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Abstract—Equilibrium-independent passive-short (EIPS)
systems are a class of systems that satisfy a passivity-like
dissipation inequality with respect to any forced equilibria
with nonpositive passivity indices. This article presents a
geometric approach for finding a passivizing transforma-
tion for such systems, relying on their steady-state input–
output relation and the notion of projective quadratic in-
equalities (PQIs). We show that PQIs arise naturally from
passivity-shortage characteristics of an EIPS system, and
the set of their solutions can be explicitly expressed. We
leverage this connection to build an input–output mapping
that transforms the steady-state input–output relation to a
monotone relation, and show that the same mapping pas-
sivizes the EIPS system. We show that the proposed trans-
formation can be implemented through a combination of
feedback, feedthrough, post- and premultiplication gains.
Furthermore, we consider an application of the presented
passivation scheme for the analysis of networks comprised
of EIPS systems. Numerous examples are provided to illus-
trate the theoretical findings.

Index Terms—Cooperative control, geometry, nonlinear
control, passivation, passivity.

I. INTRODUCTION

COOPERATIVE control has been extensively studied in
the last few years, as it displays both interesting theo-

retical questions, as well as a wide range of engineering ap-
plications [1]–[3]. One widespread tool in cooperative control
is the notion of passivity [3]–[5]. Passivity theory was first
applied to multiagent systems in [6], where it was used to solve
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group coordination problems. Since then, different variants of
passivity were used for solving various problems in robotics [7],
synchronization [8], and distributed optimization [9].

The classical notion of passivity, as appears in [10], is defined
with respect to equilibrium at the origin. Some authors also
define shifted passivity, which is defined with respect to an
input–output (I/O) pair of the system, to apply passivity-based
methods to systems having forced equilibria [6], [11], and [12].
For brevity, we shall not differentiate the two concepts, and refer
to both as passivity. The notion of passivity with respect to a
single input–output pair may not be sufficient for stability anal-
ysis of multiagent systems, as the interconnection of (shifted)-
passive systems is stable only if the closed-loop network has an
equilibrium, which can be hard to verify for networks comprised
of multiple nonlinear agents having different dynamics.

To remedy this issue, several variants of passivity were
developed, demanding systems to be passive with respect to
any equilibrium input–output pairs or trajectories. Incremental
passivity [13] demands that a passivation inequality is held with
respect to pairs of trajectories, but is often too restrictive. An-
other variant, equilibrium-independent passivity (EIP), demands
that the system is passive with respect to any equilibrium it has,
and models the steady-state output as a continuous (monotone)
function of the steady-state input (see [12] and [14]). This variant
has many applications, e.g. [15], [16], but does not include some
fundamental systems such as the single integrator, characterized
by having multiple steady-state outputs for the steady-state input
u = 0 (due to different initial conditions). Another variant of
passivity is maximal equilibrium-independent passivity (MEIP),
introduced in [17]. Here, passivity is assumed with respect to all
equilibria, and the steady-state output is modeled as a maximally
monotone relation of the steady-state input, generalizing EIP.
In [17], it was shown that a diffusively coupled network of
single-input single-output (SISO) output-strictly MEIP agents
and SISO MEIP controllers converges, and its limit can be found
as the minimizers of two dual convex network optimization
problems associated with the network, usually referred to as
the optimal flow problem and optimal potential problem [18]. In
this way, the convex network optimization problems give a com-
putationally viable way of computing the limit of the diffusively
coupled network. This connection was used in [19]–[21] to solve
various synthesis problems, and in [22] for fault detection and
isolation problems.
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In practice, however, many systems are not passive [23]–
[26]. Their lack of passivity is often quantified using the
input-passivity index and the output-passivity index [27], and
is often compensated using passivation methods (also known as
passification methods [28]). The goal of this article is to present
a novel passivation method for systems which are not passive,
but have a shortage of passivity, characterized by a weaker
dissipation inequality.

A. Literature Review

The most common methods to passivize a system rely on
feedback. A well-known approach is output feedback using
a fixed gain [10]. This approach passivizes systems with a
negative output-passivity index [27], otherwise known as output
passive-short systems. Another method considers output feed-
back using a controller with prescribed passivity indices [27], but
passivation is again achieved only for passive-short systems [27,
Th. 7]. One can similarly consider input feedthrough, passivizing
systems with a negative input-passivity index [27], known as
input-passive-short systems.

Other prominent feedback-based methods used for passiva-
tion include state feedback and output feedback by general static
nonlinearities (see [28]–[33] and references therein). These
approaches were proven to work for weakly minimum phase
systems with relative degree at most 1, but can have several
problems. First, like Lyapunov theory, these methods are often
nonconstructive, and heavily rely on structural properties of the
system at hand [34, Ch. 1]. Second, the construction of the
feedback law requires an exact model of the system, or at least an
approximate one. This can be a problem in cases where the model
of the system changes, due to faults, wear-and-tear, unforeseen
working conditions, etc. As passivity indices can be estimated
using in-run data [35]–[37], passivation methods relying on
passivity indices can mitigate this effect by adapting the assumed
passivity indices. We also mention other methods building on
state feedback, such as backstepping and forwarding [34, Ch. 6],
which remove either the minimum-phase or the relative-degree
requirement, but replace it with a structural assumption on the
model of the system, i.e., the system must be in a triangular form.

A novel method for mitigating the problems of feedback-
based methods was presented in [38]. The method considers a
general I/O transformation, which defines a new input and a new
output for the system as a linear combination of its original input
and output. This method generalizes output feedback and input
feedthrough with constant gains. In [38], this I/O transformation
was used to passivize systems with a finite L2-gain. Namely,
the entries of the matrix defining the I/O transformation were
chosen according to theL2-gain of the system at hand by solving
a collection of equations and inequalities. In particular, the
method is constructive and can successfully cope with a change
in the dynamics by measuring the L2-gain of the new system
and updating the entries of the matrix accordingly. However,
the applicability of this method is limited to systems with
a finite L2-gain, which excludes all unstable systems, input-
or output-passive short systems, as well as some marginally
stable systems such as the single integrator. Thus, there is a

need for a more sophisticated passivization approach to deal
with a wider class of systems. This motivates the goals of this
article.

B. Contributions

In this article, we build on [38] and propose a novel method for
constructing passivizing I/O transformations. Our approach is
based on analytic geometry, which is applicable to a wider class
of systems characterized by a passivity-like dissipation inequal-
ity with arbitrary passivity indices. Unlike in [38], these systems
need not have a finite L2-gain. We define these systems as
input–output (ρ, ν)-passive systems, including, but not restricted
to, output passive-short system, input passive-short systems, and
finiteL2-gain systems. We show how to use the passivity indices
of such systems to build a passivizing I/O transformation that
can be realized using an amalgamation of easily implementable
components such as input feedthrough, output feedback, and
gains. We consider systems that are input–output (ρ, ν)-passive
with respect to all forced equilibria. The collection of all these
steady-state input–output pairs is known as the steady-state I/O
relation of the system. The steady-state I/O relation for passive
systems is known to be monotone [14], [17], and we show that
this relation is nonmonotone for passive-short systems. To tackle
such systems, we introduce the notion of projective quadratic
inequalities (PQIs), that are inequalities in two scalar variables,
as well as methods inspired from analytic geometry to find a
linear transformation monotonizing1 the steady-state relation of
the system. We then show that the linear transformation gives
rise to an I/O transformation, which is shown to passivize the
system with respect to all forced equilibria. We further discuss an
application of this passivation scheme for multiagent systems,
in which, the notion of MEIP leads to a network optimization
framework for analysis. As we already know that the passivized
systems have monotone steady-state relations, the missing key
notion for assuring MEIP is maximality. In this direction, we
introduce the notion of cursive relations to assert maximality
of the monotonized relations, proving the agents are MEIP, and
allowing us to derive a transformed network optimization frame-
work in the spirit of [17]. We also reproduce the results of [39] as
a special case, which proves a network optimization framework
assuming the agents only have an output-shortage of passivity.
We exemplify our results by characterizing a class of linear
and time-invariant systems as EIPS systems, and give two case
studies by comparing our results with the existing literature. We
emphasize that our results are also valid for classical passivity,
as PQIs abstract all notions of classical passivity discussed in
the introduction.

The rest of the article is organized as follows. Section II
presents some background and provides a few definitions.
Section III motivates and formulates the problem. Section IV
discusses the steady-state I/O relation of passive-short systems,
and suggests a geometric method of finding a monotonizing

1We introduce this word and it has the meaning of “to make monotone.” In
simple words, monotonizing means converting any (non-monotone) relation to
a monotone relation.
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transformation. Section V shows that the monotonizing trans-
formation passivizes the system, and shows how to implement
the said transformation using basic control elements, such as
feedback, feedthrough, and gains. Section VI discusses the
notion of input–output (ρ, ν)-passivity and its generality. Sec-
tion VII studies the last obstacle needed for MEIP, namely,
maximal monotonicity, and formulates the network optimization
framework. Section VIII presents two examples of applying our
methods, before we conclude the article in Section IX.

Preliminaries: We use notions from graph theory [40]. A
graph is a pair G = (V ,E), consisting of a finite set of vertices
V , and a finite set of edges, E ⊂ V × V . Each edge e ∈ E
consists of two vertices i, j ∈ V , and the notation e = (i, j)
indicates that i is the head of edge e and j is its tail. The
incidence matrix E ∈ R|V |×|E| of G is defined such that for
any edge e = (i, j), [E ]ie = +1, [E ]je = −1, and [E ]�e = 0 for
� �= i, j. The n× n identity matrix is denoted by Idn, and 000n
is the all-zero vector. The Legendre transform of a convex
function Φ : Rd → R is a function Φ� : Rd → R defined by
Φ�(y) = supu∈Rd{u�y − Φ(u)} [41]. Moreover, the subdiffer-
ential of a convex function Φ is denoted as ∂Φ. A relation,
i.e., a subset Ω ⊆ A× B of a product set, is identified with
the set-valued map sending a ∈ A to {b ∈ B : (a, b) ∈ Ω}.
Given a relation Ω ⊆ A× B, Ω−1 denotes the inverse relation
of Ω, i.e., Ω−1 := {(b, a) ∈ B ×A : (a, b) ∈ Ω}. We follow the
convention that italic letters denote dynamic variables and letters
in normal font denote constant signals.

II. BACKGROUND

This section reviews the concept of MEIP, introduces sys-
tems with finite equilibrium-independent passivity indices, and
describes the network model for diffusively coupled systems.

A. Maximal Equilibrium-Independent Passivity

Consider the following SISO dynamical system

Υ : ẋ = f(x, u); y = h(x, u) (1)

with state x ∈ Rn, control input u ∈ R, and output y ∈ R. The
functions f and h are assumed to be sufficiently smooth. We
assume the systems in the form (1) admit forced steady-state
input–output equilibrium pairs. This leads to the following def-
inition, used extensively in the literature [12], [14], [17], [20].

Definition 1: The steady-state input–output relation of the
system (1) is the collection of all steady-state input–output pairs
(u, y). That is, it is equal to the set k = {(u, y) : ∃ x, 000n =
f(x, u), y = h(x, u)}. The corresponding inverse relation is
given by k−1 = {(y, u) : (u, y) ∈ k}.

Note that any steady-state relation can be thought of as a
set-valued map. Namely, for any constant input u, we can define
k(u) as the setk(u) = {y : (u, y) ∈ k}. Note thatk(u) = ∅ if no
steady-state output corresponding to the inputu exists. Similarly,
for a steady-state output y, we define k−1(y) as k−1(y) = {u :
(u, y) ∈ k}, the set of all constant inputs u that can generate y.
In this sense, the inverse relation can always be defined, as we
do not assume k to be a function.

For EIP systems, it is shown in [14] that the steady-state I/O
relationk is a continuous and monotonically increasing function.
In particular, for any steady-state input u there is exactly one
steady-state output y. However, EIP excludes some important
system classes, e.g., the single integrator [17]. To capture the
behavior of systems where the steady-state I/O relations are not
necessarily a function, but rather a relation, the notion of MEIP
was suggested relying on maximal monotonicity of the steady-
state I/O relation [17].

Definition 2: A relation k is said to be maximal monotone if
1) it is monotone, i.e., for any (u1, y1), (u2, y2) ∈ k, we have

that (u2 − u1)(y2 − y1) ≥ 0;
2) it is not contained in a larger monotone relation.

The notion of maximal monotonicity is closely related to
convex functions as described in the following theorem.

Theorem 1 ([41]): A relation k is maximally monotone if and
only if there exists a convex functionΦ, such that the subgradient
∂Φ is equal to k. Moreover, Φ is unique up to an additive
constant. The function Φ is called the integral function of k.

Maximal monotonicity induces the following system-
theoretic property.

Definition 3 ([17]): A dynamical SISO system Σ : u �→ y
is (output-strictly) maximal equilibrium independent passive
(MEIP) if

1) the system Σ is (output-strictly) passive with respect to
any steady-state I/O pair (u, y) it possesses;

2) the associated steady-state I/O relation is maximally
monotone.

Examples of MEIP systems include single integrators, port-
Hamiltonian systems, gradient systems, and others; see [17]
for further discussion. One important aspect of MEIP systems
is their integral functions, as mentioned in Theorem 1 above.
Since the steady-state I/O relation k is maximally monotone for
an MEIP system, there exists a convex function K, such that
∂K = k. Moreover, the Legendre transform of K, denoted as
K�, is also a convex function, and satisfies ∂K� = k−1. Thus,
both k, k−1 have integral functions that are necessarily convex.
However, this is not true for passive-short systems, as will be
shown in Section III.

B. Equilibrium-Independent Shortage of Passivity

The main advantage of applying an equilibrium-independent
notion of passivity for multiagent systems is that it allows to
prove convergence without specifying the steady-state limit
(see [12], [14], [17] and Section II-C). However, many systems
in practice are not passive [23]–[26], and even fewer are passive
with respect to all equilibria. The level of passivity, or shortage
thereof, is usually measured using passivity indices. We first
define the notion of shortage of passivity that we consider, and
later adjust it to fit into the equilibrium-independent framework.

Definition 4: Let Σ be a SISO system with a constant input–
output steady-state pair (u, y). The system Σ is said to be

1) output ρ-passive with respect to (u, y) if there exist a
storage function S(x), and a number ρ ∈ R, such that the
following inequality holds for any trajectory:

Ṡ ≤ −ρ(y − y)2 + (y − y)(u− u) (2)
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2) input ν-passive with respect to (u, y) if there exist a
storage function S(x), and a number ν ∈ R, such that
the following inequality holds for any trajectory:

Ṡ ≤ −ν(u− u)2 + (y − y)(u− u); (3)

3) input–output (ρ, ν)-passive with respect to (u, y) if there
exist a storage functionS(x), and numbers ρ, ν ∈ R, such
that ρν < 1

4 and that the following inequality holds for
any trajectory:

Ṡ ≤ −ρ(y − y)2 − ν(u− u)2 + (y − y)(u− u). (4)

Remark 1: Output ρ-passive systems with ρ < 0 are known
in the literature both as output-passive short or output passivity-
short systems [23], [24], [39], [42]–[44] or as output-passifiable
systems [45], [46]. Similarly, input ν-passive systems with ν <
0 are usually called input-passive short systems or as input-
passifiable systems.

Definition 5: A SISO system Σ : u �→ y is said to be
1) equilibrium-independent output ρ-passive (EI-OP(ρ)) if

it is output ρ-passive with respect to any equilibrium;
2) equilibrium-independent input ν-passive (EI-IP(ν)) if it

is input ν-passive with respect to any equilibrium;
3) equilibrium-independent input–output (ρ, ν)-Passive

(EI-IOP(ρ, ν)) if it is input–output (ρ, ν)-passive with
respect to any equilibrium.

Moreover, for EI-OP(·) and EI-IP(·), the largest num-
bers ρ, ν for which the inequalities (2) and (3) hold are
called the equilibrium-independent output-passivity index and
equilibrium-independent input-passivity index of the system, re-
spectively. Furthermore,Σ is said to be equilibrium-independent
passive short (EIPS) if there exist ρ, ν with ρν < 1

4 , such that Σ
is EI-IOP(ρ, ν).

Remark 2: The numbers ρ, ν in Definition 5 are not unique,
as decreasing them makes the inequality easier to satisfy. We
thus define the equilibrium-independent passivity indices anal-
ogously to the output feedback passivity index (OFP) and the
input feedthrough passivity index (IFP) in [26]. Moreover, the
definition above unites strictly-passive, passive, and passive-
short systems. The case ρ, ν > 0 corresponds to strict passivity,
ρ, ν = 0 corresponds to passivity, and ρ, ν < 0 corresponds to
shortage of passivity. Thus, it will allow us to consider networks
of systems where some are passive and some are passive-short,
without needing to specify the exact passivity assumption. It
also allows us to consider EI-IOP(ρ, ν) systems for ρ > 0 and
ν < 0 (or vice versa) with no additional effort needed.

Remark 3: The demand thatρν < 1
4 for defining EI-IOP(ρ, ν)

might seem unnatural. The reason we add it is that otherwise,
the right-hand side of (4) will either be always positive or always
negative. The first case implies all static nonlinearities are EI-
IOP(ρ, ν), and the second case implies that no system can be
EI-IOP(ρ, ν), both rendering the definition useless.

Remark 4: EI-IOP(ρ, ν) systems capture both EI-OP(ρ) and
EI-IP(ν) systems by setting either ρ = 0 or ν = 0.

We now give an example of a class of EI-OP(ρ) systems.
Proposition 1: Consider the SISO gradient system ẋ =

−∇U(x) + u; y = x, where the Hessian of the potential U
satisfies Hess(U) ≥ ρId for some ρ ∈ R. Then Σ is EI-OP(ρ).

Fig. 1. Diffusively coupled network.

Proof: Take a steady-state I/O pair (u, y) and note x = y is
the corresponding state at equilibrium. Consider the storage
function S(x) = 1

2‖x− x‖2. The derivative of S along the
system trajectories is Ṡ = (x− x)�(−∇U(x) + u). Defining
ϕ(x) := ∇U(x)− ρx, we write Ṡ = (x− x)�(−ϕ(x)− ρx+
u). Adding and subtracting ϕ(x) and ρx and using the fact that
u = ∇U(x), y = x andϕ(x) = ∇U(x)− ρx at equilibrium, we
obtain Ṡ = −(x− x)�((ϕ(x)− ϕ(x))− ρ(y − y)�(y − y) +
(y − y)(u− u)). It is straightforward to verify that Hess(U) ≥
ρId implies that∇ϕ(x) ≥ 0, soϕ(·) is a monotone operator, that
is, −(x− x)�((ϕ(x)− ϕ(x)) ≤ 0. We thus conclude that Ṡ ≤
−ρ(y − y)�(y − y) + (y − y)�(u− u)), and hence the system
is EI-OP(ρ). �

C. Diffusively Coupled Network Model

We consider a collection of SISO agents interacting over a
network G = (V ,E), in which the agents reside at the nodes V ,
and the edges regulate the relative output between the associated
nodes. Namely, the agents {Σi}i∈V and the controllers {Πe}e∈E

have the following models:

Σi :

{
ẋi = fi(xi, ui)

yi = hi(xi, ui)
,Πe :

{
η̇e = φe(ηe, ζe)

μe = ψe(ηe, ζe)
(5)

where xi ∈ R�i , ηe ∈ R�e are the states, ui, ζe ∈ R are the in-
puts and yi, μe are the outputs. We define the stacked vectorsuuu =
[u1, . . . , u|V |]�, and similarly for xxx,yyy,ζζζ,ηηη, and μμμ. The agents
and controllers are coupled by ζζζ = E�yyy anduuu = −Eμμμ, where E
is the incidence matrix ofG. The closed-loop system is called the
diffusively coupled system (ΣΣΣ,ΠΠΠ,G), and the associated block
diagram can be seen in Fig. 1. Diffusively coupled networks are
of considerable interest in the control literature [6], [17], [47],
and include important examples such as neural networks [48],
the Kuramoto model for oscillator synchronization [49], and
traffic control models [50].

The notion of MEIP allows us to connect between diffusively
coupled networks and network optimization theory.

Theorem 2 ([17]): Consider the diffusively coupled system
(ΣΣΣ,ΠΠΠ,G). Suppose the agents are output-strictly MEIP and the
controllers are MEIP, or vice versa. LetKi be the agents’ integral
functions, and let Γe be the controllers’ integral functions.
We denote KKK(uuu) =

∑
i∈V Ki(ui), ΓΓΓ(μμμ) =

∑
e∈E Γi(μi), and

similarly for the Legendre transforms. Then there exist con-
stant vectors uuu,yyy, ζζζ,μμμ such the signals uuu(t), yyy(t), ζζζ(t),μμμ(t) of
(ΣΣΣ,ΠΠΠ,G) asymptotically converge touuu,yyy, ζζζ,μμμ correspondingly.
Moreover, the steady-statesuuu,yyy, ζζζ, andμμμ are (dual) solutions of
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the following pair of convex optimization problems:

OFP OPP
minuuu,μμμ KKK(uuu) +ΓΓΓ�(μμμ)

s.t. uuu = −Eμμμ.
minyyy,ζζζ KKK

�(yyy) +ΓΓΓ(ζζζ)
s.t. E�yyy = ζζζ.

These static optimization problems are known as the optimal
flow problem (OFP) and the optimal potential problem (OPP),
and are dual to each other. These are classical problems in
the mathematical field of network optimization, dealing with
static optimization problems defined on graphs, and have been
extensively studied by various researchers in fields as theoretical
computer science and operations research [18]. However, this
framework heavily relies on the passivity of the agents and
controllers, and fails if any of the agents are not MEIP. As we
will see later, if the agents are not passive, the integral functions
might be nonconvex, or may not even exist.

III. MOTIVATION AND PROBLEM FORMULATION

Our end-goal is to extend the network optimization framework
of Theorem 2 to agents which are not MEIP, but are rather EIPS.
Unlike MEIP systems, EIPS systems need not have monotone
steady-state relations. In some cases, this lack of monotonicity
results in the nonconvexity of the corresponding integral func-
tion [39], and in other cases, the steady-state I/O relation is far
enough from monotone that an integral function cannot even be
defined. We give examples of this phenomenon in the following.

Example 1 (EI-OP(ρ)): Consider a SISO system ẋ = −x+
3
√
x+ u; y = 3

√
x. It is shown in [39] that this system is EI-

OP(ρ) for all ρ ≤ −1, and its equilibrium-independent passivity
index is ρ = −1. Moreover, the inverse steady-state I/O relation
u = k−1(y) = y3 − y is not monotone. Furthermore, it has an
integral functionK�(y) = 1

4y
4 − 1

2y
2, which is nonconvex due

to the negative quadratic term.
Example 2 (EI-IP(ν)): Consider the SISO system ẋ =

− 3
√
x+ u; y = x− u. One can show similarly to Example 1

that this system is EI-IP(ν) for all ν ≤ −1, and ν = −1 is its
equilibrium-independent passivity index. Moreover, the steady-
state I/O relation y = k(u) = u3 − u is not monotone. Further-
more, it has an integral function K(u) = 1

4u
4 − 1

2u
2, which is

again nonconvex due to the negative quadratic term.
Example 3 (EI-IOP(ρ, ν)): Consider a SISO dynamical sys-

tem Σ given by

Σ : ẋ = − 3
√
x+ 0.5x+ 0.5u; y = 0.5x− 0.5u (6)

with input u and output y. For any steady-state input–output pair
(u, y) and the corresponding state at equilibriumx = 2y + u, we
can consider the storage function S(x) = 1

6 (x− x)2. A simple
calculation shows that

Ṡ ≤ (u− u)(y − y) +
1

3
(u− u)2 +

2

3
(y − y)2

meaning that the system is EI-IOP(ρ, ν) for ρ = −2/3 and
ν = −1/3. One can also easily verify that given an equilibrium
state x, the steady-state input u is given by u = 2 3

√
x− x and

that the steady-state output is y = x− 3
√
x. Defining σ = − 3

√
x,

we see that the steady-state relation of the system is given by
the planar curve u = 2σ − σ3; y = σ3 − σ, parameterized by

Fig. 2. Steady-state relations of the system in Example 3. (a) Steady-
state relation of (6). (b) Inverse relation of (6).

a variable σ, as shown in Fig. 2. It is clear from Fig. 2 that
both steady-state I/O relation and its inverse are nonmonotone.
In fact, the steady-state input–output relation and its inverse are
so far from monotone, no integral function exists for either of
them.

However, if we define a new input ũ and a new output ỹ by
ũ = u+ y, ỹ = u+ 2y, the resulting loop transformation gives
the following system:

Σ̃ : ẋ = − 3
√
x+ ũ; ỹ = x (7)

which has the steady-state input–output relation k(ũ) = u3,
which is maximally monotone. Moreover, the system (7) can be
verified to be MEIP with storage function S(x) = 1

2 (x− x)2.
The above example shows that EIPS systems need not have

integral functions, nor (maximally) monotone steady-state I/O
relations. Thus, the network optimization framework of [17]
cannot even be defined for networks of EIPS agents. In [39]
and [44], the network optimization framework failed due to the
lack of convexity of the integral functions. This was remedied
by convexifying the resulting (nonconvex) network optimiza-
tion problems. The interpretation (or implementation) of this
convexification was a passivizing feedback term. We cannot
follow this idea for EIPS systems when ρ, ν < 0, as the network
optimization framework is not even defined. Moreover, diffusely
coupled networks consisting of such systems might not be
stable. To overcome these shortcomings for EIPS systems, we
investigate the existence of a loop transformation which results
in monotonizing the steady-state I/O relation of the agents, as
illustrated in the last part of Example 3. Thus, our goal in this
article is to find a monotonizing procedure for the steady-state
I/O relation. We further show that the monotonizing procedure
induces a passivizing plant transformation. For the rest of this
article, let Σ be a EI-IOP(ρ, ν) system for known parameters
ρ, ν, and let k be the corresponding steady-state relation.

IV. MONOTONIZATION OF I/O RELATIONS BY LINEAR

TRANSFORMATIONS: A GEOMETRIC APPROACH

Our goal is to find a monotonizing transformation T :
(u, y) �→ (ũ, ỹ) for k. We look for a linear transformation T

of the form
[
ũ
ỹ

]
= T

[
u

y

]
. Assuming the system is EI-IOP(ρ, ν)

allows us to deduce information about the steady-state I/O
relation.
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Proposition 2: Let Σ be an EI-IOP(ρ, ν) system and let k be
its steady-state I/O relation. Then for any two points (u1, y1),
(u2, y2) in k, the following inequality holds:

0 ≤ −ρ(y1 − y2)
2 + (u1 − u2)(y1 − y2)− ν(u1 − u2)

2.
(8)

Proof: By definition of EI-IOP(ρ, ν), equation (4) holds for
any steady-state (u, y) and any trajectory (u(t), x(t), y(t)). Con-
sidering the steady-state (u1, y1), we conclude that there exists a
positive-definite storage function S(x), such that the following
inequality holds for all trajectories (u(t), x(t), y(t)):

dS

dt
≤ −ρ(y − y1)

2 − ν(u− u1)
2 + (y − y1)(u− u1). (9)

The steady-state input–output pair (u2, y2) corresponds to some
steady-state x2, so that (u2, x2, y2) is an (equilibrium) trajectory
of the system. Plugging it into (9), and noting that d

dtS(x2) = 0,
we conclude that the inequality (8) holds. �

Proposition 2 suggests the following definition.
Definition 6: A projective quadratic inequality (PQI) is an

inequality with variables ξ, χ ∈ R of the form

0 ≤ aξ2 + bξχ+ cχ2 (10)

for some numbers a, b, c, not all zero. The inequality is called
nontrivial if b2 − 4ac > 0. The associated solution set of the
PQI is the set of all points (ξ, χ) ∈ R2 satisfying the inequality.

By Definition 6, it is clear that (8) is a PQI. Indeed, plugging
ξ = u1 − u2,χ = y1 − y2 and choosinga, b, c correctly verifies
this. The demand ρν < 1

4 is equivalent to the nontriviality of
the PQI. For example, monotonicity of the steady-state k can be
written as 0 ≤ (u1 − u2)(y1 − y2), which can be transformed to
a PQI by choosing a = c = 0 and b = 1 in (10). Similarly, strict
monotonicity can be modeled by taking b = 1 and a ≤ 0, c < 0.

As for transformations, the transformation T =
[
T11 T12

T21 T22

]
of

the form [ũỹ] = T [uy] can be written as ũ = T11u + T12y and ỹ =

T21u + T22y. Plugging it inside (8) gives another PQI. More
precisely, if we letF (ξ, χ) = aξ2 + bξχ+ cχ2, andT is a linear
map, then T maps the PQI F (ξ, χ) ≥ 0 to F (T−1(ξ̃, χ̃)) ≥ 0.
Our goal is to find a map T transforming the inequality in
Definition 6 to the PQI corresponding to monotonicity. Thus,
we are compelled to consider the action of the group of linear
transformations on the collection of PQIs.

Let A be the solution set of the original PQI. The con-
nection between the original and transformed PQI described
above shows that the solution set of the new PQI is T (A) =
{T (ξ, χ) : (ξ, χ) ∈ A}. We can therefore study the effect of
linear transformations on PQIs by studying their actions on the
solution sets. The action of the group of linear transformations
on the collection of PQIs can be understood algebraically, but
we use solution sets to understand it geometrically. We first give
a geometric characterization of the solution sets.

Note 1: In this section, we abuse notation and identify the
point (cos θ, sin θ) on the unit circle S1 with the angle θ in some
segment of length 2π.

Definition 7: A symmetric section S on the unit circle S1 ⊆
R2 is the union of two closed disjoint sections that are opposite to
each other, i.e., S = B ∪ (B + π), where B is a closed section

Fig. 3. Double cone (in blue), and the associated symmetric section S
(in solid red). The parts of S1 outside S are presented by the dashed
red line.

of angle< π. A symmetric double-cone is defined asA = {λs :
λ > 0, s ∈ R} for a symmetric section S.

An example of a symmetric section and the associated sym-
metric double-cone can be seen in Fig. 3.

Theorem 3: The solution set of any nontrivial PQI is a sym-
metric double cone. Moreover, any symmetric double cone is
the solution set of some nontrivial PQI, which is unique up to a
positive multiplicative constant.

The proof of the theorem is available in the Appendix. The
theorem presents a geometric interpretation of the steady-state
condition (8). The connection between cones and measures of
passivity is best known for static systems through the notion
of sector-bounded nonlinearities [10]. It was expanded to more
general systems in [51], and later in [52]. We consider a different
branch of this connection, focusing on the steady-state relation
rather on trajectories. In turn, it allows us to have intuition
when constructing monotonizing maps. In particular, we have
the following result.

Theorem 4: Let (ξ1, χ1), (ξ2, χ2) be two noncolinear solu-
tions of a1ξ2 + ξχ+ c1χ

2 = 0. Moreover, let (ξ3, χ3), (ξ4, χ4)
be two noncolinear solutions of a2ξ2 + ξχ+ c2χ

2 = 0. Define

T1 =

[
ξ3 ξ4
χ3 χ4

] [
ξ1 ξ2
χ1 χ2

]−1

, T2 =

[
ξ3 −ξ4
χ3 −χ4

] [
ξ1 ξ2
χ1 χ2

]−1

. (11)

Then one of T1, T2 transforms the PQI a1ξ2 + ξχ+ c1χ
2 ≥ 0

to the PQI τa2ξ2 + τξχ+ τc2χ
2 ≥ 0 for some τ > 0.

The noncolinear solutions correspond to the straight lines
forming the boundary of the symmetric double cone, thus can
be found geometrically. Moreover, as will be evident from the
proof, knowing which one of T1 and T2 works is possible by
checking the PQIs on (ξ1 + ξ2, χ1 + χ2) and (ξ3 + ξ4, χ3 +
χ4). Namely, if exactly one of them satisfies the PQIs, then T2
works, and otherwise T1 works. We now present the proof of the
theorem.

Proof: LetA1 be the solution set of the first PQI, and letA2 be
the solution set of the second PQI. We show that either T1 or T2
mapsA1 toA2. We note that T1(A1) and T2(A1) are symmetric
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double-cones, whose boundary is the image of the boundary
of A1 under T1 and T2 respectively, i.e., they are the image
of span{(ξ1, χ1)} ∪ span{(ξ2, χ2)} under T1, T2. We note that
T1 maps (ξ1, χ1), (ξ2, χ2) to (ξ3, χ3), (ξ4, χ4) correspondingly,
and that T2 maps (ξ1, χ1), (ξ2, χ2) to (ξ3, χ3), (−ξ4,−χ4)
correspondingly. Thus, span{(ξ1, χ1)} ∪ span{(ξ2, χ2)} is
mapped by T1 and T2 to span{(ξ3, χ3)} ∪ span{(ξ4, χ4)}, so
that T1(A1), T2(A1) have the same boundary as A2. Since
T1, T2 are homeomorphisms, they map interior points to interior
points. Thus, it’s enough to show that some point in the interior
of A1 is mapped to a point in A2 either by T1 or by T2, or
equivalently, that a point in the interior of R2 \ A1 is mapped to
a point in R2 \ A2 either by T1 or by T2.

Consider the point (ξ1 + ξ2, χ1 + χ2). By noncolinear-
ity, this point cannot be on the boundary of A1, equal to
span{(ξ1, χ1)} ∪ span{(ξ2, χ2)}. Hence, it’s either in the in-
terior of A1 or in the interior of its complement. We assume
the prior case, as the proof for the other is similar. The point
(ξ1 + ξ2, χ1 + χ2) is mapped to (ξ3 ± ξ4, χ3 ± χ4) by T1, T2.
By noncolinearity, these points do not lie on the boundary
of A2. Moreover, the line passing through them is parallel to
span{(ξ4, χ4)} which is part of the boundary of A2, and their
average is (ξ3, χ3), which is on the boundary. Thus, one point is
in the interior of A2, and one is in the interior of its complement.
This completes the proof. �

Example 4: Consider the system Σ studied in Example 3, in
which the steady-state I/O relation was nonmonotone. There, we
saw that the system is EI-IOP(ρ, ν) with parameters ρ = −2/3
andν = −1/3. The corresponding PQI is0 ≤ 1

3ξ
2 + ξχ+ 2

3χ
2.

We use Theorem 4 to find a monotonizing transformation. That
is, we seek a transformation mapping the given PQI to the PQI
defining monotonicity, ξχ ≥ 0. We take (ξ3, χ3) = (1, 0) and
(ξ4, χ4) = (0, 1), as these are noncolinear solutions to ξχ = 0.
For the original PQI, 0 = 1

3ξ
2 + ξχ+ 2

3χ
2 can be rewritten

as 1
3 (ξ + χ)(ξ + 2χ) = 0, so we take (ξ1, χ1) = (2,−1) and

(ξ2, χ2) = (−1, 1). It’s easy to check that (ξ1 + χ1, ξ2 + χ2) =
(1, 0) satisfies the original PQI 0 ≤ 1

3ξ
2 + ξχ+ 2

3χ
2, and that

(ξ3 + χ3, ξ4 + χ4) satisfies ξη ≥ 0 so the map T1 defined in the
Theorem 4, should monotonize the steady-state relation. Plug-

ging inT1, we get
[
ξ
χ

]
= T−1

1

[
ξ̃
χ̃

]
forT1 =

[
1 0
0 1

][
2 −1
−1 1

]−1

=[1 1
1 2

]
, so that T−1

1 =
[ 2 −1
−1 1

]
. Then

0 ≤ 1

3
ξ2 + ξχ+

2

3
χ2

=
1

3
(2ξ̃ − χ̃)2 + (2ξ̃ − χ̃)(−ξ̃ + χ̃) +

2

3
(−ξ̃ + χ̃)2 =

1

3
ξ̃χ̃

so the transformed PQI is 0 ≤ ξ̃χ̃, corresponding to mono-
tonicity. To get the transformed steady-state relation, we recall
that the steady-state relation of Σ is given by the planar curve
u = 2σ − σ3; y = σ3 − σ, parameterized by a variable σ. The
transformed relation is given by[

ũ
ỹ

]
= T1

[
u
y

]
=

[
1 1
1 2

] [
2σ − σ3

σ3 − σ

]
=

[
σ
σ3

]
and can be modeled as ỹ = ũ3, which is a monotone relation.

Theorem 4 prescribes a monotonizing transformation for the
relation k. Moreover, it prescribes a transformation forcing strict
monotonicity, which can be viewed as the PQI −νξ2 + ξχ ≥ 0
for ν ≥ 0, which are not both zero.

V. FROM MONOTONIZATION TO PASSIVATION AND

IMPLEMENTATION

Until now, we found a map T : R2 → R2, monotonizing the
steady-state relation k. We claim T , in fact, transforms the agent
Σ into a system which is passive with respect to all equilibria,

by defining a new input and output as [ũỹ] = T [uy].
Proposition 3: Let Σ be EI-IOP(ρ, ν), and let T be a map

transforming the PQI −νξ2 + ξχ− ρχ2 ≥ 0 to −ν ′ξ2 + ξχ−
ρ′χ2 ≥ 0 as in Theorem 4. Consider the transformed system Σ̃

with input and output [ũỹ] = T [uy]. Then Σ̃ is EI-IOP(ρ′, ν ′). In
particular, if T monotonizes the relation k, it passivizes Σ.

Proof: The inequality (4) is the PQI −νξ2 + ξχ− ρχ2 ≥ 0,
where we put ξ = u(t)− u and χ = y(t)− y for a trajectory
(u(t), y(t)) and a steady-state I/O pair (u, y). The proposition

follows by noting that [ξχ] = T−1[ ξ̃χ̃], satisfies the PQI −ν ′ξ2 +
ξχ− ρ′χ2 ≥ 0, ξ̃ = ũ(t)− ũ and χ̃ = ỹ(t)− ỹ. �

Combining Theorem 4 and the discussion following it with
Proposition 3 gives the following algorithm for passivation of
EI-IOP(ρ, ν) systems with respect to all equilibria.

Algorithm 1: Passivation of an EI-IOP(ρ, ν) System.
Input : A system Σ, and ρ, ν ∈ R, such that the system is
EI-IOP(ρ, ν). Two more numbers ρ′, ν ′, such that
ρ′ν ′ < 1/4.

Output: A transformation T , transforming the system Σ to
an EI-IOP(ρ′, ν ′) system.

1: Find two pairs (ξ1, χ1), (ξ2, χ2), which are
noncolinear solutions of −νξ2 + ξχ− ρχ2 = 0.

2: Find two pairs (ξ3, χ3), (ξ4, χ4), which are
noncolinear solutions of −ν ′ξ2 + ξχ− ρ′χ2 = 0.

3: Define T1, T2 as in (11).
4: Define α1 =

−ν(ξ1 + ξ2)
2 + (ξ1 + ξ2)(χ1 + χ2)− ρ(χ1 + χ2)

2

and α2 = −ν ′(ξ3 + ξ4)
2 + (ξ3 + ξ4)(χ3 + χ4)

− ρ′(χ3 + χ4)
2.

5: if α1, α2 are both non-positive or both nonnegative,
then

6: Return T1.
7: else
8: Return T2.
9: end if

Remark 5: Proposition 3, together with Section IV, prescribes
a linear transformation passivizing the agent with respect to all
equilibria. The same procedure can be applied to “classical”
passivity, in which one only looks at passivity with respect
to a single equilibrium, as PQIs can be used to abstractify all
dissipation inequalities. Our approach is entirely geometric and
does not rely on algebraic manipulations.
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TABLE I
ELEMENTARY MATRICES AND THEIR REALIZATIONS

Fig. 4. Transformed system Σ̃ after the linear transformation T . If T =[
a
c

b
d

]
, then δA = b/a, δB = d− b

a c, δC = c and δD = a.

Remark 6: Note that if the transformation transforms k to
a strictly monotone relation, the transformed system is strictly
passive.

For the remainder of this section, we show that the I/O
transformation can be easily implemented using standard control
tools, namely, gains, feedback, and feedthrough. We also con-
nect the steady-state I/O relation λ of the transformed system Σ̃
to k.

In this direction, take any linear map T : R2 → R2 of the

form T = [a b
c d], where we assume that det(T ) �= 0. It defines

the plant transformation of the form [ũỹ] = T [uy]. For simplicity

of presentation, we assume thata �= 0.2 We noteT can be written
as a product of elementary matrices, and the effect of each
elementary matrix on Σ can be easily understood. By applying
the elementary transformations sequentially, the effect of their
product, T , can be realized. Table I summarizes the elementary
transformations and their effect on the system Σ. Following
Table I, T is written as

T =

[
a b
c d

]
=

[
δD 0
0 1

]
︸ ︷︷ ︸

LD

[
1 0
δC 1

]
︸ ︷︷ ︸

LC

[
1 0
0 δB

]
︸ ︷︷ ︸

LB

[
1 δA
0 1

]
︸ ︷︷ ︸

LA

(12)

with δA = b/a, δB = d− b
ac, δC = c and δD = a. The product

of these matrices can be seen as the sequential transformation
from the original system Σ, which can be understood as a loop
transformation, illustrated in Fig. 4.

Remark 7: Writing T = LDLCLBLA allows us to give a
closed form description of the transformed system. Suppose the

2We note that by switching the names of (ξ3, χ3) and (ξ4, χ4) in Theorem
4 we switch the two columns of T . Thus we can always assume that a �= 0, as
a = b = 0 cannot hold due to the determinant condition.

original system is given by ẋ = f(x, u); y = h(x). Applying
LA gives a new input v, and the transformed system ẋ =
f(x, v − δAh(x)); y = h(x). ApplyingLB on this system gives
ẋ = f(x, v − δAh(x)); y = δBh(x). Applying LC then gives
ẋ = f(x, v − δAh(x)); y = δBh(x) + δCv, and applying LD

finally gives ẋ = f(x, δDv − δAh(x)); y = δBh(x) + δCδDv.
Proposition 4: Let k and λ be the steady-state I/O relations of

Σ and Σ̃, respectively, where Σ̃ is the result of applying the trans-
formation T in (12) on Σ, where δA = b/a, δB = d− b

ac, δC =
c and δD = a. Assume that κ1 is the steady-state I/O relation
for the system Σ1 : u1 �→ y1, obtained after the transformation

LA = [1 δA
0 1 ] on the original systemΣ. Then, the relation between

λ and k is given by

λ(ũ) =

(
d− b

a
c

)
κ1

(
1

a
ũ

)
+
c

a
ũ (13)

where the inverse of κ1 is

(κ1)
−1(y1) = k−1(y1) +

b

a
y1. (14)

Proof: Denote the steady-state I/O relations after the first,
second, and third elementary matrix transformations, sequen-
tially in (12), as κ1, κ2, κ3, corresponding to the steady-state
I/O pairs (u1, y1), (u2, y2), and (u3, y3). The transformation[

u1
y1

]
= LA

[
u
y

]
=

[
1 b/a
0 1

] [
u
y

]
has the steady-state inverse I/O relation κ−1

1 (y1) = k−1(y1) +
b
ay1. The second transformation[

u2
y2

]
= LB

[
u1
y1

]
=

[
1 0
0 d− bc/a

] [
u1
y1

]
has the steady-state I/O relation κ2(u2) = (d− b

ac)κ1(u2). The
third transformation[

u3
y3

]
= LC

[
u2
y2

]
=

[
1 0
c 1

] [
u2
y2

]
has steady-state I/O relation κ3(u3) = κ2(u3) + cu3. Finally[

ũ
ỹ

]
= LD

[
u3
y3

]
=

[
a 0
0 1

] [
u3
y3

]
has the steady-state I/O relation λ of Σ̃, and λ(ũ) = κ3(

1
a ũ).

Substituting back for κ3 and for κ2, we get the result. �
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Example 5: Consider the system in Examples 3 and 4. The
steady-state I/O relation λ of Σ̃ consists of all pairs (ũ, ũ3). We
use Proposition 4 to verify this result. According to Proposi-

tion 4, for the given matrix transformation T = [1 1
1 2], λ is given

by λ(ũ) = κ1(ũ) + ũ. After the first transformation LA = [1 1
0 1],

the steady-state I/O pairs of the system Σ1 are u1 = u + y, and
y1 = y. Substituting u = 2σ − σ3, and y = σ3 − σ as obtained
in Example 3 yields u1 = σ and hence κ1(u1) = y1 = u31 − u1.
This implies that κ1(ũ1) = u31 − u1, which on substitution
yields λ(ũ) = ũ3, as expected.

As discussed above, in some cases, i.e., when ρ, ν ≥ 0, we
know the original system possesses integral functions. We can
integrate (13) and (14), obtaining a connection between the
original and the transformed integral functions. For example, in-
tegrating the steady-state equation for output feedback λ−1(ỹ) =
k−1(ỹ) + δỹ results in K�(ỹ) = Λ�(ỹ) + δ

2 ỹ
2, where K�,Λ�

are the integral functions of k−1, λ−1 respectively. Similarly,
input feedthrough corresponds to a quadratic term added to the
integral function K of k, and pre- and postgain correspond to
scaling the integral function. These connections are summarized
in Table I.

Example 6: Consider Example 1. The steady-state input–
output relation for the system is u = k−1(y) = y3 − y, so the
corresponding integral function is K�(y) = 1

4y
4 − 1

2y
2. Con-

sider the transformation T = [1 1
0 1], or equivalently ũ = u+ y =

u+ 3
√
x, ỹ = y, so u = − 3

√
x+ ũ. The transformed system Σ̃

has the state-space model ẋ = −x+ ũ, ỹ = 3
√
x, which has a

steady-state I/O relation of ũ = λ−1(ỹ) = ỹ3, and correspond-
ing integral function is Λ�(ỹ) = 1

4 ỹ
4. It is evident that Λ�(y) =

K�(y) + 1
2y

2, as forecasted by Table I.
The passivation results achieved up to now assumed that

the system at hand is EIPS. In the next section, we connect
this property to having a finite L2-gain, showing our results
extend [38].

VI. FINITE L2-GAIN AND INPUT–OUTPUT PASSIVITY

This section establishes a connection between the notion of
input–output (ρ, ν)-passivity and the finite L2-gain property,
and compares our results with the existing literature. We further
explore these connections for the special case of linear and time-
invariant systems and draw some important conclusions.

A. Finite L2-Gain and Input–Output (ρ, ν)-Passivity

We begin with by recalling the definition of systems with finite
L2-gain.

Definition 8: The system Σ : u �→ y has finite-L2-gain with
respect to the steady-state I/O pair (u, y) if there exists some
β > 0 and a storage function S, such that

Ṡ ≤ −(y − y)�(y − y) + β2(u− u)�(u− u). (15)

The smallest number β satisfying the dissipation inequality is
called the L2-gain of the system Σ.

The notion of systems with a finite L2-gain can also be un-
derstood using the operator norm, namely, a system Σ : u �→ y

has a finite L2-gain if and only if its induced operator norm
supu�=0

‖Σ(u)‖
‖u‖ is finite. In that case, the L2-gain is equal to the

operator norm [10]. We now show that any system with a finite
L2-gain is actually input passive-short, and thus included in the
collection of input-output (ρ, ν)-passive systems.

Theorem 5: Let Σ : u �→ y be any finite L2-gain system with
respect to the steady-state input–output pair (u, y) with gain β.
Then Σ is input ν-passive with respect to (u, y), in the sense of
Definition 5, where ν ≤ −(β2 + 1

4 ).
Proof: Let S(x) be the storage function corresponding to the

finite L2-gain system Σ. By assumption, we know that for any
trajectory (u(t), x(t), y(t)), the following inequality holds:

dS

dt
(x) ≤ −‖y(t)− y‖2 + β2‖u(t)− u‖2.

We note that ‖y(t)− y + 0.5(u(t)− u)‖2 ≥ 0, implying that
−‖y(t)− y‖2 ≤ (u(t)− u)�(y(t)− y) + 0.25‖u(t)− u‖2.
Thus, we conclude that

dS

dt
(x) ≤ −‖y(t)− y‖2 + β2‖u(t)− u‖2

≤ (u(t)− u)�(y(t)− y) +

(
β2 +

1

4

)
‖u(t)− u‖2

implying that Σ is input ν-passive with respect to (u, y). This
concludes the proof of the claim. �

Remark 8: One can easily check that the above result is not
true in the opposite direction, that is, if the system Σ is EI-IP(ν)
for someν, it does not necessarily have a finiteL2-gain. Thus, the
consideration of EIPS system is more general when compared
to finite-L2-gain systems as in [38]. Section VIII-A gives an
example of a system which is EIPS but neither input passive-
short, output passive-short, nor does it have a finite L2-gain.

Remark 9: Systems with a finite L2-gain have an important
use in approximation theory. In many examples, we do not have
an exact model for a system Σ, but instead we are given a model
for an approximate model Σ0 and a bound on the approximation
error Σ− Σ0, usually in terms of its L2-gain. In this case,
proving that Σ0 satisfies some dissipation inequality might be
easy, but trying to directly find such an inequality satisfied
by Σ can be an arduous task. However, the authors in [53]
describe a method to prove a dissipation inequality for Σ using
a dissipation inequality for Σ0 and an estimate on the L2-gain
of the approximation error Σ− Σ0. The achieved dissipation
inequality might be very conservative, but we can still apply
Algorithm 1, as it does not need the exact passivity indices, but
only some bound on them. In particular, the presented approach
works even when we are only given an approximation of the true
system.

B. Equilibrium-Independent Passive Shortage and
Linear and Time-Invariant Systems

This subsection drives an important result for the linear and
time-invariant systems (LTI) relating their transfer function
and passivity indices. LTI systems are of special interest for
equilibrium-independent notions of passivity, as they are equiv-
alent to the corresponding classical notions of passivity with
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respect to the steady-state pair (0,0). For example, the proof of
Theorem 6 below shows that an LTI system is EI-IOP(ρ, ν) if
and only if it is input–output (ρ, ν)-passive with respect to the
steady-state (0,0), if and only if the associated transfer function
is input–output (ρ, ν)-passive. This theorem shows that a vast
class of LTI systems are EIPS, and calculates a bound on their
passivity indices.

Theorem 6: Let Σ be a linear time-invariant system, and
let G(s) = p(s)

q(s) be the corresponding transfer function, where
we assume that p(s), q(s) are coprime and that deg p ≤ deg q.
Suppose that there exists some λ ∈ R, such that q(s) + λp(s) is
a stable polynomial, i.e., all of its roots are in the open left-half
plane, with degree equal to deg q. Define

μ = sup
ω∈R

∣∣∣∣ p(jω)

q(jω) + λp(jω)

∣∣∣∣2 + 1

4
. (16)

Then Σ is EI-IOP(ρ, ν), where ρ = − λ(1+λμ)
1+2λμ and ν = − μ

1+2λμ .
Proof: Let (u, y) be a steady-state input–output pair of the

system, so that y = G(0)u. The systemΣ is input–output (ρ, ν)-
passive with respect to (u, y) if and only if the corresponding
operator Σshifted : ū �→ ȳ is input–output (ρ, ν)-passive, where
ū = u− u and ȳ = y − y. If we let (A,B,C,D) be a state-
space representation of G(s), then the operator Σshifted has the
following (shifted) state-space realization:

ẋ = Ax+B(u− u); y = Cx+D(u− u) + y.

Recalling thatG(0) = −CA−1B +D and y = G(0)u, we con-
clude Σshifted is also linear and time-invariant, and its transfer
function is equal to G(s).

We now let Σ̃shifted be the interconnection of the system
Σshifted with a negative output feedback with gain equal to λ.
It is straightforward to show that Σ̃shifted is also an LTI system,
and its transfer function is G̃(s) = p(s)

q(s)+λp(s) . By assumption,
all poles of the denominator are in the open left-half plane, and
the degree of the numerator is bounded by the degree of the
denominator. Thus, Σ̃shifted has a finite L2-gain with respect to
the origin, equal to κ = supω∈R |G̃(jω)| [10]. We denote the
input of the new system by ˜̄u = ū− λȳ.

Let S(x) be the storage function corresponding to Σ̃shifted.
We take an arbitrary trajectory (ū(t), x(t), ȳ(t)) of Σ and con-
sider the corresponding trajectory (˜̄u(t), x(t), ȳ(t)) for Σ̃shifted,
where ū(t) = ˜̄u(t)− λȳ(t). As Σ̃shifted has a finite L2-gain
equal to κ, the following inequality holds:

Ṡ(x) ≤ −ȳ(t)2 + κ2 ˜̄u(t)2. (17)

We note that (ȳ(t) + 0.5˜̄u(t))2 ≥ 0, so −ȳ(t)2 ≤ ˜̄u(t)ȳ(t) +
0.25˜̄u(t)2. By plugging it into (17), and recalling that κ2 +
0.25 = μ [by (16)], we conclude that

Ṡ(x) ≤ ˜̄uȳ + μ˜̄u2 = (ū+ λȳ)ȳ + μ(ū+ λȳ)2

= ūȳ + λȳ2 + μū2 + 2λμūȳ + μλ2ȳ

= (1 + 2μλ)ūy + μū2 + (λ + μλ2)ȳ2

= (1 + 2μλ)(ūȳ − νū2 − ρȳ2).

Choosing the storage functionR(x) = S(x)/(1 + 2μλ), as well
as recalling that ū = u− u and ȳ = y − y, shows that Σ is
input–output (ρ, ν)-passive with respect to the input–output
steady-state pair (u, y). As the steady-state pair was arbitrary, we
conclude Σ is EI-IOP(ρ, ν) with the passivity indices as defined
in the statement of theorem. �

Recall that in Section V, we presented a method of taking
an EIPS system and transforming it to another system which is
passive with respect to all equilibria. In the following section,
we deal with the last ingredient missing for MEIP, namely,
maximality of the acquired monotone relation.

VII. MAXIMALITY OF INPUT–OUTPUT RELATIONS AND THE

NETWORK OPTIMIZATION FRAMEWORK

As we saw, the mapT monotonizes the steady-state relation k,
i.e., the steady-state input–output relation λ of the transformed
agent Σ̃ is monotone. However, it does not guarantee that λ is
maximally monotone, which is essential for applying Theorem
2. In this section, we explore a possible way to assure that λ

is maximally monotone, under which we prove a version of
Theorem 2 for EIPS systems.

Definition 9 (Cursive relations): A set A ⊂ R2 is called cur-
sive if there exists a curve3 α : R → R2, such that the following
conditions hold.

1) The set A is the image of α.
2) The map α is continuous.
3) lim|t|→∞ ‖α(t)‖ = ∞, where ‖ · ‖ is the Euclidean norm.
4) {t ∈ R : ∃s �= t, α(s) = α(t)} has measure zero.

A relation Υ is called cursive if the set {(p, q) ∈ R2 : q ∈
Υ (p)} is cursive.

Intuitively speaking, a relation is cursive if it can be drawn on
a piece of paper without lifting the pen. The third requirement
demands that the drawing will be infinite (in both time direc-
tions), and the fourth allows the pen to cross its own path, but
forbids it from going over the same line twice. This intuition is
the reason we call these relations cursive relations.

Under the assumption that the steady-state I/O relation k of
Σ is cursive [which is usually the case for dynamical systems of
the form (1)], we prove the maximality of λ.

Theorem 7: Let k, λ be the steady-state I/O relations of the
original system Σ and the transformed system Σ̃ under the
transformation T , respectively. Suppose k is a cursive relation
and T is chosen to monotonize k as in Theorem 4. Then

i) λ is a maximally monotone relation;
ii) Σ̃ is MEIP.

Moreover, if λ is a strictly monotone relation, then Σ̃ is input-
strictly MEIP, and if λ−1 is a strictly monotone relation, then Σ̃
is output-strictly MEIP.

Before proving the theorem, we prove the following lemma.
Lemma 1: A cursive monotone relation Υ must be maximally

monotone.
Proof: Let AΥ ⊆ R2 be the set associated with Υ , which is

cursive by assumption. Let α be the corresponding curve. If
Υ is not maximal, there is a point (p0, q0) /∈ AΥ , so that Υ ∪

3A curve is a continuous map from a (possibly infinite) interval in R to R2.
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{(p0, q0)} is a monotone relation. By monotonicity

AΥ ⊆ {(p, q) ∈ R, (p ≥ p0 and q ≥ q0) or

(p ≤ p0 and q ≤ q0), (p, q) �= (p0, q0)}.
The set on the right hand side has two connected compo-
nents, namely, {(p, q) : p ≥ p0, q ≥ q0, (p, q) �= (p0, q0)} and
{(p, q) : p ≤ p0, q ≤ q0, (p, q) �= (p0, q0)}. Since AΥ is the
image of a continuous map α, it is contained in one of these
connected components. Suppose, without loss of generality, it
is contained in {(p, q) : p ≥ p0, q ≥ q0, (p, q) �= (p0, q0)}. It is
clear that we can choose the curve α(t) = (α1(t), α2(t)), so
that both functions α1, α2 are nondecreasing, as Υ is monotone.
Thus, we must have α1(0) ≥ limt→−∞ α1(t) ≥ p0, α2(0) ≥
limt→−∞ α2(t) ≥ q0. However, these inequalities imply that
‖α(t)‖ =

√
α1(t)2 + α2(t)2 remains bounded as t→ −∞.

This contradicts the assumption that Υ was cursive, hence it
must be maximally monotone. �

We are now ready to prove Theorem 7.
Proof: By definition of MEIP and Lemma 1, it is enough to

show that if k is cursive, then so is λ. LetAk be the set associated
with k, and Aλ be the set associated with λ. Note that (ũ, ỹ) is a
steady state of Σ̃ if and only if (u, y) is a steady state ofΣ, where
the I/O pairs are related by the transformation T . Thus, Aλ is
the image of Ak under the invertible linear map T . Since k is
cursive, we have an associated curve α : R → R2 plotting Ak.
We define the curve β(t) = T (α(t)). We claim that the curve β
proves thatAλ, and hence λ, is cursive. Indeed, it is clear thatAλ

is the image of β. Furthermore, β is continuous as a composition
of the continuous maps T and α. The third property in Defini-
tion 9 holds as lim|t|→∞ ||β(t)|| ≥ lim|t|→∞ σ(T )||α(t)|| = ∞,
where we note that T is invertible, hence σ(T ), the minimal
singular value of T , is positive. Lastly, the fourth property in
Definition 9 holds as β(t) = β(s) if and only if α(t) = α(s),
as T is invertible. Thus, the set {t : ∃s �= t, β(t) = β(s)} is the
same as the one for α, having measure zero.

Lastly, we need to show that if λ is strictly monotone, then Σ̃
is strictly MEIP. A strictly monotone relation λ is achieved when
taking ν ′ > 0, ρ′ ≥ 0 in Proposition 3, so we conclude that Σ̃ is
EI-IOP(0, ν ′) for some ν ′ > 0, and thus input-strictly MEIP as
its input–output relation, λ, is maximally monotone. The case
in which λ−1 is strictly monotone is dealt similarly. �

Before moving to the network optimization framework, we
wonder how common are cursive relations. Obviously, all stable
linear systems have cursive steady-state I/O relations, as their
steady-state I/O relations form a line inside R2. As a more
general example, we prove the following proposition for a class
of input-affine nonlinear systems.

Proposition 5: Consider the system Υ governed by the ODE
ẋ = −f(x) + g(x)u, y = h(x) for some C1 smooth functions
f, g and a continuous function h, such that g > 0. Assume that
either f/g or h is strictly monotone ascending, and that either
lims→±∞ |h(s)| = ∞ or lims→±∞ |f(s)/g(s)| = ∞. Then the
system Υ has a cursive steady-state I/O relation.

Proof: In steady state, we have ẋ = 0, thus we have
f(x) = g(x)u. Moreover, y = h(x) in steady state. Thus, the
steady-state input–output relation can be parameterized as

(f(σ)/g(σ), h(σ)) for the parameter σ ∈ R. Consider the curve
α : R → R2 defined by α(σ) = (f(σ)/g(σ), h(σ)). Then the
steady-state relation is the image of α, which is continuous.
The norm of α is equal to

√
(f(σ)/g(σ))2 + h(σ)2, so the as-

sumption on the limit shows that lim|t|→∞ ||α(t)|| = ∞. Lastly,
by strict monotonicity, the curve α is one to one. Thus, the
steady-state input–output relation is cursive. �

Remark 10: The strict monotonicity assumption can easily
be relaxed − it shows that the curve α(t) = (f(t)/g(t), h(t)) is
one-to-one, but in practice we may have a nonself-intersecting
curve, which can behave very wildly in each coordinate. More-
over, nonself-intersecting is a stronger requirement then needed,
we only need that the “self-intersecting set” is of measure zero.

As we showed that cursive relations appear for a wide class
of systems, we conclude the network optimization framework
for EIPS) agents by Theorem 2 and Theorem 4.

Theorem 8: Consider the diffusively-coupled network
(ΣΣΣ,ΠΠΠ,G), and suppose the agents Σi are EI-IOP(ρi, νi)
with cursive steady-state I/O relations ki, and that the con-
trollers are MEIP with integral functions Γe. Let J =
diag(T1, T2, . . . , T|V|) be a linear transformation, where Ti is
chosen as in Theorem 4, so that k−1

i is transformed into a strictly
monotone relation by applying Ti. Then the transformed net-
work (Σ̃̃Σ̃Σ,ΠΠΠ,G) converges, and the steady-state limits (ũ̃ũu, ỹ̃ỹy, ζζζ,μμμ)
are minimizers of the following dual network optimization prob-
lems:

TOPP TOFP
minỹ̃ỹy,ζζζ ΛΛΛ�(ỹ̃ỹy) +ΓΓΓ(ζζζ)

s.t. E�ỹ̃ỹy = ζζζ
minũ̃ũu,μμμ ΛΛΛ(ũ̃ũu) +ΓΓΓ�(μμμ)

s.t. ũ̃ũu = −Eμμμ
where ΓΓΓ(ζζζ) =

∑
e∈E Γe(ζe), ΛΛΛ(uuu) =

∑
i∈V Λi(ui), and ΛΛΛi is

the integral function associated with the maximally monotone
relation λi, obtained by applying Ti on ki.

For the special cases in which the original EI-IOP(ρ, ν) agents
have integral functions, we can use the discussion succeeding
Proposition 4, connecting the original and the transformed in-
tegral functions, to prescribe (TOPP) and (TOFP) in terms of
(OPP) and (OFP). It is worth noting that (TOPP) and (TOFP)
can be viewed as regularized versions of (OPP) and (OFP),
where quadratic terms are added both the the agents’ integral
functions and their duals. This is a generalization of [39] which
prescribed the quadratic correction of (OPP) when the agents are
EI-OP(ρ). The main difference in our approach from the one
in [39] is that there, the network optimization framework can
always be defined, and convexifying it leads to the passivizing
transformation. In the case presented here, the simultaneous
input- and output shortage of passivity can cause the network
optimization framework to be undefined, forbidding us from
trying to convexify it. Instead, we resort to monotonizing the
steady-state relation, which in turn induces a passivizing trans-
formation. This approach can be seen pictorially in Fig. 5. In
particular, we conclude by restating the main result of [39] and
providing a proof using the methods introduced here.

Corollary 1: Let (ΣΣΣ,ΠΠΠ,G) be a diffusively coupled network,
and suppose the agents have cursive steady-state I/O relations
ki, and that the controllers are MEIP with integral function Γe.
Let J = diag(T1, T2, . . . , T|V|) be as in Theorem 8.
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Fig. 5. Monotonization, passivation and convexification by the trans-
formation T . For general output-passive short systems, convexification
is equivalent to passivation. For EI-IOP (ρ, ν) systems, integral functions
do not necessarily exist, so monotonization of the steady-state relation
is equivalent to passivation.

1) If the agents Σi are EI-OP(ρi), and the relations k−1
i have

integral functions K�
i , then we can take Ti = [1 βi

0 1 ] for

βi > −ρi, and the cost function of (TOPP) is KKK�(yyy) +
ΓΓΓ(ζζζ) + 1

2yyy
�diag(βββ)yyy, whereKKK�(yyy) =

∑
i∈V K

�
i (yi).

ii) If the agents Σi are EI-IP(νi), and the relations ki have

integral functions Ki, then we can take Ti = [ 1 0
βi 1] for

any βi > −νi, and the cost function of (TOFP) isKKK(uuu) +
ΓΓΓ�(μμμ) + 1

2uuu
�diag(βββ)uuu, whereKKK(yyy) =

∑
i∈V Ki(ui).

Proof: We only prove the first case, as the proof second case
is completely analogous. Each agent is EI-OP(ρi), so that the as-
sociated PQI is 0 ≤ ξχ− ρiχ

2. We take any βi > −ρi and look
for Ti transforming this PQI into 0 ≤ ξχ− (ρi + βi)χ

2, which
implies output-strict MEIP. We build Ti according to Theorem
4, taking (ξ1, χ1) = (1, 0), (ξ2, χ2) = (ρi, 1), (ξ3, χ3) = (1, 0)
and (ξ4, χ4) = (ρi + βi, 1). We note that (ξ1 + χ1, ξ2 + χ2) =
(1 + ρi, 1) satisfies χξ − ρiχ

2 = 1 + ρi − ρi = 1 ≥ 0, mean-
ing that (ξ1 + χ1, ξ2 + χ2) satisfies the first PQI. Similarly,
(ξ3 + χ3, ξ4 + χ4) satisfies the second PQI. We thus take

Ti =

[
ξ3 ξ4

χ3 χ4

][
ξ1 ξ2

χ1 χ2

]−1

=

[
1 ρi + βi

0 1

][
1 ρi

0 1

]−1

=

[
1 βi

0 1

]

which proves the first part. As for the second part, Table I implies
that the steady-state relation λi of the transformed system is
given by λ−1

i (yi) = k−1
i (yi) + βiyi. Integrating this equation

with respect to yi gives that Λ�
i (yi) = K�

i (yi) +
1
2βiy

2
i . Using

KKK�(yyy) =
∑

i∈V K
�
i (yi) and ΛΛΛ�(yyy) =

∑
i∈V Λ�

i (yi) gives that
ΛΛΛ�(yyy) =KKK�(yyy) + 1

2yyy
�diag(βββ)yyy, completing the proof. �

VIII. CASE STUDIES

This section presents two examples illustrating the theoretical
results proposed in this article. The first example deals with
a collection of EIPS linear and time-invariant systems, and
exemplifies the application of Algorithm 1 on a specific system.
The second example describes a network of gradient systems
with nonconvex potential functions, exemplifying the results of
Section VII.

A. Linear and Time Invariant Systems

Consider a linear time-invariant system Σ with a transfer
function of the form G(s) = ς

s2+as+b , where a, b, ς ∈ R and
ς �= 0. We consider the case in which a > 0, where a is equal to
minus the sum of the poles of the system. This case occurs when
both poles are stable, or only one pole is stable. Examples of such
systems include the oscillations of a ship at sea [54], robot elbow
actuators [55, p. 487], and suspended mobile remote cameras,
as used in sports events [55, p. 881]. The prior of the three has
two stable poles, where the latter two only have one stable pole.
If both poles are stable, then the system has a finite L2-gain and
can be stabilized using the small-gain theorem [10]. Otherwise,
the system does not have a finite L2-gain.

According to Theorem 6, in this case, p(s) = ς and q(s) =
s2 + as+ b, so that deg p = 0 < deg q = 2, and the degree
of q(s) + λp(s) is two. If we choose λ = 0.25a2−b

ς , then
q(s) + λp(s) = s2 + as+ 0.25a2 = (s+ 0.5a)2, which has a
double stable pole at s = −0.5a. Moreover, computing μ =
supω∈R | ς

(jω+0.5a)2 |2 + 1
4 gives μ = 4ς

a2 + 1
4 . Thus, the system

Σ is EI-IOP(ρ, ν) for ρ = − λ(1+λμ)
1+2λμ and ν = − μ

1+2λμ .
As a specific example, consider the linear and time-invariant

system Σ with the transfer functionG(s) = 0.75
s2+2s−2 , which has

a stable pole at s = −1−√
3 ≈ −2.73 and an unstable pole at

s =
√
3− 1 ≈ 0.73. We note this system is not finite L2-gain,

nor input-passive short, as it has an unstable pole, nor output-
passive short, as it has a relative degree of 2 [10]. For this system,
we have λ = 4 and μ = 1, which in turn give ρ = − 20

9 and
ν = − 1

9 .
We now passivize Σ by applying Algorithm 1. We first note

that (ξ1, χ1) = (5,−1) and (ξ2, χ2) = (−4, 1) are two noncol-
inear solutions of −νξ2 + ξχ− ρχ2 = 1

9 (4χ+ ξ)(5χ+ ξ) =
0. Choosing ρ′ = ν ′ = 0, and the corresponding noncolinear
solutions (ξ3, χ3) = (1, 0) and (ξ4, χ4) = (0, 1) to the equation
−ρ′ξ2 + ξχ− ν ′χ2 = 0, we compute

α1 = −ρ(ξ1 + ξ2)
2 + (ξ1 + ξ2)(χ1 + χ2)− ν(χ1 + χ2)

2

=
1

9
> 0

α2 = −ρ′(ξ3 + ξ4)
2 + (ξ3 + ξ4)(χ3 + χ4)− ν ′(χ3 + χ4)

2

= 1 > 0.

Thus, the transformation T1, as defined in (11), passivizes the

system Σ. A simple computation shows that T1 = [1 4
1 5], imply-

ing that the transformed input and output are given by ũ =
u+ 4y, ỹ = u+ 5y. If we let U(s), Y (s), Ũ(s), Ỹ (s) be the
Laplace transforms of u, y, ũ, ỹ, respectively, then the connec-
tions Ũ(s) = U(s) + 4Y (s) = (1 + 4G(s))U(s) and Ỹ (s) =
U(s) + 5Y (s) = (1 + 5G(s))U(s) show that the transfer func-
tion of the transformed system Σ̃ is equal to

G̃(s) =
Ỹ (s)

Ũ(s)
=
s2 + 2s+ 3

s2 + 2s+ 2
.

This transfer function, and therefore Σ̃, is passive, and is in fact
input-strictly passive with index 0.9 and output-strictly passive
with parameter 2

3 , as can be verified by the MATLAB command
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Fig. 6. Steady-state relations and the associated integral function of the EIPS system Σi. Both ki and k−1
i are cursive but nonmonotone and the

dual integral function K�
i is nonconvex. (a) ki. (b) k−1

i . (c) K�
i .

“getPassiveIndex.” The fact that Σ̃ is strictly passive follows
from our choice of λ, which requires all zeros of a certain
polynomial to be in the open left-half plane, not allowing any to
be on the imaginary axis.

B. Network of Gradient Systems With
Nonconvex Potentials

We consider a class of networked nonlinear gradient systems,
described by

Σi : ẋi = −∂U(xi)

∂xi
+ ui; yi = xi, i = 1, . . . , |V| (18)

where the inputs ui are given by

ui = G
∑
j∈Ni

(xj − xi), i = 1, . . . , |V| (19)

where G > 0 is the controller gain, Ni denotes the neighbors
of agent i, and U is a scalar potential function with U(σ) >
0, σ �= 0, U(0) = 0. Such classes of systems are important be-
cause of their applications in both biological and multiagent
systems, and are inspired from [56]. As discussed in [56], (18)
loosely describes the dynamics of a group of bacteria performing
chemotaxis (where xi is the position of the bacteria) in response
to chemical stimulus, such as the concentration of chemicals
in their environment, to find food (for example, glucose) by
swimming toward the highest concentration of food molecules.
Other possible applications include vehicle networks that must
efficiently climb gradients to search for a source by measuring
its signal strength in a spatially distributed environment. Note
that this is a diffusively coupled systems, with agents Σi and
static gains G as edge controllers. It’s easy to verify that the
static controllers Πe are MEIP and that their I/O relation γe is a
straight line passing through origin in the (ζe, μe) plane.

Let the potential U be given by U(xi) = r1(1− cosxi) +
1
2r2x

2
i , r1 > 0, r2 > 0. Thus, ∂U

∂xi
= r1 sinxi + r2xi and the

Hessian is ∂2U
∂x2

i
= r1 cosxi + r2 ≥ (r2 − r1). Note that the

steady-state I/O relation ki of Σi is given by the planar curve
ui = r1 sinσ + r2σ; yi = σ, parameterized by the variable σ.

We choose r1 = 2.5, r2 = 0.1 and note that ∂2U
∂x2 ≥ ρId, with

ρ = (r2 − r1) = −2.4. Thus, the systems Σi are EI-OP(ρ) for
ρ = −2.4, as mentioned in Proposition 1. The steady-state I/O
relation ki is cursive but nonmonotone as shown in Fig. 6(a) and

Fig. 7. Steady-state I/O relations of the transformed system Σ̃i. Both
the relations are maximally monotone. (a) λi. (b) λ−1

i .

Fig. 8. Integral functions associated to steady-state I/O relations of the
transformed system Σ̃i. Both Λi and Λ�

i are strictly convex and attains
their minimum at the steady states of the network. (a) Λi. (b) Λ�

i .

the associated integral function Ki does not exist. The inverse
relation k−1

i is also nonmonotone as shown in Fig. 6(b), and
the associated integral function K�

i (yi) =
1
2r2y

2
i − r1 cos yi is

nonconvex as shown in Fig. 6(c).
By exploiting above methodology, we passivize network by

choosing an I/O transformation J , such that the conditions in
Theorem 8 are satisfied. One of such transformations is given

by J = T ⊗ I|V | with T = [1 2.5
0 1 ], which can be found using

Theorem 4 (⊗ represents the Kronecker product). The trans-
formed network (G, Σ̃̃Σ̃Σ,ΠΠΠ), having input ũ̃ũu = uuu+ 2.5yyy and out-
put ỹ̃ỹy = yyy, has agents that are equilibrium-independent output-
strictly passive with passivity index ρ̃ = 0.1 > 0 (Theorem 4).
The steady-state I/O relation λi of each transformed agent Σ̃i

is given by a planar curve ũi = r1 sinσ + (r1 + r2)σ; ỹi = σ,
parameterized by the variable σ, which is maximally monotone
as shown in Fig. 7(a), and the associated integral function Λi is
strictly convex as in Fig. 8(a), which we plotted using MATLAB
function “cumtrapz.” The inverse relation λ−1

i is also maximally
monotone as shown in Fig. 7(b), and the associated integral
function Λ�

i = 1
2 (r1 + r2)ỹ

2
i − r1 cos ỹi is strictly convex as

shown in Fig. 8(b).
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Fig. 9. States of the systems Σ and Σ̃ in the diffusively coupled
network interconnection in Fig. 1. (a) Σ. (b) Σ̃.

The outputsyyy of the systems are plotted in Fig. 9 for the above
both cases. For the original systems ΣΣΣ, there exists a clustering
phenomenon as shown in Fig. 9(a), which does not correspond
to the minima of the integral functionK�

i in Fig. 6(c). However,
for the transformed systems Σ̃̃Σ̃Σ, one can observe from Fig. 8
that the minimum of integral functions Λi and Λ�

i occurs at the
steady state of the transformed system Σ̃̃Σ̃Σ, that is, ũ̃ũu = 0, ỹ̃ỹy = 0,
as expected.

IX. CONCLUSION

In this article, we consider networks of equilibrium-
independent (ρ, ν)-passive systems, and constructed a network
optimization framework for their analysis. The first step was
considering their steady-state I/O relations, which are not nec-
essarily monotone, and monotonizing them using a linear trans-
formation. This was done by a geometric understanding of the
quadratic inequalities satisfied by said steady-state I/O relations.
We later showed that this transformation actually passivizes the
agents with respect to any equilibrium, culminating in Algorithm
1 for passivation of equilibrium-independent (ρ, ν)-passive sys-
tems. We also studied the implementation of these transforma-
tions, connecting the original steady-state I/O relation to the
transformed one. The last barrier from proving that the trans-
formed agents are MEIP was maximality of the monotonized
steady-state relation, which was tackled using the notion of
cursive relations. We compared the suggested methods to similar
works, and presented case studies demonstrating the constructed
framework. Future research might extend this framework to
MIMO agents, and will need to extend the geometric under-
standing of the quadratic inequalities, as well as the notion of
cursive relations, to systems of higher dimensions.

APPENDIX A
PROOF OF THEOREM 3

The proof of Theorem 3 is given below.
Proof: Consider a PQI aξ2 + bξχ+ cχ2 ≥ 0. If a = c = 0

and b �= 0, the solution set is either the union of the first and
third quadrants, or the union of the second and fourth quad-
rants (depending whether b > 0 or b < 0). In particular, it is
a symmetric double-cone in both these cases. Thus, we can
assume that either a �= 0 or c �= 0. By switching the roles of
ξ and χ, we may assume, without loss of generality, that c �= 0.
Note that if (ξ, χ) is a solution of the PQI, and λ ∈ R, then

(λξ, λχ) is also a solution of the PQI. Thus, it’s enough to show
that the intersection of the solution set with the unit circle is a
symmetric section. Writing a general point in S1 as (cos θ, sin θ),
the inequality becomes

a cos2 θ + b cos θ sin θ + c sin2 θ ≥ 0. (20)

We assume, for a moment, that cos θ �= 0, and divide by cos2 θ,
so that the inequality becomes

a+ b tan θ + c tan2 θ ≥ 0. (21)

We denote t± = −b±√
b2−4ac
2c and consider two possible

scenarios.
1) c < 0: In that case, equation (21) holds only when tan θ

is between t+ and t−. As tan is a monotone ascending
function in (−π/2, π/2) and (π/2, 1.5π), and tends to
infinite values at the limits of said intervals, we conclude
that (21) holds only when θ is inside I1 ∪ I2, where I1, I2
are the closed intervals which are the image of [t−, t+]
under arctan(x) and arctan(x) + π, so that I2 = I1 + π.
Note that as c < 0, any point at which cos θ = 0 does not
satisfy (20). Thus, the intersection of the solution set of
the PQI aξ2 + bξχ+ cχ2 ≥ 0 with S1 is a symmetric
section.

2) c > 0: In that case, equation (21) holds only when tan θ
is outside the interval (t−, t+). Similarly to the previous
case, tan θ ∈ (t−, t+) can be written as B ∪ (B + π),
where B is an open section of angle < π. Thus, its
complement, which is the intersection of the solution set
of the PQI aξ2 + bξχ+ cχ2 ≥ 0 with S1, is a symmetric
section.

Conversely, consider a symmetric double-cone A, and let
S = B ∪ (B + π) be the associated symmetric section. Let
C ∪ (C + π) be the complement of S inside S1, where C is an
open section. We first claim that cos θ �= 0 either on B or on C.
Indeed, B ∪ C is a half-open half-circle, and the only points at
which cos θ = 0 are θ = ±π/2. Thus, B ∪ C can only contain
one of them. Moreover, B and C are disjoint, so at least one
does not include points at which cos θ �= 0. Now, we consider
two possible cases.

1) B (hence S) contains no points at which cos θ = 0. Then
tanmapsB continuously into some interval I = [t−, t+].
Thus, θ ∈ S if and only if −(tan θ − t−)(tan θ − t+) ≥
0. Inverting the process from the first part of the proof,
the last inequality (which defines S) can be written as
the intersection of the solution set of some PQI with S1.
Thus, A is the solution set of the said PQI. Nontriviality
follows from the fact that t± are two distinct solutions to
the associated equation.

2) C contains no points at which cos θ = 0. Then tan maps
C continuously into some interval I = (t−, t+). Thus,
θ ∈ C ∪ (C + π) if and only if (tan θ − t−)(tan θ −
t+) < 0. Equivalently, θ ∈ S if and only if (tan θ −
t−)(tan θ − t+) ≥ 0. We can now repeat the argument
for the first case to conclude that A is the solution set of
a nontrivial PQI.
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As for uniqueness, suppose the nontrivial PQIs a1ξ
2 +

b1ξχ+ c1χ
2 ≥ 0 and a2ξ2 + b2ξχ+ c2χ

2 ≥ 0 define the same
solution set. Then the equations a1ξ2 + b1ξχ+ c1χ

2 = 0 and
a2ξ

2 + b2ξχ+ c2χ
2 = 0 have the same solutions (as the bound-

aries of the solution sets). Assume first that either a1 �= 0 or that
a2 �= 0. In particular, for ξ = τχ, both equations χ2(a1τ

2 +
b1τ + c1) = 0 and χ2(a2τ

2 + b2τ + c2) = 0 have the same
solutions. Dividing by χ2 implies both equations have two so-
lutions, t− �= t+, as b21 − 4a1c1 > 0 and b22 − 4a2c2 > 0. Thus,
we can write

a1τ
2 + b1τ + c1 = a1(τ − t−)(τ − t+)

a2τ
2 + b2τ + c2 = a2(τ − t−)(τ − t+)

implying the original PQIs are the same up to scalar, which must
be positive due to the direction of the inequalities.

Otherwise, a1 = a2 = 0, so we must have b1, b2 �= 0, as oth-
erwise b21 − 4a1c1 = 0 or b22 − 4a2c2 = 0. Plugging χ = 1, we
get that the equations b1ξ + c1 = 0 and b2ξ + c2 = 0 have the
same solutions, implying that (b1, c1) and (b2, c2) are equal up to
a multiplicative scalar. As a1 = a2 = 0, we conclude the same
about the original PQIs. Moreover, the scalar has to be positive
due to the direction of the original PQIs. This completes the
proof. �
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