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Finite-Time Bearing-Only Formation Control via
Distributed Global Orientation Estimation

Quoc Van Tran , Minh Hoang Trinh , Daniel Zelazo , Dwaipayan Mukherjee , and Hyo-Sung Ahn

Abstract—This paper presents a finite-time bearing-only
formation control scheme via finite-time estimation of
agents’ global orientations. For the orientation estimation,
we propose a distributed estimation law and establish al-
most global finite-time convergence. We provide analysis
for undirected and a class of directed sensing and communi-
cation graphs. A distributed bearing-only formation control
law is then proposed based on the orientation estimation.
We provide a rigorous analysis for almost global stability
and finite-time convergence of the system to the desired
equilibrium. Particularly, under the proposed bearing-only
formation control strategy, the actual formation almost glob-
ally exponentially finite-time converges to the desired for-
mation shape. Finally, numerical simulations are provided
to support our proposed control method.

Index Terms—Bearing-only formation control, finite-time
formation control, finite-time orientation estimation.

I. INTRODUCTION

D ISTRIBUTED formation control of multiagent systems
has attracted much research attention in recent years [1],

[2]. In distributed formation control of autonomous networked
systems, the agents in a network aim to form a target formation
shape by imposing kinematic or geometric constraints between
neighboring agents. These constraints often characterize the
variables to be sensed and controlled by the agents. Particularly,
based on the constrained quantity, distributed formation control
can be classified into displacement-based, distance-based, and
bearing-based formation control [1].

Bearing-based formation control has been of particular inter-
est in recent years partly due to the low cost and simplicity of the
sensor systems associated with bearing measurements compared
to distance-based or displacement-based solutions [3]–[11]. In
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the literature, bearing information can be interpreted as the sub-
tended angle between two vectors (bearing angle) or the unit
directional vector to a target (bearing vector). The bearing angle
is a scalar quantity and, hence, it is invariant to any coordinate
system.

As a result, the bearing-based formation control can be fur-
ther categorized into two subgroups according to the control
variable and whether a common reference coordinate frame is
required. The first approach is controlling the bearing angles,
and it requires no reference coordinate frame knowledge to
each individual agent. For example, the early works on three-
and four-agent formations can be found in [3] and [4], and an
extension to more general n-agent systems is presented in [5].
A limitation of these works is that they are restricted to two-
dimensional (2-D) spaces. The second method is controlling the
bearing vectors to some neighboring agents of each agent in the
network. The approach is developed based on the bearing rigid-
ity theory in two or higher dimensions [6]–[8], and it requires
that the agents in a networked system share the knowledge of
the global coordinate system. A framework is characterized by
an undirected sensing graph and the corresponding positions of
agents in a Euclidean space. The bearing rigidity theory provides
a powerful tool in examining the uniqueness of the formation
shape and the condition for almost global convergence of bear-
ing sensing frameworks in an arbitrary dimension [7]. There
are applications in bearing-only formation control, network lo-
calization, and formation maneuvering control. For multiagent
systems with directed sensing topologies, there is a work on the
leader-first follower formation [9].

Without the knowledge of a common orientation, the bearing
rigidity in SE(3) provides a distributed solution to the bearing-
based formation control in 3-D [12]. This paper utilizes addi-
tional relative orientations among neighboring pairs. By using
the relative orientation information, Zhao and Zelazo [7] intro-
duced an orientation alignment scheme in SO(3) to the bearing-
based formation control. By aligning agents’ orientations and
controlling interagent bearings simultaneously, the target for-
mation can be achieved [7]. However, the orientation alignment
method suffers from a strict restriction on the initial orienta-
tions [7], [13]. In SO(3), there are related works on orientation
alignment, or attitude synchronization, [14], [15] and finite-time
attitude synchronization for a leader–follower architecture [16],
[17] and multiagent systems [18]. Instead of aligning agents’
orientations, orientation estimation laws were proposed in [19].
In the orientation estimation scheme, agents’ orientations are
derived from controlled auxiliary variables defined in a vector
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space; thus, it guarantees almost global convergence of esti-
mated orientations, and it is applicable in arbitrary dimensions.

This paper investigates the problem of finite-time formation
stabilization for a group of autonomous agents by controlling
interneighbor bearing directions, without the knowledge of a
global coordinate frame. Finite-time controllers provide supe-
rior properties over those that ensure only asymptotic stability,
such as faster convergence, better disturbance rejection, and
robustness against uncertainties [20], [21]. Finite-time conver-
gence, thus, is also often required in many applications where
the control accuracy is crucial. Our recent work in [11] proposed
two classes of finite-time control laws for the bearing-only for-
mation control problem. For related works, there are results on
finite-time consensus problems [22], [23], finite-time leader’s
state estimation, and tracking control of leader-following sys-
tems [24], [25], and finite-time distance-based formation control
problems [5], [26]. However, a common sense of the global ori-
entation is required for each agent in most of these works.1

A natural extension to these works is to consider the finite-
time bearing-based formation control of multiagent systems via
distributed estimation of the agents’ orientations with regard
to a reference coordinate system. For this, globally finite-time
convergence of estimated orientations to the actual orientations
is required. The first contribution of this paper, therefore, is the
development of finite-time orientation estimation strategies. In
particular, we propose an orientation estimation law by using
relative orientations among interagent pairs for connected undi-
rected and a class of directed relative orientation sensing graphs.
By introducing an auxiliary matrix variable for each agent and
analyzing the orientation estimation law in a linear space, we
show that the estimated orientations almost globally exponen-
tially converge to the actual orientations up to a constant coordi-
nate rotation, in a finite time. We also derive upper bounds on the
convergence time of the estimator. The finite-time orientation
estimator is developed based on the orientation estimator pro-
posed in [19] that ensures only asymptotic stability; furthermore,
it can estimate time-varying orientations of agents, unlike [19].

Based on the proposed finite-time orientation estimation
schemes, we investigate the finite-time bearing-only formation
control without a common sense of the global coordinate frame.
As the second contribution of this paper, a distributed bearing-
only formation control law is proposed based on the orientation
estimation. We first characterize the equilibrium set based on a
set of modified desired bearings, which are transformed from
the actual desired bearing vectors by a coordinate rotation. This
control law is modified from the second control law2 proposed
in [11]. Complete analyses of almost global stability and finite-
time convergence are provided in this paper, unlike [11], which
is also the third contribution of this paper. Finally, simulation
results are also provided to show the usefulness of the proposed
method.

The rest of this paper is organized as follows. Preliminar-
ies are given in Section II. The problem formulation is pre-

1Since distance is a coordinate-free quantity, distance-based formation control
does not require a reference frame.

2Which uses the sign function.

sented in Section III. A finite-time orientation estimation law is
proposed in Section IV. Section V presents the proposed finite-
time bearing-only formation control law and the main stability
and convergence analyses . Finally, Section VI provides the
simulations, and Section VII draws conclusions.

II. PRELIMINARIES

A. Notation

Let x = [x1 , . . . , xd ]T ∈ Rd be a column vector in Rd . We
denote |x| = [|x1 |, . . . , |xd |]T . Let ‖·‖ be the 2-norm or Eu-
clidean norm, ‖x‖ =

√∑n
i=1 x2

i , and 1n = [1, . . . , 1]T ∈ Rn

denotes the vector of all ones. The d× d identity matrix is de-
noted by Id . For two matrices A and B, A⊗B denotes the
Kronecker product between A and B. The trace of a square ma-
trix A is denoted by tr(A). Given Ai ∈ Rd×d for i = 1, . . . , m,
denote diag(Ai) � blkdiag(A1 , . . . ,Am ) ∈ Rdm×dm .

For A,B ∈ Rd×d the Frobenius metric is given by ‖A
−B‖F =

√
tr {(A−B)T (A−B)}, which is the Euclidean

distance in Rd×d . The set of rotation matrices in Rd is denoted
by SO(d) = {Q ∈ Rd×d |QQT = Id , det(Q) = 1}.

B. Finite-Time Convergence Theory

For x ∈ Rd and α ∈ R; the function sig(·)α : Rd → Rd

is defined as sig(x)α = [sign(x1)|x1 |α , . . . , sign(xd)|xd |α ]T

[21]. The following inequality will be extensively used in this
paper.

Lemma 1: [27] If ξ1 , . . . , ξd ≥ 0 and 0 ≤ p ≤ 1, then
(

d∑

i=1

ξi

)p

≤
d∑

i=1

ξp
i .

A condition for finite-time convergence of continuous-time
systems is given by the following lemma.

Lemma 2: ([21]). Suppose that there exists a positive-
definite and continuous function V (x, t) : Rn × [0,∞)→ R.
If there exists κ > 0, α ∈ {0, 1}, and open neighborhood U0 ∈
Rd of the origin such that

V̇ + κV α ≤ 0 ∀x ∈ U0 \ {0}
then V = 0 for t ≥ T , with the settling time T ≤ V 1−α (0)/
(κ(1− α)).

C. Graph Theory

An interaction graph G = (V, E) is characterized by the ver-
tex set V = {1, . . . , n} and the set of edges E ⊆ V × V . An
edge is defined by the ordered pair ek = (i, j). If G is undi-
rected, (i, j) ∈ E implies (j, i) ∈ E ; j is a neighbor of i, and i is
also a neighbor of j. If G is directed, (i, j) ∈ E is a directed edge
from i to j, and this does not necessarily imply (j, i) ∈ E . The
set of neighbors of i is denoted by Ni � {j ∈ V : (i, j) ∈ E}
and the cardinality of Ni is denoted by |Ni |. The Laplacian
matrix, L = [lij ], associated with G, is defined as lij = −1 for
(i, j) ∈ E , i �= j, lii = −∑j∈Ni

lij ∀i ∈ V , and lij = 0 other-
wise. For connected undirected graphs, rank(L) = n− 1 and
its null space is given as N (L) = span(1n ).
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A directed path of a directed graph G is a sequence of edges
(v1 , v2), (v2 , v3), . . . , (vk−1 , vk ), where v1 and vk , respectively,
are the start vertex and the end vertex. A directed path is a
directed cycle if it has v1 ≡ vk . An acyclic digraph is a directed
graph, which has no directed cycle. In this paper, we define a
type of rooted acyclic directed graph (digraph) as follows.

Definition 1 (Rooted acyclic digraph): A rooted acyclic
digraph is an acyclic directed graph constructed by the following
sequence. There is a vertex 1 with no neighbor. Connect vertex
2 to 1 by the directed edge (2,1). Add 3 to {1, 2} by one or
two directed edges (3, j), for some js ∈ {1, 2}. Similarly, a new
vertex i( 3 ≤ i ≤ n) is added to {1, 2, . . . , i− 1} by one or more
directed edges (i, j), for some js ∈ {1, 2, . . . , i− 1}.

Obviously, a rooted acyclic digraph has no directed cycle, and
node 1 is reachable by directed paths from all other nodes.

D. Bearing Rigidity Theory

A framework, denoted by Gb(p), is a mapping of the nodes
in a graph Gb = (V, Eb) to a Euclidian space. In this paper, the
undirected graph Gb represents the interaction graph used by the
agents, and p = [pT

1 , . . . ,pT
n ]T ∈ Rdn denotes the configura-

tion of the agents in the Euclidean space Rd .
For each edge (i, j) ∈ Eb , a corresponding displacement vec-

tor is defined as zij = pj − pi . By fixing the order of the edges
in Eb , let H ∈ Rm×n , where m = |Eb |, denote the correspond-
ing incidence matrix, then, the stacked displacement vector is
defined as z = [zT

1 , . . . , zT
m ]T = (H⊗ Id) = H̄p ∈ Rdn .

Suppose that pi �= pj . The bearing vector gij is the unit
vector pointing along the direction of zij , i.e.,

gij =
zij

‖zij‖ =
pj − pi

‖pj − pi‖ . (1)

The orthogonal projection operator corresponding to gij is de-
fined by Pgi j

= Id − gijgT
ij . It may be observed that Pgi j

is symmetric, idempotent, and positive semidefinite, i.e., Pgi j

= P2
gi j

= PT
gi j
≥ 0. Furthermore, Pgi j

has eigenvalues {0, 1,
. . . , 1}, and its null space is given as N (Pgi j

) = span{gij}.
We denote the stacked bearing vector3 g = [gT

1 , . . . ,gT
m ]T ∈

Rdm corresponding to the set of the ordered edges. The bearing
rigidity matrix is defined as follows [7]:

R(p) =
∂g
∂p

=
∂g
∂z

∂z
∂p

= diag

(
Pgk

‖zk‖
)

H̄. (2)

Note that R(p) ∈ Rdm×dn . Furthermore, for any bearing rigid-
ity matrix, span{Range(1n ⊗ Id),p}=span{Range(1n⊗Id),
p− 1n ⊗ p̄} ⊆ N (R(p)), where p̄ = 1

n

∑n
i=1 pi is the for-

mation centroid. Consequently, rank(R(p)) ≤ dn− d− 1. A
frameworkGb(p) is said to be infinitesimally bearing rigid if and
only if rank(R(p)) = dn− d− 1 [7]. Moreover, an infinitesi-
mally bearing rigid framework can be uniquely determined up
to a translation and a scaling factor. We borrow the following
lemma from [7].

3Although both gij and gk are used to denote bearing vectors, the notation
will be clear from the context in each part of this paper.

Lemma 3: [7] A framework Gb(p) is infinitesimally bear-
ing rigid if and only ifN (R(p)) = span{Range(1n ⊗ Id),p−
1n ⊗ p̄}, where p̄ = (1/n)

∑n
i=1 pi = (1/n)(1n ⊗ Id)T p.

E. Gram–Schmidt Orthonormalization Procedure
(GSOP)

For a set of d independent vectors Z = {z1 , z2 , . . . , zd} in
Rd , the GSOP, which constructs d orthonormal column vectors
of Q ∈ SO(d) from Z , is defined as follows:

v1 := z1 q1 := v1/‖v1‖
v2 := z2 − 〈z2 ,q1〉q1 q2 := v2/‖v2‖

...
...

vd := zd −
d−1∑

k=1

〈zd ,qk 〉qk qd := αvd/‖vd‖

where 〈·, ·〉 denotes the inner product, and the coefficient
α is chosen such that det(Q) = 1 as α := sign(det([q1 , . . . ,
qd−1 ,vd/‖vd‖])).

If the set Z contains a linearly dependent vector (which
linearly depends on one or more vectors in Z), there exists
vi = 0, i ∈ {1, . . . , d}, and hence qi = 0.

III. PROBLEM FORMULATION

Consider a system of n autonomous agents in Rd , d = {2, 3}.
The agents do not have information about a common reference
frame; each agent maintains a local coordinate frame, which
fixes to the agent. The dynamics of an agent i are characterized
by the single-integrator dynamics

ṗi
i = ui

i (3)

where pi
i ,u

i
i ∈ Rd , respectively, are the position and control

inputs of agent i, expressed in its body-fixed coordinated frame,
i.e., iΣ. Note that the single-integrator dynamics (3) is widely
used in navigation and formation control literature [1]. Further-
more, the single-integrator is often considered first and can be
generalized to adapt for more complicated models and con-
straints [10]. Although there have been some existing works on
formation control of more practical agent models [10], [28], ei-
ther the global state of the agent or a global coordinate frame is
required. Extensions of this work for agents with more general
dynamics will be addressed in our future papers.

The (global) orientation, or attitude, of agent i in Rd can
be characterized by a square, orthogonal matrix Qi ∈ SO(d)
whose column vectors represent the coordinates of the orthogo-
nal bases of the ith local coordinate frame expressed in the global
coordinate frame. Thus, Qi can be understood as the rotation
matrix, which rotates the global coordinate system denoted by
Σ, to the local coordinate frame denoted by iΣ. Note that a
rotation matrix in SO(d) is unique and globally defined [29].
Let Qk ∈ SO(d) be the orientation of agent k ∀k ∈ {1, . . . , n}.
Then, the relative orientation of the jth local coordinate frame
with regard to the ith local coordinate frame is defined by

Qij = Q−1
i Qj = QT

i Qj . (4)
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The agents in the system aim to form a desired/target forma-
tion shape without the knowledge of a global orientation. The
desired formation is characterized by a feasible set of bearing
vectors {g∗ij}(i,j )∈Eb expressed in Σ. Suppose that there exists an
infinitesimally bearing rigid framework, Gb(p∗), realized from
the set {g∗ij}(i,j )∈Eb . Note that for a constant coordinate rotation
Q ∈ SO(d), the objective of the formation control is equivalent
to achieve the desired formation specified by the bearing set
{Qg∗ij}(i,j )∈Eb . Furthermore, the n-agent system satisfies the
following assumptions.

Assumption 1: Each agent in the system can sense the
relative orientations with regard to one or more neighboring
agents. Furthermore, the relative orientation sensing topology is
given by an interaction graph Go (directed or undirected).

Assumption 2: Each agent in the system can sense the
bearing vectors with regard to several neighboring agents, and
the bearing sensing topology is specified by a fixed undirected
graph Gb .

The (relative) orientation sensing topology is characterized
by the graph Go = (V, Eo). Note that V = {1, . . . , n} and
Eo ⊆ V × V . Specifically, if (i, j) ∈ Eo , agent i senses the rel-
ative orientation Qij and estimates its orientation, which is
denoted as Q̂i ∈ SO(d), based on the relative orientation infor-
mation Qik , k ∈ Ni . Furthermore, if (i, j) ∈ Eo , agent j com-
municates an auxiliary matrix (which will be defined in the
following section) to i. Thus, the graph Go is both a sensing and
communication network. Let Lo be the Laplacian of Go .

Until now, we have defined two distinct interaction graphs
associated with the orientation estimation and formation control
tasks, i.e., Go and Gb , respectively. In this paper, Go can be
undirected or directed. When Go is undirected, Go and Gb may
be identical, i.e., Eo = Eb , or different (i.e., Eo �= Eb ). While,
it is required that Gb(p) is infinitesimally bearing rigid, in the
following section, for finite-time estimation of orientation, we
will show that Go just needs to be connected.

The first problem investigated in this paper is estimating the
orientations of the agents in finite time.

Problem 1: For a system of n agents whose orientation
sensing graph is characterized by Go , design an estimation law
such that Q̂i → QcQi , exponentially converges in finite time
to a constant coordinate rotation Qc ∈ SO(d) by using only
relative orientation information (4) ∀i = 1, . . . , n.

Remark 1: It may be noted that the objective of the orienta-
tion estimator in Problem 1 is to estimate Qi , up to a common
orientation of Qc ∀i = 1, . . . , n.

Once the agents’ orientations have been determined, we now
formally state the finite-time formation control problem.

Problem 2: Under Assumptions 1 and 2, design a bearing-
only control law for each agent i using only bearing vectors
{gi

ij}j∈Ni
, and the estimated orientations Q̂i that achieve the

desired formation in finite time.

IV. FINITE-TIME ORIENTATION ESTIMATION

This section establishes the finite-time convergence of the es-
timated orientations for undirected and rooted acyclic digraphs.

Furthermore, we derive the upper bounds on the settling time of
convergence in the two orientation estimation scenarios.

A. Proposed Orientation Estimation Law

For each agent i, we introduce an auxiliary matrix Pi ∈ Rd×d

and the estimated orientation Q̂i(t) is obtained from Pi(t) by
applying the GSOP such that Q̂T

i = GSOP(PT
i ). We propose a

distributed orientation estimator for each agent as follows:

Ṗi(t) = −Pi(t)ST (ωi
i ) +

∑

j∈Ni

Pj (t)QT
ij (t)−Pi(t)

||PjQT
ij −Pi ||αF

(5)

where the scalar α ∈ (0, 1); ωi
i ∈ Rd denotes the angular ve-

locity of agent i measured in the ith local coordinate frame,
iΣ; S(ωi

i ) is the matrix representation of cross product, i.e.,
S(ωi

i )v := ωi
i × v,∀v ∈ Rd . For example, in R3 , S(ω) can be

given as:

S(ω) =

⎡

⎣
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤

⎦

[30]. Note that for 0 < α < 1, (5) is a continuous estimation law.
Furthermore, in (5), agent j sends Pj to i via communication,
for all j ∈ Ni .

Since the objective of the estimation law (5) is the finite-
time estimation of orientation, only the steady-state values of
Pi , i ∈ V , are of interest. Thus, we do not impose any condition
on the initial values. Although in the following subsection, we
show that the initial values should not belong to a set of Lesbe-
gue measure zero for the estimation of orientation. At any instant
of time, one may derive Q̂i(t) from Pi(t) by the GSOP, which
contains a finite number of operations, i.e., O(d3). We assume
that Q̂i(t) are computed with negligible delay. Note that the
Gram–Schmidt process can be finally deployed once the auxil-
iary variables are in steady state as we will show in the following
section.

To analyze the estimation law (5) we present the following
lemma.

Lemma 4: The denominator of the right-hand side of (5)
can be calculated as follows:

‖PjQT
ij −Pi‖αF = ‖PiQT

i −PjQT
j ‖αF

Proof: Since the trace function is invariant under cyclic
permutations, we have

‖PiQT
i −PjQT

j ‖αF
= tr

{
(PiQT

i −PjQT
j )T (PiQT

i −PjQT
j )
}α/2

= tr
{
QiQT

i (PiQT
i −PjQT

j )T (PiQT
i −PjQT

j )
}α/2

= tr
{
QT

i (PiQT
i −PjQT

j )T (PiQT
i −PjQT

j )Qi

}α/2

= tr
{
(Pi −PjQT

j Qi)T (Pi −PjQT
j Qi)

}α/2

= ‖PjQT
ij −Pi‖αF .

�
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Hence, (5) can be written as

Ṗi(t)QT
i (t) = −Pi(t)ST (ωi

i )Q
T
i (t)

+
∑

j∈Ni

Pj (t)QT
j (t)−Pi(t)QT

i (t)
||Pj (t)QT

j (t)−Pi(t)QT
i (t)||αF

.

Consider the rotation transformation Pi(t) = Si(t)Qi(t) and
note that

Ṡi = d/dt(PiQT
i ) = ṖiQT

i + PiST (ωi
i )Q

T
i

where we use the relation Q̇T
i = ST (ωi

i )Q
T
i [30]. Thus, the

above equation can be rewritten as

Ṡi(t) =
∑

j∈Ni

(Sj − Si) /‖Si − Sj‖αF . (6)

B. Undirected Graph

Let S = [ST
1 , . . . ,ST

n ]T ∈ Rdn×d be the stacked matrix of the
transformed matrix variables. Thus, (6) can be rewritten as

Ṡ(t) = −(L̄o ⊗ Id)S(t) (7)

where the matrix L̄o = [l̄ij ] is defined as

l̄ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, (i, j) ∈ Eo , i �= j, Si = Sj or (i, j) �∈ Eo , i �= j

−1/‖Si − Sj‖αF , (i, j) ∈ Eo , i �= j, Si �= Sj
∑

k∈Ni
l̄ik , i = j, i ∈ V

which is a weighted Laplacian for the graph Go .
Since (1n ⊗ Id)T Ṡ(t) = −(1n ⊗ Id)T (L̄o ⊗ Id)S(t) = 0,

(1n ⊗ Id)T S(t) is invariant under (7). Let Sc = (1/n)(1n

⊗ Id)T S(t) ∈ Rd×d , Si(t) = Sc + δi(t), and let δ(t) =
[δT

1 , . . . , δT
n ]T ∈ Rdn×d . Since Sc is time invariant, it follows

that δ̇i(t) = Ṡi(t). Note that δi − δj = Si − Sj .
Theorem 1: Under the estimation law (5) and assuming that

Go is a connected undirected graph, S(t) globally asymptotically
converges to (1n ⊗ Id)Ave{Si(0)}i∈V in finite time.

Proof: Consider a Lyapunov candidate function

V (t) = (1/2)
n∑

i=1

‖δi‖2F = (1/2)
n∑

i=1

tr
(
δT

i δi

)
. (8)

Note that V is radially unbounded, positive definite, con-
tinuously differentiable, and V = 0 in So :=

{{Si}i∈V |Si =
Sc , ∀i ∈ V}. The time derivative of V is given as

V̇ (t) =
n∑

i=1

tr
(
δT

i δ̇i

)
= tr

{
n∑

i=1

δT
i δ̇i

}

= −tr

⎧
⎨

⎩

n∑

i=1

δT
i

∑

j∈Ni

(δi − δj )/‖δi − δj‖αF

⎫
⎬

⎭

= −tr

⎧
⎨

⎩

∑

(i,j )∈Eo

(
δT

i − δT
j

)
(δi − δj )/‖δi − δj‖αF

⎫
⎬

⎭

= −
∑

(i,j )∈Eo
‖δi − δj‖2F /‖δi − δj‖αF

= −
∑

(i,j )∈Eo

(‖δi − δj‖2F
)(2−α)/2

≤ −
⎛

⎝
∑

(i,j )∈Eo
‖δi − δj‖2F

⎞

⎠

(2−α)/2

(9)

≤ −
⎡

⎣tr

⎧
⎨

⎩

∑

(i,j )∈Eo
(δT

i − δT
j )(δi − δj )

⎫
⎬

⎭

⎤

⎦

(2−α)/2

≤ −
[
tr
{
δT (Lo ⊗ Id)δ

}](2−α)/2

≤ −
[

d∑

k=1

[δ]Tk (Lo ⊗ Id)[δ]k

](2−α)/2

(10)

where [δ]k denotes the kth(1≤ k ≤ d) column vector of δ,
and the inequality (9) is derived by applying Lemma 1 with
1
2 < 2−α

2 < 1. Under the assumption that Go is connected undi-
rected, Lo ⊗ Id has d zero eigenvalues and N (Lo ⊗ Id) =
span{Range(1n ⊗ Id)}. Since [δ]k ⊥ Range(1n ⊗ Id) ∀k =
1, . . . , d, one has

[δ]Tk (Lo ⊗ Id)[δ]k ≥ λd+1[δ]Tk [δ]k ∀k = 1, . . . , d

where λd+1 is the smallest nonzero eigenvalue ofLo ⊗ Id . Sub-
stituting the above inequalities into (10) yields the following:

V̇ (t) ≤ −
[

λd+1

d∑

k=1

‖[δ]k‖2
](2−α)/2

≤ −λ
(2−α)/2
d+1

[
d∑

k=1

n∑

i=1

‖[δi ]k‖2
](2−α)/2

≤ −λ
(2−α)/2
d+1

[
n∑

i=1

tr
(
δT

i δi

)
](2−α)/2

≤ −λ
(2−α)/2
d+1

(
2V (t)

)(2−α)/2 ≤ −κV (t)(2−α)/2 (11)

where κ = (2λd+1)(2−α)/2 . It follows from Lemma 2 and
(11) that V (t) converges to 0 in finite time. In other
words, {Si}i∈V converges to the invariant set So . As a re-
sult, it follows that Si(t)∀i ∈ V , globally converges to Sc =
Ave{Si(0)}i∈V with settling time To ≤ V (0)1− 2−α

2 /(κ(1−
2−α

2 )) = 2V (0)
α
2 /(κα). �

Since Q̂i is derived from the auxiliary variable Pi by
the Gram–Schmidt orthognormalization process, i.e., Q̂T

i =
GSOP(PT

i ), we have the following corollary.
Corollary 1: Suppose Go is connected, under the orientation

estimation law (5), there exists a constant Qc ∈ SO(d) such that
Q̂i globally converges to QcQi in finite time, for almost all
initial value S(0) ∈ Rdn×d , for all i = 1, . . . , n.

Proof: The rotation matrices QT
S i

(t), Q̂T
i (t) ∈ Rd×d are,

respectively, derived from ST
i (t) and PT

i (t) by the GSOP. Note
that the orthonormal property of a set of orthonormal vec-
tors is preserved under coordination rotations, it can be veri-
fied that Q̂i(t) = QS i

(t)Qi . From Theorem 1, Si(t) globally
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exponentially converges to Sc ∈ Rd×d and, hence, Q̂i(t)
reaches QcQi ∀i = 1, . . . , n, where Qc ∈ SO(d) is derived
from Sc by the GSOP. In other words, the actual orientations
of the agents are determined in a finite time up to a constant
coordinate rotation Qc .

For the validity of estimated orientation, i.e., Qc ∈ SO(d),
convergence to the zero vector of any column vectors of the
steady state Sc = Ave{Si(0)}, or linear dependence of the col-
umn vectors of Sc are undesired. Furthermore, the set of column
vectors of initial matrix auxiliary variables Si(0) ∈ Rd×d , i =
1, . . . , n, leading to nonexistence of solution is a set of Lesbegue
measure zero in Rdn [19]. This completes the proof. �

From Corollary 1, the estimation law (5) almost globally
asymptotically finite-time solves the Problem 1.

C. Directed Graph

For directed orientation sensing graphs, we impose the fol-
lowing assumption.

Assumption 3: The orientation sensing graph Go is a
rooted acyclic digraph.

Theorem 2: Under the Assumption 3, Si(t) of the dynamics
(6) globally exponentially converges to S1(0) in finite time, for
all i = 2, . . . , n.

Proof: Since the root node (say node 1) has no neighbors,
its estimated state, S1 , is unchanged under the estimation law
(6), i.e., S1(t) = S1(0) = P1(0)QT

1 (0). We prove Theorem 2
by using mathematical induction as follows.

i) For Agent 2 having Agent 1 as its neighbor

Ṡ2(t) = (S1 − S2) /‖S2 − S1‖αF . (12)

Consider a C1 Lyapunov candidate function

V2(t) = (1/2)‖S2 − S1‖2F
= (1/2)tr

(
(S2 − S1)T (S2 − S1)

)

which is positive definite and radially unbounded. The derivative
is

V̇2(t) = tr
(
(S2 − S1)T (Ṡ2 − Ṡ1)

)

= −tr
(
(S1 − S2)T (S1 − S2)

)
/‖S2 − S1‖αF

= −(2/2α/2)V2(t)−α/2V2(t) = −γ2V2(t)(2−α)/2

where γ2 = 2(2−α)/2 . Thus, there exists T2 ≤ V2
(0)1− 2−α

2 /(γ2(1− 2−α
2 )) = 2V2(0)

α
2 /(γ2α) such that S2(t)

→ S1(0) as t→ T2 .
ii) Now, we assume that it is true for k − 1 agents (3 ≤

k ≤ n), i.e., Si = S1(0) for t ≥ Ti,∀i = 1, . . . , k − 1.
Consider agent k, which has one or some neighbors in
{1, . . . , k − 1}; we will show that there exists a finite time
Tk ≥ T ′i � maxi∈Nk

(Ti) such that Sk = S1 for t ≥ Tk .
Consider the estimation dynamics of agent k

Ṡk (t) = −
∑

i∈Nk

(Sk − Si) /‖Sk − Si‖αF . (13)

Consider a Lyapunov function

Vk (t) = (1/2)
∑

i∈Nk

‖Sk − Si‖2F

= (1/2)
∑

i∈Nk

tr
(
(Sk − Si)T (Sk − Si)

)
(14)

which is also positive definite, radially unbounded, and contin-
uously differentiable. The derivative of Vk is given as

V̇k (t) =
∑

i∈Nk

tr
(
(Sk − Si)T (Ṡk − Ṡi)

)
. (15)

Since the states of a continuous system are bounded in finite
time and Vk is continuous, thus, it is bounded for t ≤ T ′i . For
t > T ′i , Ṡi = 0 and Si = S1 ,∀i ∈ Nk . Then, it follows from
(15) that

V̇k (t) = |Nk |tr
(
(Sk − S1)T Ṡk

)

= −|Nk |tr
(

(Sk − S1)T
∑

i∈Nk

(Sk − Si)
‖Sk − Si‖αF

)

= −|Nk |
∑

i∈Nk

tr

(
(Sk − Si)T (Sk − Si)

‖Sk − Si‖αF

)

= −(2|Nk |/2α/2)Vk (t)−α/2Vk (t)

= −γkVk (t)(2−α)/2

where γk = 2|Nk |/2α/2 . Thus, there exists Tk ≤ T ′i + 2Vk

(T ′i )
α/2/(γkα) such that Sk (Tk ) = S1(0) for t ≥ Tk .

iii) By following the steps until k = n we show that Sk (t)
globally exponentially converge to S1(0) in finite time,
for all k = 2, . . . , n. �

Corollary 2: Under Assumption 3 and the orientation esti-
mation law (5), there exists a constant Qc ∈ SO(d) such that Q̂i

globally exponentially converges to QcQi in finite time if and
only if the matrix P1(0) is nonsingular, for all i = 1, . . . , n.

Proof: By Theorem 2, Si converges to S1 ∈ Rd×d and,
hence, Pi converges to S1(0)Qi ∀i = 1, . . . , n. By using the
similar arguments on the invariant property of the GSOP un-
der coordinate rotations, if P1(0) is nonsingular and QT

P1

is derived from PT
1 (0) by GSOP [QT

P1
= GSOP(PT

1 (0))],
Q̂i∀i ∈ {2, . . . , n} globally converge to QP1 Q

T
1 (0)Qi in a fi-

nite time Td . Consequently, the agents’ orientations are globally
exponentially finite-time determined up to a constant coordi-
nate rotation Qc = QP1 Q

T
1 (0). We have, thus, established the

sufficiency of the full-rank condition of the matrix auxiliary
variable P1 .

If P1(0) is singular, then P1(0)QT
1 (0)Qi is singular. As a

result, there does not exist Q̂ ∈ SO(d) such that Q̂ is derived
from nonsingular matrix P1(0)QT

1 (0)Qi by the GSOP. Thus,
the necessity follows directly. �
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Algorithm 1: Finite-Time Bearing-Only Formation Control
via Orientation Estimation.

1: Initialization: t← 0, Pi(0) ∈ Rd×d , pi(0) ∈ Rd

2: Estimation loop:
3: repeat
4: for all i ∈ V do
5: Pi(t)← integrate (5)
6: Start control loop (at tc ≥ To , convergence time of

orientation estimation):
7: if t ≥ T0
8: Q̂T

i ← GSOP(PT
i )

9: pi(t)← integrate (16)
10: end if
11: end for
12: until t ≥ Tc (Tc convergence time of formation

control).
13: End control loop.
14: End estimation loop.

V. FINITE-TIME BEARING-ONLY FORMATION CONTROL

This section establishes almost global finite-time convergence
of the desired formation. In doing this, we show that it is suf-
ficient for the agents to achieve the desired formation shape in
a finite time without a common sense of the global coordinate
frame by finite-time estimation of their orientations.

A. Proposed Control Law

For each agent i, we propose the following control law:

ui
i = −

∑

j∈Nj

Pg i
i j
Q̂T

i sig
(
Q̂iPg i

i j
Q̂T

i g∗ij
)α

(16)

where α ∈ (0, 1) is a positive constant, and Q̂i is the estimated
orientation of agent i obtained by a finite-time orientation esti-
mator. Since 0 < α < 1 the control law is continuous. In (16), it
is straightforward to show that the local projection matrix can be
rewritten as Pg i

i j
= Id − gi

ij (g
i
ij )

T = QT
i Pgi j

Qi , where gi
ij

represents coordinates of gij expressed in the ith coordinate
frame.

Remark 2: In the finite-time formation control via orien-
tation estimation scheme, the finite-time orientation estimation
(5) and the finite-time formation control (16) run in a sequential
way. In particular, once the auxiliary matrices Pi are in steady
state, the GSOP is finally deployed to construct the estimation
orientations Q̂i . Then, the formation control (16) is activated
by using the estimated orientations Q̂i . The formation control
strategy via orientation estimation is illustrated in Algorithm 1.

Assume that the control loop is activated at t = tc ≥ To ,
where To is convergence time of the orientation estimation,
i.e., Q̂i = QcQi , ∀i ∈ V , for t ≥ To .

The dynamics of each agent i expressed in the global coordi-
nate frame are given by

ṗi = Qiui
i ∀i ∈ V. (17)

Substituting ui
i from (16) and Q̂i = QcQi into (17) yields the

following:

ṗi = −Qi

∑

j∈Nj

QT
i Pgi j

QiQ̂T
i sig

(
Q̂iQT

i Pgi j
QiQ̂T

i g∗ij
)α

= −
∑

j∈Nj

Pgi j
QcT sig

(
QcPgi j

QcT g∗ij
)α

= −
∑

j∈Nj

Pgi j
(Qc)T sig

(
QcPgi j

gc
ij

)α
(18)

where gc
ij = (Qc)T g∗ij .

Let gc = [gc
1 , . . . ,g

c
m ]T ∈ Rdm . We can write the n-agent

system under control law (16) in the compact form as follows:

ṗ = f(p) = H̄T diag(Pgk
QcT )sig

(
diag(QcPgk

)gc
)α

. (19)

We follow techniques similar to those in [7] and [11] to in-
vestigate the equilibrium set and the stability analyses of the
dynamics (19) as follows.

B. Equilibrium Set

We denote p̄ = (1/n)
∑n

i=1 pi = (1/n)(1n ⊗ Id)T p as the
centroid and s =

√
(1/n)

∑n
i=1 ‖pi − p̄‖2 = (1/

√
n)‖p−

1n ⊗ p̄‖ as the scale of the scale of the formation, respectively.
Lemma 5: The centroid and scale of the formation are in-

variant under control law (19).
Proof: We rewrite the system dynamics (19) as

ṗ = R̃T diag(QcT )sig
(

diag(QcPgk
)gc

)α

(20)

where R̃ = diag(Pgk
)H̄. From (2), we have (diag(‖zk‖)⊗

Id)R̃ = R. Consequently, it follows that N (R̃) = N (R). As
a result, from Lemma 3, we obtain ṗ ⊥ span{Range(1n ⊗
Id),p}. Thus, the formation’s centroid and scale are invariant
by the following equalities:

˙̄p = (1/n)(1n ⊗ Id)T ṗ = 0

ṡ =
1√
n

(p− 1n ⊗ p̄)T

‖p− 1n ⊗ p̄‖ ṗ = 0.

�
The equilibrium set of the system (19) is given in the following

lemma.
Lemma 6: The system (19) has two isolated equilibria, pc

corresponding to gk = gc
k ∀k = 1, . . . , m, and p′ correspond-

ing to gk = −gc
k ∀k = 1, . . . , m.

Proof: Let Se = {p ∈ Rdn | ṗ = 0}. The equilibria of
(19) can be found by assigning ṗ = 0. This leads to
diag(QcPgk

)gc = 0, which is equivalent to Pgk
gc

k = 0 ∀k =
1, . . . , m.

The remaining proof is followed from a similar argument
as in [7, Th. 10] by the facts that the desired framework is
infinitesimally bearing rigid, and the centroid and scale of the
formation are invariant under (19). �
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Let δi = pi − pc
i , and δ = [δT

1 , . . . , δT
n ]T . Thus, δ̇i = ṗi ;

(19) can be rewritten as

δ̇ = f(δ) = H̄T diag(Pgk
QcT )sig

(
diag(QcPgk

)gc
)α

. (21)

Let r(t) = p(t)− 1n ⊗ p̄(t), and the steady state rc = pc −
1n ⊗ p̄c . Since the centroid of the formation is invariant (see
Lemma 5), it can be shown that the solution trajectory of (21) lies
on the surface of the sphere S = {δ ∈ Rdn | ‖δ + rc‖ = ‖rc‖}
[11].

Note that the system (21) has two equilibrium points δ = 0
and δ = −2rc [7, Th. 10]. We investigate the stability of these
equilibria in the following section.

C. Stability Analysis

In this part, we establish the almost global convergence of the
desired formation under the control law (16). In particular, the
agents asymptotically achieved the target formation if the initial
configuration is not in a set of Lebesgue measure zero in Rdn .

Theorem 3: Under the Assumption 2 and the control law
(16), the desired equilibrium p = pc of system (19) is asymp-
totically stable.

Proof: Consider the C1 Lyapunov candidate function V =
1
2 ‖p− pc‖2 , which is positive definite and radially unbounded.
The time derivative of V along the trajectory of (21) is

V̇ (p) = (p− pc)T H̄T diag
(
Pgk

(Qc)T
)
sig

(
diag(QcPgk

)gc
)α

= −(pc)T H̄T diag
(
Pgk

(Qc)T
)
sig

(
diag(QcPgk

)gc
)α

= −(zc)T diag
(
Pgk

(Qc)T
)
sig

(
diag(QcPgk

)gc
)α

= −
m∑

k=1

(zc
k )T Pgk

(Qc)T sig (QcPgk
gc

k )α

= −
m∑

k=1

‖zc
k‖(gc

k
T Pgk

QcT )sig (QcPgk
gc

k )α

= −
m∑

k=1

‖zc
k‖

d∑

i=1

∣∣∣[QcPgk
gc

k ]i
∣∣∣
α+1

. (22)

Thus, for α ∈ (0, 1), V̇ is negative semidefinite, and V̇ = 0
if and only if p = pc or p = p′. Based on LaSalle invariant
principle, any solution of (19) asymptotically converges to either
pc or p′. Consider any neighborhood of p = pc , which does not
contain p′, thus, V̇ < 0 for p �= p′ in the region. As a result,
p = pc is (locally) asymptotically stable. �

Lemma 7: The undesired equilibrium p = p′ of (16) corre-
sponding to g = −gc is unstable.

Proof: Consider the Lyapunov candidate function V =
1
2 ‖p− p′‖2 , which is positive definite, radially bounded, and
continuous differentiable. Since H̄p′ = −zc , we have

V̇ (p) = (p− p′)T H̄T diag
(
Pgk

(Qc)T
)

sig
(
diag(QcPgk

)gc
)α

= −(p′)T H̄T diag
(
Pgk

(Qc)T
)

sig
(

diag(QcPgk
)gc

)α

Fig. 1. Interpretation of the proof of Theorem 5: δ and φ.

= (zc)T diag
(
Pgk

(Qc)T
)

sig
(

diag(QcPgk
)gc

)α

=
m∑

k=1

(zc
k )T Pgk

(Qc)T sig (QcPgk
gc

k )α

=
m∑

k=1

‖zc
k‖(gc

k
T Pgk

QcT )sig (QcPgk
gc

k )α

=
m∑

k=1

‖zc
k‖

d∑

i=1

∣∣
∣[QcPgk

gc
k ]i
∣∣
∣
α+1

. (23)

Thus, V̇ > 0 in a neighbor of p′. The undesired equilibrium
p = p′ is unstable in recall of the Chetaev instability theorem
[31]. �

Theorem 4: Under the control law (16), the desired equi-
librium pc of (19) is almost globally asymptotically stable.

Proof: Noting that in the proof of Theorem 3, V̇ < 0 ev-
erywhere in Rdn except at p′, which is a set of measure zero in
Rdn . This along with Theorem 3 and Lemma 7 completes the
proof. �

D. Finite-Time Convergence Analysis

In this section, we show that under the proposed control
scheme, the desired formation is achieved in finite time. For
this, the following useful lemma is needed.

Lemma 8: Under Assumption 2 and control law (19), the
following inequality holds:

‖zk‖ ≤ 2s
√

n− 1∀k = 1, . . . , n

where s is the formation scale.
Proof: One may prove this lemma by following the proof

in [7, Corollary 2]. Thus, the proof is omitted. �
Theorem 5: Under control law (16), p converges to the

desired formation pc in a finite time if the initial formation
satisfies p(tc) �= p′.

Proof: Define ε = mink=1,...,m‖zc
k‖. From (22), and by ap-

plying the inequality in Lemma 1 with 0 < (α + 1)/2 < 1 we
obtain

V̇ ≤ −ε

m∑

k=1

d∑

i=1

( |[QcPgk
gc

k ]i |2
)(α+1)/2

≤ −ε

m∑

k=1

(
d∑

i=1

|[QcPgk
gc

k ]i |2
)(α+1)/2
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Fig. 2. Formation setup. (a) Orientation sensing graph Go . (b) Bearing sensing graph Gb . (c) The desired formation shape.

Fig. 3. Simulation 1: Finite-time orientation estimation and finite-time formation control of a 12-agent system with undirected orientation sensing
graph. (a) Orientation estimation errors. (b) Bearing error ‖g − gc ‖ versus time. (c) Trajectories of all agents.

≤ −ε

m∑

k=1

(
‖QcPgk

gc
k‖2

)(α+1)/2

≤ −ε

m∑

k=1

(
‖Pgk

gc
k‖2

)(α+1)/2

≤ −ε

(
m∑

k=1

‖Pgk
gc

k‖2
)(α+1)/2

. (24)

The inequality (24) can be further derived as

V̇ ≤ −ε

(
m∑

k=1

gc
k

T Pgk
gc

k

)(α+1)/2

≤ −ε

(
m∑

k=1

gT
k Pgc

k
gk

)(α+1)/2

≤ −ε

(
m∑

k=1

1
‖zk‖2 zT

k Pgc
k
zk

)(α+1)/2

≤ − ε

(2s
√

n− 1)α+1

(
m∑

k=1

zT
k Pgc

k
zk

)(α+1)/2

≤ −γ

(
m∑

k=1

zT
k Pgc

k
zk

)(α+1)/2

(25)

where γ = ε/(2s
√

n− 1)α+1 . Rewriting (25) as

V̇ ≤ −γ

[
m∑

k=1

(zk − zc
k )T Pgc

k
(zk − zc

k )

](α+1)/2

≤ −γ
[
(p− pc)T H̄T diag(Pgc

k
)H̄(p− pc)

](α+1)/2

≤ −γ
[
δT R̃T (pc)R̃(pc)δ

](α+1)/2
(26)

where R̃(pc) = diag(Pgc
k
)H̄. Under the assumption that the

desired formation is infinitesimally bearing rigid, the ma-
trix Mc = R̃T (pc)R̃(pc) has d + 1 zero eigenvalues. Since
δ ⊥ Range(1n ⊗ Id), and R̃(pc) and R(pc) have the same
rank and null space, i.e., N (R̃T (pc)R̃(pc)) = N (R(pc)) =
span{Range(1n ⊗ Id), rc}. Let φ is the angle between δ and
−rc , then we obtain

δT R̃T (pc)R̃(pc)δ ≥ λd+2‖δ‖2sin2φ ≥ λd+2‖δ‖2sin2φ0

where λd+2 is the smallest nonzero eigenvalue of Mc , and φ0 ≤
φ(t), φ(t) ∈ [0, π/2), due to δ → 0 as t→∞ as interpreted
in Fig. 1. Substituting the aforementioned inequality into (26)
yields

V̇ ≤ −γ
(
λd+2‖δ‖2sin2φ0

)(α+1)/2 ≤ −κV (α+1)/2 (27)

where κ = γ(2λd+2sin2φ0)
α + 1

2 . For 0 < α < 1, we have 1
2 <

α+1
2 < 1. It follows from Lemma 2 that V → 0 in finite time

if initially we have p(0) �= p′. Combining this result with
Theorem 5, we conclude that p = pc is almost globally finite
time stable with a settling time Tc ≤ tc + V (tc)1− α + 1

2 /(κ(1−
α+1

2 )) = tc + 2V (tc)
1−α

2 /(κ(1− α)). �
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Fig. 4. Simulation 2: Finite-time orientation estimation and finite-time formation control of a 12-agent system with directed orientation sensing
graph given in Fig. 2(a). (a) Orientation estimation errors. (b) Bearing error ‖g − gc ‖ versus time. (c) Trajectories of all agents.

VI. SIMULATION

Consider a system of twelve agents in 3-D whose bearing
sensing graph Gb is given in Fig. 2(b). The formation control
objective of the system is to achieve a regular icosahedron shape
[see Fig. 2(c)]. The set of desired bearing vectors is derived from
a desired configuration, e.g., g∗ij = pj −p i

‖pj −p i ‖ , whose positions of

the agents are given as follows: p1 = [1, 0,−τ ]T , p5 = [−1,
0,−τ ]T , p4 = [0, τ,−1]T , p6 = [0,−τ,−1]T , p2 = [τ,−1,
0]T , p3 = [τ, 1, 0]T , p10 = [−τ, 1, 0]T , p11 = [−τ,−1, 0]T ,
p7 = [0,−τ, 1]T , p9 = [0, τ, 1]T , p8 = [1, 0, τ ]T , and p12 =
[−1, 0, τ ]T , where τ = (1 +

√
5)/2. In addition, Agents 1,2,

and 3 keep on rotating about their local x-, y-, and z-axes
with the same angular velocity of 0.15 rad/s, i.e., ω1

1 =
[0.15, 0, 0]T , ω2

2 = [0, 0.15, 0]T , and ω3
3 = [0, 0, 0.15]T , respec-

tively; orientations of the other agents are fixed.
Simulation results are provided for a formation of 12 agents

under the orientation estimation law (5) and the control law
(16) with α = 1/2 in two orientation sensing graphs Go : undi-
rected graph, which has the same architecture as the one given
in Fig. 2(b), and a rooted acyclic digraph [see Fig 2(a)]. The
formation control loop is activated at the time instant t = 15 s.
The simulation results for the two formation control scenarios
are shown in Figs. 3 and 4, respectively. It can be observed that
orientations of the agents are estimated up to a coordinate rota-
tion, and the agents achieve the desired formation shape in finite
time.

VII. CONCLUSION

In this paper, a finite-time bearing-only formation control
strategy via finite-time orientation estimation has been pre-
sented. For estimation of orientation, we proposed a finite-time
orientation estimation law and established finite-time conver-
gence of the estimated orientations for two classes of orientation
sensing graphs: 1) connected undirected graph and 2) rooted
acyclic digraph. Through rigorous analyses of almost global
stability and finite-time convergence, we proved that under the
proposed orientation estimation and formation control schemes
the desired formation shape can be almost globally achieved in
a finite time. The upper bounds on the convergence time are also
estimated.

Some remarks can be made for the future works. The orien-
tation estimation (5) and the formation control (16) might run
in parallel. However, in such scenario, the estimated orientation
error, i.e., Qc(t), t ≤ To , in (19) is time varying; thus, it is more
challenging to study the behaviors of the system (16), which is
left for future work. Moreover, a possible research direction is
to investigate finite-time bearing-only formation control of di-
rected formations or for autonomous agents with more general
dynamics.

REFERENCES

[1] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation
control,” Automatica, vol. 53, pp. 424–440, 2015.

[2] B. D. O. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx, “Rigid graph
control architectures for autonomous formations,” IEEE Control Syst.
Mag., vol. 28, no. 6, pp. 48–63, Dec. 2008.

[3] M. Basiri, A. N. Bishop, and P. Jensfelt, “Distributed control of triangular
formation with angle-only constraints,” Syst. Control Lett., vol. 59, no. 2,
pp. 147–154, 2010.

[4] A. N. Bishop, “Distributed bearing-only formation control with four agents
and a weak control law,” in Proc. IEEE Int. Conf. Control Automat., 2011,
pp. 30–35.

[5] S. Zhao, F. Lin, K. Peng, B. M. Chen, and T. H. Lee, “Finite-time sta-
bilisation of cyclic formations using bearing-only measurements,” Int. J.
Control, vol. 87, no. 4, pp. 715–727, 2014.

[6] A. Franchi and P. R. Giordano, “Decentralized control of parallel rigid
formations with direction constraints and bearing measurements,” in Proc.
IEEE 51st Conf. Decis. Control, 2012, pp. 5310–5317.

[7] S. Zhao and D. Zelazo, “Bearing rigidity and almost global bearing-
only formation stabilization,” IEEE Trans. Autom. Control, vol. 61, no. 5,
pp. 1255–1268, May 2016.

[8] E. Schoof, A. Chapman, and M. Mesbahi, “Bearing-compass formation
control: A human-swarm interaction perspective,” in Proc. Amer. Control
Conf., 2014, pp. 3881–3886.

[9] T. Eren, “Formation shape control based on bearing rigidity,” Int. J. Con-
trol, vol. 85, no. 9, pp. 1361–1379, 2012.

[10] S. Zhao, D. V. Dimarogonas, Z. Sun, and D. Bauso, “A general approach
to coordination control of mobile agents with motion constraints,” IEEE
Trans. Autom. Control, vol. 63, no. 5, pp. 1509–1516, May 2018.

[11] M. H. Trinh, D. Mukherjee, D. Zelazo, and H.-S. Ahn, “Finite-time
bearing-only formation control,” in Proc. IEEE 56th Conf. Decis. Control,
2017, pp. 1578–1583.

[12] F. Schiano, A. Franchi, D. Zelazo, and P. R. Giordano, “A rigidity-based
decentralized bearing formation controller for groups of quadrotor UAVs,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 5099–5106.

[13] Y. Igarashi, T. Hatanaka, M. Fujita, and M. W. Spong, “Passivity-based
attitude synchronization in SE(3),” IEEE Trans. Control Syst. Technol.,
vol. 17, no. 5, pp. 1119–1134, Sep. 2009.

[14] T. Lee, “Exponential stability of an attitude tracking control system on
SO(3) for large-angle rotational maneuvers,” Syst. Control Lett., vol. 61,
no. 1, pp. 231–237, 2012.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:53:46 UTC from IEEE Xplore.  Restrictions apply. 



712 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 6, NO. 2, JUNE 2019

[15] J. Thunberg, W. Song, E. Montijano, Y. Hong, and X. Hu, “Distributed
attitude synchronization control of multi-agent systems with switching
topologies,” Automatica, vol. 50, pp. 832–840, 2014.

[16] D. Du, S. Li, and C. Qian, “Finite-time attitude tracking control of space-
craft with application to attitude synchronization,” IEEE Trans. Autom.
Control, vol. 56, no. 11, pp. 2711–2717, Nov. 2011.

[17] J. Wei, C. Verginis, J. Wu, D. V. Dimarogonas, H. Sandberg, and K. H.
Johansson, “Asymptotic and finite-time almost global attitude tracking:
Representation free approach,” in Proc. Eur. Control Conf., 2018, pp.
3126–3131.

[18] Q. Zong and S. Shao, “Decentralized finite-time attitude synchronization
for multiple rigid spacecraft via a novel disturbance observer,” ISA Trans.,
vol. 65, pp. 150–163, 2016.

[19] B.-H. Lee and H.-S. Ahn, “Distributed estimation for unknown orientation
of the local reference frames in n-dimensional space,” in Proc. 14th Int.
Conf. Control Automat. Robot. Vis., 2016, pp. 1–6.

[20] V. T. Haimo, “Finite time controllers,” SIAM J. Control Optim., vol. 24,
no. 4, pp. 760–770, 1986.

[21] S. Bhat and D. Bernstein, “Finite-time stability of continuous autonomous
systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000.

[22] L. Wang and F. Xiao, “Finite-time consensus problems for networks of
dynamic agents,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 950–955,
Apr. 2010.

[23] X. Li, X. Luo, J. Wang, and X. Guan, “Finite-time consensus of nonlinear
multi-agent system with prescribed performance,” Nonlinear Dyn., vol. 91,
pp. 2397–2409, 2018.

[24] H. Du, G. Wen, X. Yu, S. Li, and M. Z. Q. Chen, “Finite-time consen-
sus of multiple nonholonomic chained-form systems based on recursive
distributed observer,” Automatica, vol. 62, pp. 236–242, 2015.

[25] H. Gui and A. H. J. de Ruiter, “Global finite-time attitude consensus
of leader-following spacecraft systems based on distributed observers,”
Automatica, vol. 91, pp. 225–232, 2018.

[26] Z. Sun, S. Mou, M. Deghat, B. D. O. Anderson, and A. M. Morse, “Finite-
time distance-based rigid formation stabilization and flocking,” in Proc.
19th IFAC World Congr., 2014, vol. 47, pp. 9138–9189.

[27] G. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed. Cambridge,
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