and a rotation about the
center of mass, pcm = 1

n

∑
k p

∗
k. The motion at agent k is

given by

vk = b+ [vr]k,

where b ∈ Rd is the translational velocity and [vr]k =
Ω(p∗k − pcm) is the local velocity of the rotational mode
at node k. The uncontrollability condition from Lemma
3 requires the motion at the actuated agent i to be zero,
vi = 0. This imposes a constraint on the translation,

b+ [vr]i = 0 =⇒ b = −[vr]i = −Ω(p∗i − pcm).

This fixes the translational component in terms of the
rotational component. Substituting this expression for b
back into the general motion for an arbitrary agent k yields

vk = −[vr]i + [vr]k
= −Ω(p∗i − pcm) + Ω(p∗k − pcm)

= Ω(p∗k − p∗i ).

This resulting motion vector v, whose components are
vk = Ω(p∗k − p∗i ), is precisely the form of an element in
the rotational subspace Ri(p

∗) as defined in the proposi-
tion. 2

This proof reveals a key geometric insight: the algebraic
“pinning constraint” vi = 0 forces the center of rotation
of any hidden RBM to coincide with the actuated node
i. This establishes a direct and intuitive link between the
placement of the actuator and the geometric form of the re-
sulting uncontrollable mode. By duality, any unobservable
RBM must be a pure rotation about the measured node
j. This result provides the geometric identity for the first
component of the uncontrollable subspace decomposition
in (8).

4.3 Locally Hidden Deformations

Having characterized the hidden RBMs, we now generalize
our approach to find hidden deformations. The gradient
controller at node i is driven only by errors in its incident
edges. A motion is therefore “locally hidden” from the
controller at node i if it generates no first-order change
in these local edge lengths.

To formalize this, we consider the components of the
rigidity function, [r(p)]k = ∥pi − pj∥2, corresponding to
the edges incident to node i. These form the star relations
at i. The first-order change in these relations due to an
infinitesimal motion v is given by

δ[r(p)]k = 2(p∗i−p∗j )
⊤(vi−vj), for each edge k = (i, j) ∈ E .

A motion v is locally hidden from node i if it produces
no change in these local measurements, i.e., δ[r(p)]k = 0
for all edges k incident to i. This motivates the following
definition, which adds the pinning constraint vi = 0.

Definition 5. (The Local Rotational Subspace Ti). The set
of infinitesimal motions that fix node i and preserve the
lengths of all its incident edges to first order, denoted
Ti(G, p∗), is defined as

Ti := {v ∈ Rdn : vi = 0 and (p∗k−p∗i )
⊤vk = 0,∀(i, k) ∈ E}.

This subspace is spanned by a set of vectors correspond-
ing to elementary rotational motions. Each basis vector,
denoted τi→k, represents a motion where only a single
neighbor k rotating infinitesimally around the fixed central
node i. Such a motion has the form:

τi→k := (ek ⊗ Id) Ω (p∗k − p∗i ).

These elementary motions are illustrated in Figure 2.

Ti (actuated)

Tj (measured)

Fig. 2. Geometric interpretation of the local rotational
subspaces, illustrated for the planar case (d = 2).
The union of the thick black and dashed gray lines
represents the edges of the sensing graph G. The thick
black lines emphasize the star of edges incident to
the actuated node i (red) and the measured node
j (blue). The local rotational subspace Ti is defined
by these incident edges at i. The red arrows show
elementary motions in Ti, which are locally invisible
to the controller at i. Similarly, the blue arrows
show motions in Tj , which are locally invisible to
the measurement at j. Each arrow is orthogonal to
its corresponding edge vector, representing a purely
rotational motion of a neighbor around its central
node.



Proposition 6. (Geometric Subspace Inclusion). The rota-
tional subspace Ri(p

∗) is a subspace of the local rotational
subspace Ti(G, p∗),

Ri(p
∗) ⊆ Ti(G, p∗).

Proof. A motion v ∈ Ri(p
∗) has the form vk = Ω(p∗k−p∗i )

for some skew-symmetric matrix Ω. This motion satisfies
the first condition of Definition 5, vi = Ω(p∗i − p∗i ) = 0. It
also satisfies the second condition, (p∗k − p∗i )

⊤vk = (p∗k −
p∗i )

⊤Ω(p∗k − p∗i ) = 0, which holds for any vector because Ω
is skew-symmetric. Thus, any element of Ri(p

∗) is also an
element of Ti(G, p∗). 2

The inclusion Ri(p
∗) ⊆ Ti(G, p∗) highlights a key distinc-

tion. A motion is “locally rigid at i” if it preserves the
lengths of all edges incident to node i to first order. The
global rotation in Ri is one such motion, as it preserves
all edge lengths. However, Ti also contains motions that
are not globally rigid. Consider an elementary rotational
motion τi→k ∈ Ti, which rotates only neighbor k around
the fixed node i. This motion preserves the length of the
edge (i, k) by construction, making it locally rigid at i.
However, it will generally change the distances between
node k and any other node in the framework, causing a
global deformation. Therefore, while Ri contains only a
single global RBM, the local rotational subspace Ti is gen-
erally larger and also contains these globally deformational
motions that lie in Im(R(p∗)⊤).

4.4 Unified Geometric Decomposition

The local rotational subspace, Ti, introduced in Defini-
tion 5, provides a complete and unified geometric charac-
terization for the entire uncontrollable subspace, regardless
of whether the framework is rigid or flexible.

Theorem 7. (Unified Geometric Characterization). For any
framework (G, p∗) with a single actuator at node i, the
total uncontrollable subspace C is precisely the local rota-
tional subspace Ti:

C = Ti(G, p∗).

Proof. By the PBH test and Lemma 3, a mode is uncon-
trollable if and only if it is pinned at the actuator, vi = 0.
The gradient control law at node i is driven by errors in
its incident edges. A motion is therefore invisible to this
local control action if it preserves the lengths of all incident
edges to first order. The subspace Ti is, by definition, the
set of all motions that satisfy both of these conditions.
Therefore, it represents the entirety of the uncontrollable
subspace. 2

This result can be specialized to different classes of frame-
works by decomposing Ti based on the framework’s rigidity
properties.

Corollary 8. (Infinitesimally Rigid Frameworks). For an in-
finitesimally rigid framework, the state space decomposes
into orthogonal RBM and deformational subspaces, Rdn =
ker(R(p∗))⊕Im(R(p∗)⊤). The uncontrollable subspace can
then be written as:

C = Ri(p
∗)⊕

(
Ti(G, p∗) ∩ Im(R(p∗)⊤)

)
.

Proof. For a rigid framework, ker(R(p∗)) contains only
RBMs. The intersection of Ti with this RBM subspace is

precisely Ri(p
∗) (by Prop. 4 and Prop. 6). The remain-

der of Ti must lie in the orthogonal deformational sub-
space, Im(R(p∗)⊤). The result follows from decomposing
Ti across these two orthogonal subspaces. 2

Corollary 9. (Complete Graphs). For a complete graph
G = Kn with n ≥ d + 1, the local rotational subspace
is identical to the global one, Ti(G, p∗) = Ri(p

∗). The
uncontrollable subspace simplifies to:

C = Ri(p
∗).

Proof. The condition n ≥ d + 1 ensures that a complete
graph Kn is infinitesimally rigid in Rd Connelly (2005).
Now, let v be an arbitrary motion in Ti(G, p∗). By defini-
tion, vi = 0 and the lengths of all edges incident to node i
are preserved to first order. For v to be a valid infinitesimal
motion of the framework, it must preserve the lengths of all
edges. Since the graph is complete, this includes the edges
(j, k) for all pairs j, k ̸= i. The rigidity of the framework
then implies that a motion fixing one node while preserving
all other inter-node distances must be a pure rigid-body
rotation about the fixed node. This is precisely the defini-
tion of a motion in Ri(p

∗). Thus, Ti(G, p∗) ⊆ Ri(p
∗). Since

we already know from Prop. 6 that Ri(p
∗) ⊆ Ti(G, p∗), the

two subspaces must be equal. 2

5. DYNAMIC IMPLICATIONS OF HIDDEN MODES

We now analyze the dynamic consequences of the hidden
modes, investigating how a localized input at agent i
affects the formation’s ability to recover its shape. This
reveals a direct link between the geometry of the un-
controllable subspace Ri and the system’s steady-state
response.

We analyze the system’s steady-state response to an im-
pulsive input, w(t) = w0δ(t), where w0 ∈ Rd is the
direction of the impulse. The final state deviation is given
by the projection of the initial impulse onto the RBM
eigenspace E0 = ker(R(p∗)),

lim
t→∞

δp(t) = P0Bw0, (9)

where P0 is the orthogonal projection matrix onto E0.
Let {vx, vy, vr} be an orthonormal basis for the RBM
space, representing x-translation, y-translation, and rota-
tion about the center of mass, respectively. The final state
will be a linear combination of these modes,

lim
t→∞

δp(t) = cxvx + cyvy + crvr, (10)

where the coefficients are determined by the input:

cx = ⟨vx, Bw0⟩, cy = ⟨vy, Bw0⟩, cr = ⟨vr, Bw0⟩.

The key insight is that shape recovery depends entirely on
whether the global rotational mode vr is excited (i.e., if
cr ̸= 0). The ability of a local input at node i to excite
this global mode is determined by a simple geometric
condition. The coefficient of the rotational mode in the
final state is given by the inner product cr = ⟨vr, Bw0⟩ =
⟨[vr]i, w0⟩, where [vr]i is the local velocity of the rotational
mode at the actuated node. This vector is a key geometric
feature related to the structure of the uncontrollable
subspace Ri. Excitation of the rotational mode, and thus
the final shape of the formation, is therefore governed by
the alignment of the input direction w0 with the local
vector [vr]i.



Proposition 10. (Shape Recovery Dichotomy). Consider an
impulsive input w(t) = w0δ(t) applied at agent i. The
ability of the formation to recover its shape is determined
by the alignment between the input vector w0 and the local
rotational vector [vr]i. This vector is a defining component
of the uncontrollable rotational subspace Ri.

(i) Perfect Shape Recovery:
If the input is orthogonal to the local rotational direc-
tion, ⟨[vr]i, w0⟩ = 0, then the rotational mode is not
excited (cr = 0). The resulting steady-state motion is
a pure translation of the entire framework. All inter-
agent distances are preserved, and the steady-state
edge error is zero.

(ii) Persistent Shape Distortion:
If the input has a component along the local rota-
tional direction, ⟨[vr]i, w0⟩ ̸= 0, then the rotational
mode is excited (cr ̸= 0). The resulting steady-state
motion is a combination of translation and rotation,
which causes a persistent change in the inter-agent
distances and a non-zero steady-state edge error.

Proof. The coefficient for the rotational mode is cr =
⟨vr, Bw0⟩ = ⟨vr, (ei⊗Id)w0⟩ = ⟨[vr]i, w0⟩. We now analyze
the steady-state edge error based on this coefficient. The
final configuration is p′ = p∗ + δp(∞). An edge k = (j, l)
is preserved if ∥p′j − p′l∥2 = ∥p∗j − p∗l ∥2.
Case 1: Perfect Shape Recovery If cr = 0, the final state is
δp(∞) = cxvx + cyvy. This is a pure translation, meaning
the displacement is the same for all agents: [δp(∞)]k = b
for some constant vector b ∈ Rd. The new relative position
for edge (j, l) is

p′j − p′l = (p∗j + b)− (p∗l + b) = p∗j − p∗l .

The edge lengths are perfectly preserved, resulting in zero
steady-state edge error.

Case 2: Persistent Shape Distortion If cr ̸= 0, the final
state includes a rotational component: [δp(∞)]k = b +
crΩ(p

∗
k − pcm). The new relative position for edge (j, l) is

p′j − p′l =
(
p∗j + b+ crΩ(p

∗
j − pcm)

)
−
(
p∗l + b+ crΩ(p

∗
l − pcm)

)
= (p∗j − p∗l ) + crΩ(p

∗
j − p∗l )

= (Id + crΩ)(p
∗
j − p∗l ).

The new squared edge length is ∥(Id + crΩ)(p
∗
j − p∗l )∥2.

For cr ̸= 0, the operator (Id+ crΩ) is not an isometry and
will change the length of a generic vector. To show this,
let x = p∗j − p∗l . Using the fact that Ω is skew-symmetric

(ΩT = −Ω), the new squared length is:

∥(Id + crΩ)x∥2 = xT (Id − crΩ)(Id + crΩ)x

= xT (Id − c2rΩ
2)x

= ∥x∥2 − c2rx
TΩ2x = ∥x∥2 + c2r∥Ωx∥2.

Since Ω is non-zero and x is a generic vector, ∥Ωx∥2 > 0.
Therefore, for any cr ̸= 0, the new squared length is
strictly greater than ∥x∥2, leading to a persistent, non-
zero edge error. 2

This result reveals a fundamental dichotomy in the sys-
tem’s response, illustrated in Figures 3 and 4, and dis-
cussed in detail in the following subsection.
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Fig. 3. Shape recovery with an orthogonal input. (a)
An impulse orthogonal to the local rotational RBM
direction at the actuated node results in a pure
translation. (b) The edge length errors decay to zero.

5.1 Case Study: Minimally Rigid Framework

To illustrate the shape recovery dichotomy for an infinites-
imally rigid framework, we consider a minimally rigid
formation of four agents in the plane, as shown in Figures 3
and 4. An impulsive input is applied at node 1.

First, we consider an input w0 chosen to be orthogo-
nal to the local rotational vector at the actuated node,
⟨[vr]1, w0⟩ = 0. This corresponds to Case 1 of Proposi-
tion 10, which predicts that the rotational mode is not
excited (cr = 0). Figure 3(a) shows the resulting motion:
the formation undergoes a pure translation. Figure 3(b)
confirms this, showing that all edge length errors decay to
zero after the initial transient, and the formation perfectly
recovers its shape.

Next, we consider an input w0 that has a component
aligned with the local rotational vector, ⟨[vr]1, w0⟩ ̸= 0.
This corresponds to Case 2 of the proposition. This input
excites the rotational mode (cr ̸= 0). Figure 4(a) shows
that the final motion is a combination of translation
and rotation. This global rotation causes the framework
to deform, as shown in Figure 4(b), where the edge
length errors converge to persistent, non-zero values. This
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Fig. 4. Shape distortion with an aligned input. (a) An
impulse with a component along the local rotational
RBM direction excites a rotational motion. (b) The
formation deforms, resulting in persistent edge length
errors.



simulation provides a clear dynamic validation of our
geometric analysis.

The case study demonstrates the shape recovery di-
chotomy, but a deeper geometric explanation is needed to
unify our contributions. The fundamental reason for this
behavior lies in the geometry of the mapping from the 2D
input space to the 3D space of RBM coordinates. As we
will now show, this mapping is constrained in a way that
directly explains the dichotomy.

This geometric structure provides the final link between
our two main contributions. The mapping from an input
w0 ∈ R2 to the RBM coordinates c = (cx, cy, cr) ∈ R3

is a linear transformation whose image is the “controllable
plane” shown in Figure 5. The normal vector to this plane,
nc, has a direct physical meaning: it is the coordinate
vector of the uncontrollable RBM.

To derive this vector, we seek the coordinates of an
RBM that is uncontrollable. Let an arbitrary RBM be
represented by the coordinate vector c = (cx, cy, cr)

⊤, such
that its motion is v = cxvx + cyvy + crvr. By Lemma 3,
this mode is uncontrollable if and only if its motion at the
actuated node is zero, vi = 0. This gives the constraint:

cx[vx]i + cy[vy]i + cr[vr]i = 0.

By choosing a standard basis where [vx]i = (1, 0)⊤ and
[vy]i = (0, 1)⊤, this simplifies to (cx, cy)

⊤ = −cr[vr]i. This
equation defines a 1D subspace of RBM coordinates. A
basis vector for this subspace can be found by setting
cr = 1, which yields (cx, cy)

⊤ = −[vr]i. This gives the
coordinate vector of the uncontrollable RBM as nc =(−[vr]i

1

)
.

The motion corresponding to these coordinates is vuctrb =
−[vr]ixvx − [vr]iyvy + vr, which, as shown previously,
corresponds to a motion [vuctrb]k = [vr]k − [vr]i in the
uncontrollable subspace Ri(p

∗).

Finally, the fact that any RBM excited by an input
w0 has coordinates c = (w⊤

0 , ⟨[vr]i, w0⟩)⊤ means that it
must satisfy the orthogonality condition ⟨c, nc⟩ = 0. This
confines all reachable RBMs to the “controllable plane,”
formally defined as the subspace {c ∈ R3 | ⟨c, nc⟩ =
0}. This geometric constraint directly explains the shape
recovery dichotomy: an input w0 orthogonal to [vr]i forces
cr = 0, confining the outcome to the intersection line

cx cy

cr

cr = 0

Uncontrollable Direction
nc =

(−[vr]i
1

)
Controllable Plane

Fig. 5. Geometric illustration of the input-to-RBM map.
The set of all reachable RBMs forms the blue “con-
trollable plane.” This plane is orthogonal to the “un-
controllable direction” nc. The horizontal plane repre-
sents the subspace of pure translations (cr = 0). The
intersection of these two planes is the 1D subspace of
outcomes that result in perfect shape recovery.

shown in Figure 5. This results in a pure translation and
ensures perfect shape recovery.

6. CONCLUSION

In this paper, we presented a geometric input-output anal-
ysis of hidden modes in distance-based formation control.
We proved that for a system with a single actuated agent,
the uncontrollable subspace is completely characterized
by the local rotational subspace, Ti, which contains all
motions locally invisible to the controller at the input
node i. This geometric object provides a complete charac-
terization, encompassing both global rigid-body rotations
about the input node (the subspace Ri) and locally hidden
deformations.

From an input-output perspective, we demonstrated the
dynamic consequences of this structure. We proved a shape
recovery dichotomy where the system’s ability to reject a
localized disturbance is determined by the input’s align-
ment with the local component of the standard rotational
RBM. This input-output link was solidified by showing
that the space of all reachable RBMs forms a “controllable
plane” whose normal vector is the coordinate represen-
tation of the uncontrollable RBM, elegantly unifying the
system’s geometric constraints and its dynamic input-
output behavior.

While the linearized analysis provides crucial insights, the
true system performance is governed by nonlinear effects.
Future work will aim to extend our geometric input-output
characterization to the original nonlinear dynamics.
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