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Abstract: This work solves the bearing-only formation control problem for two agents with
limited field-of-view sensing. We propose a bearing-only control strategy for both the position
and heading of each agent that guarantees the desired formation is obtained from almost all
initial conditions, and ensures that the agents always remain inside the field-of-view of the sensor.
We support our analysis with simulations and explore an extension for the 3- and 4-agent case.
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1. INTRODUCTION

Formation control can be considered one of the basic
tasks for a multi-agent system. The goal is to design
a distributed controller for each agent that drives the
ensemble to some desired geometric pattern. Inspired by
birds or fish that move in certain shapes, formations of
multi-agent systems are used in underwater exploration,
surveillance, and deployment in space Eren et al. (2003);
Fidan et al. (2007), among others.

The survey paper on multi-agent formation control, Oh
et al. (2015), provides a high-level classification of differ-
ent formation control strategies. They include position-
based, displacement-based, distance-based, and bearing-
based approaches, each depending on the sensing mediums
available to the agents. Distance-based approaches were
extensively studied in Anderson et al. (2008), Krick et al.
(2008), Oh and Ahn (2014) and Zelazo et al. (2015).
Bearing-based formation control has become more popular
in recent years since visual sensing can be used to extract
bearing information. Compared to range sensors, cameras
are cheaper, lighter, and require less power. Estimating rel-
ative position information from bearings has been studied
in Zelazo et al. (2014), whereas Zhao and Zelazo (2016)
used bearing information directly to stabilize formations
for an arbitrary number of agents. In both articles, it
is assumed that the visual sensors can cover the entire
surroundings to extract relative angles to its neighbors.
However, this assumption is not realistic in applications
using ground robots or UAVs. Usually cameras are only
able to record a bounded area defined by its field-of-
view (FOV). This leads to state-dependent sensing graphs
where the neighbors are not static - they depend both on
the position and orientation of the sensing agent, and the
FOV constraints of the sensor.

* This work was supported in part by the Technion Autonomous
Systems Program, by the German Academic Exchange Service
(DAAD), and the German-Israeli Foundation for Scientific Research
and Development (GIF).

Motivated by this real-world problem, a number of ap-
proaches have been considered in the literature. Formation
control over directed sensing graphs have been studied
in Hendrickx et al. (2007) for distance constrained for-
mations, and in Zhao and Zelazo (2015); Trinh et al.
(2018, 2016) for bearing formations. The limited FOV
problem has been studied in other multi-agent problems.
The authors of Asadi et al. (2016) study consensus and
containment with limited FOV. In the work of Dias et al.
(2016) a limited FOV is introduced but the sensing graph
remains static and range information is needed.

In this work, we aim to directly address the formation
control problem using bearing sensors with limited FOV
constraints. Our starting point is the bearing-only forma-
tion control strategy proposed by Zhao and Zelazo (2016),
which we augment by introducing the state-dependent
FOV constrained bearing measurement. We assume the
sensor is mounted rigidly to the body frame of the robot,
and we also propose a control for the heading of the robot,
corresponding to the pointing direction of the sensor In
this preliminary work we focus on the two-agent case. Our
main contributions can be stated as follows:

i) We propose a novel controller for the heading di-
rection based only on sensed bearing measurements.
This controller guarantees that once an agent enters
the FOV of the sensor, it will remain inside for the
remainder of the trajectory.

ii) We provide a complete characterization of the differ-
ent equilibrium configurations attainable by the two
agent case and show that if at least one agent is
initially sensed, then the desired formation is a stable
equilibrium.

We also demonstrate the results with a number of simula-
tion examples. While this work focuses on the two-agent
case, we also provide simulation examples for the three and
four agent case indicating the promise of this approach for
larger formations.
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This paper is organized as follows. In Section 2 we intro-
duce the dynamics of the agents and present the sensing
model. Section 3 reviews the bearing-only controller and
extends it to the FOV constrained case; here we also
propose a controller for the heading direction. In Section
4 we characterize four different initial condition sets that
are possible under the FOV constraints and then prove
stability of our proposed control law. We support our
analysis with some numerical simulations in Section 5.
Concluding remarks are given in Section 6.

2. SYSTEM AND SENSING MODEL

In this section, we introduce the multi-agent system model
with limited FOV bearing sensing. For this preliminary
work, we focus on the n = 2 agent case. Each agent
is described by its position vector, p;(t) € R?, and its
heading, 1;(t) € S, for i = 1,2.! The dynamics of the
agents are modeled as single integrators,

% t)=1|; = ) 1

w0 = [30] = 560 )
where u;(t) € R? controls the linear velocity of the agents,
and w;(t) € R the rotation rate. The complete state vector
follows as x(t) = [x1(t)" Xz(t)T]T. From here on, we will

neglect the time dependency of our signals where it is
obvious, but include it when necessary.

FEach agent is equipped with a sensor that is able to
measure the relative bearing (in a common reference
frame) to the other agent. We assume the sensor is
mounted such that it points in the direction of the agent
heading, ;. The unit bearing vector between agent 1 and
2, is defined as

P2 —P1 212
il 2
Ip2 =il diz )
The initial distance is denoted as di3 = d12(0).

g12 -

As the bearing vector is expressed in a global reference
frame, it follows that gi2 = —go21. Denote by 4y, the angle
between the facing direction of agent ¢ and the angle of
the sensed bearing g;;. That is,

= cos™ " ([cos(¢;) sin(v;)] gi;) -

The sensor is also characterized by a FOV constraint. We
denote the FOV of the sensor by the angle 4. Thus, an
agent is able to sense its neighbor if and only if |0y, | < 7/2,
i.e., when the neighbor is inside the FOV of the sensor.
Also note that the angle of the bearing g;; with respect to
the (world frame) z-axis is defined as

= tan ! @ = cos Y ([gii]s) = sin ™ ([g;
oy = tan () = cos7 () = sin ().

\5%

Note that as; = a2 + 7 defines the angle of go; at the
position of agent two. Therefore, dy, = a;; — 1. The sign
of y, indicates if an agent is on the right- or on the left-
side with respect to the facing direction. These notations
are illustrated in Figure 1.

We introduce an indicator function for each agent that
indicates if a neighbor can be sensed or not,

1 Here, S! denotes the 1-dimensional manifold on the unit circle.

Fig. 1. Two agent configuration with FOV constrained
bearing sensing note that |dy,| > 7/2.

. 7
wilt) = {1 if [0, ()] < 5 n

0 else.

The weights for both agents can be compactly written in
matrix form as

_ |wi®) O
W(t) = [ 0 walt)] (5)
In the next section, we will provide a brief overview of a
bearing-only formation control strategy proposed in Zhao
and Zelazo (2016), and propose an extension to this law
to cope with the limited FOV sensor constraints.

3. CONTROLLER FOR THE TWO AGENT CASE

Zhao and Zelazo (2016) proposed a bearing-only formation
control strategy for a team of n agents modeled by inte-
grator dynamics. The desired formation shape is specified
by the constant unit bearing vectors g;; (the angle of the
desired bearing follows as o; = tan™" ([g;]y/[9};]2)). For
n = 2, the controller has the form

Di = _Pgijg;j7 i1=1,2. (6)
Here, Py, = (I2 — g,;jgg) is a projection matrix. The
projection matrix is idempotent and therefor P, = Pg2ij

holds, and P, (+g;;) = 0. This control strategy was
proven in Zhao and Zelazo (2016) to almost globally
stabilize the formation.

When the FOV constraints of the bearing sensor are
considered, the dynamics described in (6) become

S, — —w1 P, 129?2 — *
pmu=[aetle] - (WH S ) Paghs (0
where H = [-1 1]T, and W (t) is the indicator matrix
defined in (5). Note that p; = 0 when g12 = £g7, or when
w; = 0. It is thus clear that if the agents do not also control
their facing direction, it may be they will not converge to
the desired formation.

In the two agent case, a natural approach for controlling
the facing direction is to align the facing direction with
the bearing measurement, ensuring it is inside the FOV of
the sensor. That is, we would like to design a control for
the facing direction that drives d,, to zero.

With this setup, we state the FOV constrained bearing
formation control problem below.

Problem 1. Given a desired bearing ¢},, an initial forma-
tion x(0), and the limited FOV #, find the control inputs
u; and w; such that d,, — 0 and g12 — g7, as t = oo.

To solve this problem, we propose the following controller
for the facing direction to augment the bearing-only for-
mation control in (7),
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wi = wi(k ([912]e[972)y — [912]y[972)0) +04,),  (8)

v(r,912)
for some scalar k > 0 and w; the FOV indicator func-
tion (4). This controller is decoupled from the position
controller (7) and uses only local information that can be
obtained by a visual sensor. Furthermore we can bound
bound the term v(k,g12), which will be useful in our
subsequent analysis.

Proposition 2. The control term v(k,gi2) is bounded by
||, that is, v(k, g12) < K.

Proof. Since g1 and gi, are unit vectors [g12]2 4 [g12]2 =

1 holds. Therefore ([g12]2[972ly — [912]y[972]z) < 1, and we
conclude v(k, g12) < k. [ ]

The complete dynamics of the closed loop system can now
be written as

X _ u —_ (WH Y IQ)PglngQ (9)
w| W (v(k,912)1 = dy) |
where 8y = [0y, 0y,]" and 1 =1 1]".

In the next section we describe the different equilibrium
configurations of the system and prove their stability.

4. STABILITY ANALSYIS

The proposed control strategy presented in (9) naturally
will depend on the initial conditions of the agents. Indeed,
if the facing direction of both agents are such that neither
are in the sensor’s FOV, then both agents will remain
stationary, and the objective can not be met. In this direc-
tion, we identify four different possible initial conditions,
characterized by the value of the indicator function w;(0),
that lead to different behaviors of the system. For each
set of initial conditions, we provide a complete stability
and convergence analysis of the closed-loop system. Qual-
itatively, the trajectories of the agents can produce four
behaviors of the indicator function: i) both agents never
sense eachother, ii) only one agent senses the other, iii) an
agent enters or leaves the FOV during the trajectory, and
iv) both agents sense eachother.

4.1 No Sensing: w1(0) = wa(0) =0

Formally, the first case is stated as |0y, (0)| > 7/2, i =1,2
which means that the visual sensor cannot extract any
information of its neighbor, and both weights are zero.
Thus, we have that © = 0 and w = 0. It follows that the
equilibrium point is the initial condition, and the agents
simply do not move.

This clearly degenerate case motivates the inclusion of the
following assumption on our dynamics, which ensures that
at least one agent is inside the FOV of the other.
Assumption 3. The initial condition x(0) is such that
w1 (0) + wg(O) > 1.

4.2 Complete Sensing: w1(0) = wz(0) =1
In the second case both agents can sense each other and

|04, (0)] < #/2, i = 1,2. Controller (7) becomes the
bearing only control law introduced in Zhao and Zelazo

(2016). This has been shown to be stable when 7 = 27. In
the limited FOV setup, however, the facing direction has
to change to ensure the agents remain inside the FOV. The
first result shows that the controller (8) guarantees that
the facing error, &y, is bounded by d;, .

Proposition 4. If the indicator function w;(0) = 1, ¢ =
1,2, controller (8) guarantees that the facing error stays
bounded, such that |dy, (t)] < 1/d12 holds as t — co.

Proof. First, observe that cos(aiz) = [1 0] g12. Therefore,

d . . .
7 cos(aia) = —dnasin(agz) = [1 0] g12
P, . 1 N
=[10]Z2(H@ L) p= 1 0] (w1 +w2)L2) Py, 9%,
12 12
= Lovrnlioely (g, 55, ~ lnalaloal).
Since sin(aq2) = [g12], we obtain
. . w1 +w " "
Q12 = Go1 = % (lg12][972ly — [912]y[972]2) - (10)

Note that a1z = ag1 £, and therefore é2 = Go1.2 In
the case w1 (0) = wy(0) = 1, the dynamics of dy,, i = 1,2
become

1

Oy, = iy — by = s (lg12]2[972]y — [912]y[9712]2) — Oy,
= v(1/d1a, g12) — by,
Here we choose x = 1/(]12 such that we can subtract

the terms. By using Proposition 2 we conclude that
v(1/dy2,g12) € [—1/d12, 1/d12]. In a next step we look
at the solution of the differential equation

t
8y, (t) = €0y, (o) + / e u(1/dua, gr2(7))dr

to
which satisfies the bound

1 1
Sy, (t Set{é (t —]+.
60,0 < 7 {6 (t0) = 7| + 7
It follows that the bearing error does not exceed 41/d1s.

Proposition 4 can be used to establish a relationship
between the initial distance of the agents and the required
FOV of the sensor to ensure that if w;(0) = w2(0) =1
that the agents will not leave the FOV of their neighbors
under the trajectories of the system.

Corollary 5. If 4/2 > 1/dy5 and w1 (0) = wy(0) = 1, then
under control law (9), wy(t) = wa(t) =1 for all t > 0.

Note that if djg < 1/7 the sensor has to cover 360 degrees.
Corollary 5 leads to another Assumption on the system
that will guarantee agents will not leave the FOV of their
neighbor once sensed.

Assumption 6. The sensor FOV satisfies /2 > 1/d1s.

We now examine the equilibrium point of the closed
loop (9) under Assumption 6. The equilibrium point of
controller (7) is given as ¢g12 = *+gi,, as shown by the
following,

pi = 0= (l2H ® I2) Py, 915
* T * * *
= (912)T (I2H ® I)" (IaH ® I2)P912912 = (QIZ)TPgmng'

2 For more details on the dynamics on gi12, we refer to Trinh et al.
(2018).
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Note that from the properties of P,, it follows that
(912)" Py1,9%2 = 912 Py, g12. Here we used Lemma 8 from
Zhao and Zelazo (2016) and since the kernel of the projec-
tion matrix contains the bearing measurement, it follows
that Null (P ) = span {£gj,} and therefore we can con-
clude that p = 0 only holds if g12 = £gj,. Note that if
g12 = g7, holds then the bearing dynamics become zero,
which leads to v(1/d12,¢912) = 0. From Proposition 4 we
then conclude that dy,, ¢ = 1,2 will exponentially converge
to zero under control law (8).

In order to show the stability of the equilibrium point we
introduce §, = g12 — g7, as the bearing error. Then we
show that gg = —2g7, is unstable and J, = 0 is stable,
which refers to gi12 = ¢i, and gi2 = —gjy respectively.
First, we note that |dy,(0)| < 7/2, ¢ = 1,2 holds whenever
the facing direction belongs to the intervals below,

By = [0612(0) - g,au(o) + g] , Bay = [0421(0) - ;001(0) + %} .

Theorem 4.1. Under Assumption 6 and initial conditions
satisfying ¢1(0) € B1 and ¥2(0) € By, then §; — 0 and
8y — 0 for almost all initial configurations p;(0) € R?, i =
1,2, except for the point corresponding to g12(0) = —g7s.

Proof. First we show that J, = —2gj, is an unstable
equilibrium point for controller (7). Consider the dynamics
of the bearing error, dg4,

. ) P i

0g = f(0g) = 612 = dg1122 (H® IQ)T (I2H @ I3) Py,, 975
2

= dT2P912912~

It can be verified that the Jacobian A = df(d,)/0d, is

4 * * * *
T ((912)T912I2 + 912(912)T)
12

4 * *
= dTg(IQ +912(912)") = 0

The last line of (11) is true since gf, is a unit vector
with length one. The Jacobian is positive semi-definite and
therefore we conclude that g;2 = —gj, corresponds to an
unstable equilibrium point

A|5.q:*29f2 =

(11)

Now we will show that g12 = g¢j5 is a stable equilibrium
point which will be reached from every initial condition
except the unstable equilibrium point (g12 = —g7,). We
define the Lyapunov function V; := 1/2(6] 64 + 67, +07,.)
which is positive semi-definite and zero only at J, =
0,6y, = dy, = 0. Its time derivate follows as

V1d12 =- 53&1 + Oy, ([912}x[9T2]y - [912]y[gfz]m)

— ([12)elgialy — [912]yl97a)x)°
- 57,202 + 0y, ([912)2[972]y — [912]y[972]2)
]

— ([g12]elgtaly — [g12]y[g7a)e)* < O
The last line is true since it is an elliptic paraboloid that
is smaller then zero everywhere but the origin, concluding
the proof. ™

We showed that if both neighbors see each other initially
and Assumption 6 is fulfilled, then the desired bearing
will be reached and the proposed facing controller (8)
guarantees that the connection does not get lost during
the movement of the agents.

4.8 Partial Sensing: w1(0) = 1L,ws(t) =0,t >0

Without loss of generality, we will consider the case where
agent one can sense its neighbor, but is outside the FOV
of agent two (i.e., |0y, (0)] < /2 and |dy4,(0)| > 7/2,
see Figure 1). The equilibrium point of (9) now clearly
depends on the facing direction of agent two. We now focus
on the scenario where agent one can achieve the desired
formation without ever entering the FOV of agent two. We
will define initial conditions for 2(0) that ensures this
behavior. Before defining the interval explicitly, we first
analyse the movement of agent one assuming [0y, (¢)| >
7/2 holds (and also ws(t) = 0) for all ¢ > 0.

The dynamics of agent two will be zero and agent one will
move on a static circle around agent two.

Lemma 4.2. If w1(0) = 1 and wy(t) = 0 for all ¢ > 0,
agent one evolves on a circle with radius » = dj2 and
center ¢ = py(0).

Proof. First, observe that the distance between the
agents remains invariant along the trajectories of (7). In-
deed, d%g = 2’?2212 and %d%2 = 22’?22'512 = —QZngugTQ =
0, since z12 € Null(P,,,). Furthermore, p, is stationary if
wo = 0 and we conclude that it is the center of a circular
movement with radius r = dy2. Due to the invariance of
the distance, di2(t) = di2 holds for all ¢ > 0. [ |

In a next step, we define the direction in which agent
one moves on the circle. This is important to formalize
the interval for 12(0) that ensures ws(t) = 0 holds. The
rotation direction is indicated by the sign of the angle
between ¢12 and g7, which we define as a5, = Qs — 2.
The directions follow as

{Oz(;g >0, p; moves clockwise

12
as, < 0, p; moves counter-clockwise. ( )
Note that as, = 0 only holds if g12 = gi,, which is
the desired equilibrium point. We define two intervals for
which |dy, (t)] > 7/2 holds for all ¢ > 0, depending on the
direction that agent one moves,

My = {042(0) + %704?2 - %} My = [afz + %,0&12(0) - %} .

Now we will provide a stability proof that fist shows that

the facing controller (8) guarantees that agent two will
always be inside the FOV of agent one. In a second step
we analyse the intervals My and My and show that if
the facing direction of agent two is in one of the sets
(depending on the sign of as,), agent two will never be
able to track agent one. Finally we show that agent one is
able to reach the objective without agent two moving.

Theorem 4.3. Under Assumption 3 and initial conditions
satisfying 12(0) € Mg if a5, < 0, or ¢»(0) € My if
a5, > 0, then (Sg — 0, 5w1 — 0, and (5¢2 = Ot§1 — wQ(O)
for almost all initial configurations p;(0) € R?, i = 1,2,
except for the point corresponding to g12(0) = —g7s.

Proof. First we will show that the sets M and My
are invariant under the dynamics of the system (9). To
do so we look at the upper and lower bound of J,. We
then define the region in which it is possible for agent two
to track agent one and then conclude that every facing
direction of agent two outside those bounds will never be
able to track agent one. We introduce a Lyapunov function
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Fig. 2. When v, € B; holds, there are three possible
trajectories depending on the facing of agent two,
marked by three different colors.

Vo = 1/26]6, which is positive definite everywhere but

zero. Its time derivate follows as
. . o T
Va = 5559 = —(912)

P912 *
di 912
Now we see that 0 < |04(t)| < |04(0)] holds. Then we add

+7/2 to the upper and lower bound of the bearing error,
since agent two is able to track its neighbors in the area
19 + 4/2. The sign depends on the moving direction of
agent one and therefor on a;, . For as, > 0 we get the

bounds of
ol an—1 [921(0)]y\ ¥ an—1 lg21ly
enlt) =y € (t (o)~ 3 <[921]2§) " ) ’
Sy oy (el Y
c (tan ([921];> 2,‘5 ([921(0)]1) + 2> .

and if a5, < 0 we get

If 95 is inside these bounds then it could sense g12(t), and
if not then |0y, (¢)| > 74/2 holds for all t > 0. We conclude
that if a5, < 0, My, is invariant, and if a5, > 0, My is
invariant, both under the dynamics of the closed loop (9).

<0. (13)

N |21

2

21 (t) +

N[22

An illustration of the angles can be seen in Figure 2.
Since wy = 0 we get ¥a2(t) = 12(0). From Theorem 4.1
we conclude that d, = 0 is a stable equilibrium point
for controller (7) and 6, = —2gf, is unstable. Now we
are ready to show that controller (9) reaches the desired
bearing and that the facing direction of agent one aligns
with it.

First we show that wy(t) = 1 for all ¢ > 0 by introducing

Vs =1/ 2651, which is positive definite everywhere but
zero, from

Vs = 6,64, = 0y, (dlz - 1/11) =0, (14)
We conclude |3y, (t)] < [dy, (0)] and &, — 0 ast — oo. We
choose k = 1/d;5 such that we can eliminate ¢;2 dynamics.

In (13) we showed that Vo < 0 and therefor conclude that
0y —+ 0 ast— oo. [ ]

Note that in this case Assumption 6 is not required since
the dynamics of g12 change slower if only one agent moves.

4.4 Partial Sensing: w1(0) = 1,w2(0) = 0 and wa(t) =1
fort>1T.

Now we look at the case where agent one moves inside the
FOV of agent two such that |0y, (T")] < 7/2 for some time
T > t, but |dy,(0)] > 7/2 initially. First only agent one
moves and once the trajectory enters the FOV of agent
two the indicator function wse becomes active.

As before we first define an interval for the facing direction
of agent two. We further define a switching point s which
specifies the point where agent one enters the FOV of agent
two. In a last step we show that the desired bearing will
be reached after agent one hits the switching point. The
intervals for the facing direction depend on a5, defined in
(12),

2 2 2 2
Theorem 4.4. Under Assumptions 3 and 6 and initial
conditions satisfying ¥»(0) € St if as, < 0 or 12(0) € Sy
if a5, > 0, then d;, — 0 and dy, = dyp, — 0 from almost
all initial configurations p;(0) € R?,i = 1,2, except for the
point corresponding to g12(0) = —g75.

SL = o¢§1 — 1,0421(0) — li| s SU = |:0421(0)+ 1,04;1 =+ lj| .

Proof. Agent two is only able to track agent one if it
satisfies the intervals defined in Theorem 4.3, from there
we remove the part where |dy,(0)| < 7/2 holds and get
Sy, and Sy. If the facing direction is in that region the
trajectory of agent one will come into the FOV of agent
two, before the desired bearing is reached.

In Theorem 4.1 we showed that gi2 = —g7y is a unstable
equilibrium point of controller (7) and therefor undesired.

Now we can define a switching point and show that
controller (7) will converge first to that point. Furthermore
wy jumps from zero to one when agent one reaches the
point, then both agents can see each other and converge
to the desired formation, as shown in Theorem 4.1. We
define the switching point as

cos (wg(O) — sgn(agg)g>

- g* )
sin (7,/12(0) — sgn(og;g)%) 12

in terms of bearing error. In Theorem 4.3 we showed that
controller (8) guarantees that agent one keeps track of
agent two. Since

(15)

0 <5< 64(0) (16)
holds, we have to show that J, decreases constantly. The
Lyapunov function V5 is positive-semidefinite, radially
unbounded and zero only at the equilibrium point. The
time derivative defined in (13) is negative semi-definite
and zero only at the equilibrium point. Now we have shown
that the bearing error constantly decreases and since (16)
holds we guaranteed that agent one will hit the switching
point s in finite time ¢t > T'. Once s is reached the stability
of the equilibrium point follows as in Theorem 4.1. [ |

We showed now that g2 = g7, will be stabilized if As-
sumption 3 and 6 hold and g12(0) # —gi,. The introduced
controller for the facing direction (8) therefor gives a
criteria on the required FOV (Corollary 5) and uses only
information locally available on each agent. In the next
section we will provide some simulation results.

5. SIMULATIONS

The control law (9) is applied for different initial facing
directions but static positions in the two agent case. The
results are shown in Figure 3a-3c. The simulation in Fig-
ure 3c shows the case where agent one moves into the
FOV of agent two. The initial position is set to p(0) =

3215 O.B]T, 1(0) is different in all four cases, the desired
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1

o.
/7]\
0.5 0 0.5 1 15 2 25 3
T

0
05 1 15 2 25 3 35
T

(a) Complete sensing: wi(0) = (b) Partial sensing: wi(0) = 1,
wQ(O)Zl. ’wg(t):O,tZO.

(c) Partial sensing:w1 (0) = 1, wa(¢) =1, >
T.

Fig. 3. Simulation results for n = 2 agent cases.

— 15
3 —1;
1 —7
2 P
0.5 \\ 1
K

(a) Three agents where the de- (b) Four agent case where the
sired bearing is the triangle. desired bearing is a rigid square.

Fig. 4. Simulation results for n = 3,4 agent cases.

bearing is gf, = [1 O]T. While the analysis in this work
focused exclusively on the two agent case, we demonstrate
in Figures 4a and 4b that the proposed strategy may also
work for n > 2 agents. The main modification relates
to the facing direction control. In the three agent case
the desired facing direction was chosen to be the closest
neighbor, while in the four agent case we choose it to be
in the middle of all neighbors that can be sensed. The
stars on the trajectories in Figure 4b () indicates when
the number of sensed agents changes. The FOV is set to
7 =90° and 4 = 100° for the three and four agent case re-
spectively. In both examples, the agents successfully attain
the desired formations, even while the number of sensed
agents changes along the trajectories. The desired forma-

tion was set to g5 = [1 0 —1/2 V3/2 —1/2 —/3/2]" and

gi=[01100-1-10+v2/2 v2/2]", for the three and
four agent case respectively.

6. CONCLUSION

In this work, we solved the bearing-only formation control
problem with limited field-of-view sensing constraint for
the two agent case. To achieve this, we implemented a
bearing-only control for the heading of the agent that
ensures agents remain inside the FOV once they enter. We
provided a complete analysis of the resulting system show-
ing the approach can stabilize the desired formation from
almost all initial conditions of the positions. We validated
the work with simulation examples, and demonstrated
that this idea may be extended to larger formations. The
formal analysis of n > 2 formations is the subject of
future work, in addition to considering more realistic robot
models, such as unicycle dynamics.
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