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Fekete Points, Formation Control, and the
Balancing Problem

Jan Maximilian Montenbruck, Daniel Zelazo, and Frank Allgöwer

Abstract—We study formation control problems. Our ap-
proach is to let a group of systems maximize their pairwise
distances while bringing them all to a given submanifold,
determining the shape of the formation. The algorithm we
propose allows us to initialize the positions of the individual
systems in the ambient space of the given submanifold but
brings them to the desired formation asymptotically in a sta-
ble fashion. Our control inherently consists of a distributed
component, maximizing the pairwise distances, and a de-
centralized component, asymptotically stabilizing the sub-
manifold. We establish a graph-theoretical interpretation of
the equilibria that our control enforces and extends our ap-
proach to systems living on the special Euclidean group.
Throughout this paper, we illustrate our approach on differ-
ent examples.

Index Terms—Autonomous systems, cooperative con-
trol, formation control, network analysis and control.

I. INTRODUCTION

MULTIAGENT systems have become one of the central
foci of attention in control theory. This interest par-

tially stems from the relevance of related methods for control of
robotic networks, cf., [1]. The central question in these systems
usually reads as follows: Which control algorithms will eventu-
ally drive the group of systems to a desired configuration? The
desired configuration itself will thereby depend on the particular
group objective under scrutiny. For instance, one often wishes
to have the systems eventually arrange their positions in a given
shape or pattern. The task is trivial if the individual systems
are controllable and one allows for controllers that drive them
to precomputed positions within the chosen formation shape;
yet, if one was to solve the problem in this fashion, one would
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require a central processing entity gathering all information and
sending commands to all members of the group. At the same
time, a new controller would have to be designed whenever the
formation objectives changed, limiting its applicability. Instead,
it would be more desirable to have the systems automatically
arrange in the desired formation while exchanging only relative
(“distributed control”) or individual (“decentralized control”)
information, cf., [2].

In this paper, we precisely study these formation control prob-
lems, i.e., tasks in which a group of systems is asked to even-
tually arrange their positions in a specified shape. This shape
shall thereby be defined by a compactly embedded submanifold
of the space which the systems live in. This approach offers
for great flexibility in the formation shape, quite similar to [3],
wherein the formation may be determined by an arbitrary Jordan
curve. By construction, we arrive at a control law consisting of
a distributed and a decentralized component.

In the following section, we link the formation control prob-
lem to the problem of asymptotically stabilizing so-called Fekete
points, which correspond to certain minimum energy config-
urations of electrically charged particles interacting through
Coulomb’s law. Thereafter, we compare this approach with ex-
isting approaches to formation control. In Section III, we present
a control law that is shown to asymptotically stabilize these
Fekete points. This control law is illustrated on circular and
spherical formation shapes in Section IV. Then, in Section V,
we establish a novel connection between Fekete points and cycle
spaces of graphs, i.e., any equilibrium configuration of our con-
trol law must correspond to elementwise reciprocals of vectors
from the cycle space of the underlying communication graph.
The approach pursued in Section VI equips our control with
the capability to take orientations into account, thus allowing us
to stabilize formations in the Euclidean groups. This, again, is
illustrated on circular and spherical formations in Section VII.
In Section VIII, we point toward a number of further possible
extensions and Section IX concludes this paper.

II. FEKETE POINTS AND THE BALANCING PROBLEM

Unlike other approaches to formation control, we do not (im-
plicitly) define the desired formation by specifying absolute or
relative positions of systems. Rather, our notion of a forma-
tion corresponds to when the systems in the group arrange their
positions in a balanced fashion on some prespecified shape.
More formally, we ask for n systems to arrange their posi-
tions x1 , . . . , xn according to the shape of a given compactly
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Fig. 1. Configurations on the circle satisfying (2) (left), and (3)–(4)
(right).

embedded submanifold M of Rm . By “balanced,” we herein
mean the positions of the agents should be evenly spaced in the
submanifold. That is, we wish to avoid situations in which two
positions xi and xj are close to each other.

In this direction, one may be tempted to think that the maxi-
mization of

∑

j > i

d (xi, xj )
2 (1)

subject to xi ∈ M , wherein d (xi, xj ) is the length of the shortest
curve (in M ) joining xi and xj , endowing M with the properties
of a metric space, yields such configurations. In the following
example, we briefly illustrate why this approach is flawed.

Example 1: Let M be the unit circle in R2 and consider the
n = 3 points

x1 = x2 , x3 = −x1 (2)

for which our function (1) attains the value 2π2 . A more desir-
able, “balanced” (also “splay”) configuration, however, would
correspond to the positions

x2 =

[
cos (2π/3) − sin (2π/3)
sin (2π/3) cos (2π/3)

]
x1 (3)

x3 =

[
cos (2π/3) − sin (2π/3)
sin (2π/3) cos (2π/3)

]
x2 (4)

which yields the smaller value 4π2/3 for (1). Two exemplary
configurations sufficing (2), and (3)–(4) are depicted left and
right in Fig. 1, respectively.

To compensate for the shortcomings of (1), let us seek for a
function that attains very small values as any two positions xi

and xj approach each other. To this end, consider
∑

j > i

ln (d (xi, xj )) = ln
( ∏

j > i

d (xi, xj )
)

(5)

which now tends to −∞ as any pairwise distinct points xi

and xj approach each other. Yet, due to strict monotonicity of
the natural logarithm, we expect that the values attained for
configurations such as (3)–(4) are still large.

It turns out that the cost function (5) is not new to the exact
sciences. For the special case of M being the sphere, its maxi-
mizers are today referred to as (elliptic) Fekete points. Thomson
asked for these points while studying electrically charged par-
ticles, subject to Coulomb’s law, constrained to the sphere [4].
This problem was then brought to mathematics by Föppl [5]
on the advice of his advisor Hilbert. Later, Schur [6] asked for

polynomials with large discriminant and roots in the unit in-
terval or, similarly, for large values of the Vandermonde poly-
nomials with arguments in the unit interval, leading Fekete [7]
to ask the same question for these roots/arguments constrained
to arbitrary compact sets and eventually giving these points
their present name. More recently, Shub and Smale [8] required
Fekete points as initial conditions for an algorithm computing
zeros of (complex) homogeneous polynomials, letting Smale
define their (algorithmic, in the sense of Blum–Cucker–Shub–
Smale) computation as one of the mathematical problems of our
century [9].

Returning to our problem, we thus ask for our positions
x1 , . . . , xn to eventually attain such Fekete points, and if pos-
sible, in a stable fashion. Although this point of view on the
formation control problem is, to our best knowledge, novel,
others have presented conceptually similar definitions of desir-
able configurations. In sensor coverage, one steers systems to
centroids of a Voronoi diagram through a continuous-time ver-
sion of Lloyd’s algorithm [10]. Formation shapes may thereby
be taken into account via specific density functions. Circular for-
mations can be stabilized by minimizing all angular moments
[11] or by zeroing their centroid [12], which is in this context
often referred to as balancing. Formations, whose shape is de-
termined by a Jordan curve, can be stabilized by choosing the
desired relative distances a priori [3]. If the formation shape is a
more general (homogeneous) manifold, it may still be stabilized
by maximizing the pairwise chordal distances of the individual
systems [13]. The dual consensus problem has also been solved
intrinsically [14], [15]. Minimizing the deviation of relative dis-
tances among agents from the lengths of the links in a rigid
framework stabilizes the formation defined by that framework
[16]. The weaker notion of infinitesimal rigidity proves to be
sufficient for this purpose, as well [17].

A significant distinction between [13] and [3] is that the for-
mer does not asymptotically drive the positions to the specified
manifold but expects that the positions are constrained to the
manifold for all times while the latter expects that the desired
relative distances d (xi, xj ) are specified a priori (the former
does not assume to know these relative distances and the latter
does allow for the positions to move in the ambient space R2

of the chosen Jordan curve). In this paper, we allow for our
positions x1 , . . . , xn to move in the ambient space Rm of some
compactly embedded smooth submanifold M and impose no
prespecification of desired relative distances. Instead, we let the
maximizers of (5), our Fekete points, specify the desired con-
figurations on M , a point of view which is, to our knowledge,
novel.

We thus introduce and study Fekete points as a natural defini-
tion of evenly spaced formations. This is in contrast to defining
such an even spacing as a configuration with zero centroid,
all pairwise relative distances equal, or all polytopes connecting
nearby points being of the same type. For instance, with M being
the sphere in R3 , n = 11 yields Fekete points whose centroid is
not at the origin (topologically equivalent to an edge-contracted
icosahedron, left in Fig. 2), n = 5 yields Fekete points whose
relative distances are not all the same (topologically equivalent
to a triangular bipyramid, middle in Fig. 2), and n = 8 yields
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Fig. 2. Polytopes constituted by Fekete points on the sphere: edge-
contracted icosahedron for n = 11 (left), triangular bipyramid for n = 5
(middle), and square antiprism for n = 8 (right).

Fekete points connected by both quadrilateral and triangular
polygons (topologically equivalent to a square antiprism, right
in Fig. 2).

III. ASYMPTOTIC STABILITY OF FEKETE POINTS

Let x1 , . . . , xn denote the positions of our systems in Rm and
let M be a smooth, compactly embedded submanifold of Rm .
We seek algorithms that drive our positions toward maximizers
of (5), subject to xi ∈ M , in a stable fashion. For greater flex-
ibility, we enhance the expression (5) with scalar nonnegative
weights Wij , i.e., we consider the function

φ (x) =
∑

j > i

Wij ln (d (xi, xj )) (6)

taking members x := (x1 , . . . , xn ) of the product manifold
Mn = M × · · · × M (excluding the points Δ ⊂ Mn for which
any projection x �→ (xi, xj ), i �= j, lies in the diagonal of M 2 ,
or, equivalently, i �→ xi is no injection, since φ cannot be eval-
uated at these points), to the real line, where again d (xi, xj )
denotes the length of the shortest curve in M joining xi and
xj . We can associate an undirected, weighted graph with n ver-
tices to the symmetric function (i, j) �→ Wij by letting i and
j be neighbors only if Wij = Wji is positive and by letting
Wij be the weight of the edge that connects them if this is the
case. Consideration of directed graphs would not yield more
general results since Wij ln (d (xi, xj )) + Wji ln (d (xj , xi))
equals (Wij + Wji) ln (d (xi, xj )), whence any asymmetric
weights Wij �= Wji could as well be represented by some sym-
metric choice Wij = Wji .

In order to proceed, we require some terminology. Let

Tx (M × · · · × M) = Tx1 M ⊕ · · · ⊕ Txn
M

denote the tangent space of Mn at x and let NxMn be the
normal space (in Rmn ) of Mn at x, defined as the orthog-
onal complement of TxMn in Rmn . The real vector bundle
NMn =

⊔
x∈M n NxMn , composed of the fibers NxMn , is

called the normal bundle of Mn . A tubular neighborhood of Mn

is a diffeomorphic image of NMn → Rmn , (x, v) �→ x + v.
The tubular neighborhood theorem asserts that embedded sub-
manifolds have tubular neighborhoods. Moreover, following the
construction in [18, Ch. II, Sec. 11], compact embedded sub-
manifolds have tubular neighborhoods that are sublevel sets of
x �→ ‖v‖ (with the previously employed notation) and we will
henceforth always refer to such. Now let U ⊂ Rmn be such a
tubular neighborhood of Mn ; then r : x + v �→ x is a smooth

retraction from U onto M . Let grad φ denote the gradient vector
field of our scalar field φ : Mn \ Δ → R, i.e., grad φ accepts
arguments x from Mn \ Δ (except for those points Cut ⊂ Mn

at which any xi lies in the cut loci of some xj , i.e., xi and xj

are conjugate or joined by multiple minimizing geodesics, as φ
is not differentiable there; yet, these points only constitute a set
of measure zero anyhow) and takes them to vectors in TxMn .
We propose the control

ẋ = r (x) − x + gradφ (r (x)) (7)

in order to drive our positions x from some initial condition
x0 ∈ r−1 (Mn \ (Δ ∪ Cut)) toward maximizers of φ on M ,
our Fekete points, in a stable fashion (needless to say, these
maximizers will thereby also depend upon the choice of the
weights Wij ).

By construction, our control consists of a decentralized and
a distributed component. The vector field r can be computed
in a decentralized fashion since the ith entry of r (x) is just
the retraction of xi onto M—the vector field grad φ ◦ r can be
computed in a distributed fashion as, by the chain rule, its ith
entry (evaluated at x) reads

n∑

j=1

Wij

d (r (xi) , r (xj ))
Vij (8)

where (xi, xj ) �→ Vij ∈ Tr(xi )M is the (initial) velocity vector
of the unit speed geodesic joining r (xi) and r (xj ).

One can see that φ attains its maximum on Mn as

eφ(x) =
∏

j > i

d (xi, xj )
Wi j

is continuous, Mn is compact, and the natural logarithm is
strictly monotone. In the remainder, we denote this maximum
by φ∗ (implying φ∗ ≥ φ (x) for any x ∈ Mn \ Δ) and the max-
imizers by X∗ := φ−1 ({φ∗}).

Theorem 1: Let X be a superlevel set of φ on which φ is regu-
lar away from the maximizers X∗. These maximizers constitute
an asymptotically stable set of equilibria of (7) and r−1 (X) is
a subset of their region of asymptotic stability.

Proof: We prove our claim as follows. First, we show that
r−1 (X∗) is an asymptotically stable invariant set by evaluating
the evolution of r (x) along solutions of (7). Second, we study
the differential equation under which v (x) := x − r (x) evolves
to find that Mn is also an asymptotically stable invariant set. The
proof concludes by recalling that intersections of asymptotically
stable invariant sets are themselves asymptotically stable.

We first analyze how r (x) evolves under (7). The Jacobian of
r, evaluated at x, is just the projection matrix of the projection
onto Tr(x)M

n . Keeping in mind that r (x) − x is a vector from
the normal space of Mn at x, it follows that r (x) obeys the
differential equation

ṙ (x) = gradφ (r (x)) . (9)

As our maximizers are critical points of φ, they are also equi-
libria of (9). We note that φ∗ − φ (x) is positive away from the
maximizers per definition. Further, since φ is regular on X \ X∗,
the Lie derivative of −φ along grad φ is negative on that set,
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whence the maximizers are indeed an asymptotically stable set
of equilibria of (9) by virtue of Lyapunov’s direct method. With
the aforementioned Lie derivative being nonpositive on X and
X being a sublevel set of −φ, X remains an invariant set of (9).
As M is compact, X is compact and thus it belongs to the region
of asymptotic stability of X∗ by LaSalle’s invariance principle.
It follows that r−1 (X∗) is an asymptotically stable invariant set
of (7) whose region of attraction is at least r−1 (X).

Now, we turn our attention to the evolution of v (x) along
solutions of (7). As the Jacobian of v, evaluated at x, is just
the projection matrix of the projection onto Nr(x)M

n and
grad φ (r (x)) is always tangent to Mn at r (x), we come
to the conclusion that v̇ (x) = −v (x). Therefore, all solu-
tions of (7) initialized in the invariant set r−1 (X) approach
v−1 ({0}) = Mn asymptotically in a stable fashion, i.e., Mn

is an asymptotically stable invariant set of (7) whose region
of asymptotic stability is at least r−1 (X) (cf., [19, Proof of
Th. 2]).

Bearing in mind that intersections of asymptotically stable
invariant sets are asymptotically stable, we find that r−1 (X∗) ∩
Mn = X∗ is an asymptotically stable set of equilibria of (7). Its
region of asymptotic stability is at least the intersection of the
two regions of asymptotic stability, that is r−1 (X), completing
the proof. �

In the proof, the preimages of r appeared frequently. In partic-
ular, we were unable to extend the region of asymptotic stability
of our maximizers beyond tubular neighborhoods. On a concep-
tual level, this agrees with the obstructions to global stabilization
of certain formations observed in [20].

If we only ask our tubular neighborhood to be a diffeomorphic
image of NMn → Rmn , (x, v) �→ x + v, but not necessarily a
sublevel set of x �→ ‖v (x)‖, then it will be possible to also
apply our control to positions x outside those sublevel sets, but
we would not be able to provide convergence guarantees for
solutions initialized with such positions.

IV. TUTORIAL EXAMPLES: THE CIRCLE AND THE SPHERE

Our control (7) is rather general but also quite abstract. It is
instructive to see how the involved expressions read for partic-
ular manifolds. In this section, we compute the right-hand side
of (7) explicitly for the circle (embedded in the plane) and for
the sphere (embedded in R3).

Circular formations are among the most relevant formations
in the plane R2 and have been extensively studied, e.g., in [11]
and [12]. One reason for the relevance of circular formations is
that they can be continuously deformed to other Jordan curves
[3], thus making methods that were initially developed for the
circle applicable to a broad range of planar formations. In the
following, we compute our control (7) for M being the (unit)
circle and for M being an ellipse, both embedded in the plane.

Example 2: Let M be the unit circle in R2 . The retraction
of some point xi from the tubular neighborhood of the circle on
which 0 < ‖xi‖ < 2 is just the normalized vector

r (xi) =
1

‖xi‖xi. (10)

Fig. 3. Cycle graph C10 .

Here, it is possible to retract any vector from the punctured
plane R2 \ {0} onto the circle, thus allowing us to also apply our
control to positions xi outside our tubular neighborhood (though
not having convergence guarantees for solutions initialized with
such positions). It remains to compute the gradient of φ. For this
purpose, we employ the (Lie) group isomorphism

[
cos (α)
sin (α)

]
�→

[
cos (α) − sin (α)
sin (α) cos (α)

]

from the circle onto the special orthogonal group SO (2). This
representation is quite convenient as tangent vectors become
skew-symmetric matrices which, in turn, become tangent vec-
tors of the circle again by multiplying them with points on the
circle (from the right). Specifically, geodesics on SO (2) (and
their velocity vectors) can be employed to compute geodesics
on the circle through this reasoning. Employing the notation
(xi, xj ) �→ Vij from (8), we find that

−d (xi, xj ) Vij = log
(

1
‖xi‖‖xj‖

[
xi · xj xi · Ωxj

xj · Ωxi xi · xj

])
xi

‖xi‖
wherein “·” denotes the scalar product and Ω is the infinitesimal
generator

Ω :=
[

0 1
−1 0

]
(11)

of the Lie algebra so (2) and log : SO (2) → so (2) is the log-
arithmic map. Dividing twice by d (xi, xj ) can be efficiently
realized by applying the identity Ω−1 = −Ω and finally reveals
that (8) reads

ẋi =
(

1 − ‖xi‖
‖xi‖

)
xi

+
n∑

j=1

Wij

‖xi‖
(
log

(
1

‖xi‖‖xj‖
[

xi · xj xi · Ωxj

xj · Ωxi xi · xj

]))−1

xi

(12)

for the present example. We now consider n = 10 systems
coupled through the unweighted cycle graph C10 , i.e., Wij =
Wji = 1 for j = (i + 1) mod 10 and Wij = Wji = 0 other-
wise; the graph is depicted in Fig. 3. With this choice of graph,
we solved (12) numerically for some initial condition; the nu-
merical solutions are plotted in Fig. 4. The initial condition is
indicated by blue circles ( ) and the limiting point is marked
with red circles ( ). Although the initial conditions were chosen
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Fig. 4. Numerical solution of (12) for the cycle graph C10 .

outside our tubular neighborhood, we find that the positions ap-
proach an evenly spaced configuration on the circle, as desired.

The circle can be continuously deformed into any Jordan
curve, making the control from the foregoing example applica-
ble to a wide range of formations in the plane. For M being
an ellipse, the way in which our control must be adapted is
particularly simple, as we briefly describe in the next example.

Example 3: Let M be an ellipse in R2 with radius a in the
first coordinate and radius 1 in the second coordinate. As in the
previous example, points from the ellipse can be injected onto
the special orthogonal group SO (2) via

[
a cos (α)

sin (α)

]
�→

[
cos (α) − sin (α)
sin (α) cos (α)

]
(13)

and thus all considerations regarding the circle remain correct.
Using this representation, the only changes that are required in
(12) are that arguments of norms must be

[
1/a 0
0 1

]
xi and

[
1/a 0
0 1

]
xj (14)

instead of xi and xj , respectively. This has the effect of retracting
points onto the ellipse instead of the circle. Also, the inverse of
the skew-symmetric matrix that the logarithmic map returns
must undergo the similarity transform of being multiplied by

[
1 0
0 1/a

]
and

[
1 0
0 a

]
(15)

from the left and right, respectively, before multiplying it with
xi . This has the purpose of making the resulting vector tangent
to the ellipse instead of the circle. We now consider n = 12 sys-
tems coupled through the unweighted cycle graph C12 . With this
choice of graph, we solved (12), modulo the above-mentioned
substitutions, numerically for some initial condition; the nu-
merical solutions are plotted in Fig. 5. As mentioned before, the
initial condition is indicated by blue circles ( ) and the limiting
point is marked with red circles ( ). We find that the positions
approach an evenly spaced configuration on the ellipse, as de-
sired.

Our methods proved to be successful for two exemplary for-
mations in the plane R2 . While the interest in planar formations

Fig. 5. Numerical solution of (12), modulo the substitutions from Ex-
ample 3, for the cycle graph C12 .

largely stems from vehicle platoons or robot swarms, interest in
spatial formations in R3 is readily justified, e.g., by formation
flights. The simplest compactly and smoothly embedded sub-
manifold of interest in R3 should be the (2-)sphere. This shall
be reason enough to consider a spherical formation in R3 in the
forthcoming example. We also recall that the classical Thom-
son and Fekete problems are posed as finding evenly distributed
points on the sphere in R3 .

Example 4: Let M be the unit sphere in R3 . Most consider-
ations from Example 2 remain correct, though the notation does
not remain as simple. More specifically, the representation

⎡

⎢⎣

sin
(
α2

)
cos

(
α1

)

sin
(
α2

)
sin

(
α1

)

cos
(
α2

)

⎤

⎥⎦ �→

⎡

⎢⎣

cos
(
α2

)
cos

(
α1

) − sin
(
α1

)
sin

(
α2

)
cos

(
α1

)

cos
(
α2

)
sin

(
α1

)
cos

(
α1

)
sin

(
α2

)
sin

(
α1

)

− sin
(
α2

)
0 cos

(
α2

)

⎤

⎥⎦

(16)

of the sphere in SO (3) is an injection that does not attain ev-
ery value in SO (3). The retraction (10) remains the same and
we denote the above-mentioned representation (16) of some re-
tracted xi as a member of SO (3) by Ri . Using this notation,
we may still apply the logarithmic map log : SO (3) → so (3)
to R�

j Ri in order to find the (initial) velocity vector of the
geodesic joining Ri and Rj but now that the tangent space is
not one dimensional, that velocity vector may not be inverted.
Instead, using the identity 2d (xi, xj )

2 = − tr
(
log (R�

j Ri)
2 )

,
we obtain

ẋi =
(

1 − ‖xi‖
‖xi‖

)
xi

+
n∑

j=1

2Wij

‖xi‖ tr
(
log (R�

j Ri)
2 ) log

(
R�

j Ri

)
xi. (17)

Now, consider n = 5 systems coupled through the unweighted
complete graph K5 , i.e., Wij = Wji = 1 for j �= i; the graph
is depicted in Fig. 6. With this choice of graph, we solved (17)
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Fig. 6. Complete graph K5 .

Fig. 7. Numerical solution of (17) for the complete graph K5 .

numerically for some initial condition; the numerical solutions
are plotted in Fig. 7. The initial condition is indicated by blue
circles ( ) and the limiting point is marked with red circles ( ).
We find that the positions approach the vertices of a triangular
bipyramid, which are indeed known to be Fekete points.

V. GRAPH-THEORETICAL INTERPRETATION OF EQUILIBRIA

In the maximization of φ, the parameters Wij , which can
be interpreted as being determined by a weighted, undirected
graph, play a crucial role. In the previous section, we saw that
the cycle graph was well suited for evenly spacing points on
the circle (see Example 2), and that the complete graph brought
positions to the Fekete points on the sphere (see Example 4).
It shall be emphasized that the cycle graph does not bring the
positions toward the Fekete points on the sphere and that we
also encounter difficulties when employing the complete graph
on the circle, as illustrated in our next example.

Example 5: Let M be the unit circle in R2 and consider
n = 6 systems coupled through the complete graph K6 . Solving
(12) numerically, one finds that oscillations occur that grow
stronger as the positions approach the circle. The numerical
solutions are plotted in Fig. 8 with initial condition indicated
by blue circles ( ) and the configuration for some large time is
marked with red circles ( ). The oscillations are magnified for
better visibility. This behavior is explained by verifying whether
the evenly spaced configuration is an equilibrium of (12). In fact,
introducing the notation

αijΩ = log
([

xi · xj xi · Ωxj

xj · Ωxi xi · xj

])
(18)

Fig. 8. Numerical solution of (12) for the complete graph K6 .

Fig. 9. Thomsen (“utility”) graph.

for the directed angle between two points xi , xj on the circle
that are neighbors in the graph under consideration (i.e., for
which Wij �= 0), we figure that

α12 = −2π

6
, α13 = −2π

3
, α14 = ±π, α15 =

2π

3
, α16 =

2π

6
should asymptotically hold from Fig. 8. If one now asks whether
this configuration is indeed an equilibrium of (12), then one finds
that

1
α12

+
1

α13
+

1
α14

+
1

α15
+

1
α16

�= 0 (19)

whence the answer is negative. At the same time, one finds that
removal of the edge between the vertices 1 and 4 would indeed
turn this point into an equilibrium of ẋ1 , and similarly we would
have to remove the edges (2, 5) and (3, 6) in order to establish
an equilibrium for all positions. Doing so, we arrive at a four-
regular graph (with 6 vertices) and solving (12) again for this
graph, we find that the oscillations observed before no longer
occur. One is thus tempted to think that regular graphs are suited
best for our evenly spaced configurations on the circle, particu-
larly when recalling that circulant graphs play a crucial role in
[21] for stabilization of circular formations. However, consider
the Thomsen (“utility”) graph depicted in Fig. 9, which is a
three-regular graph (and also complete bipartite). Solving (12)
numerically for this graph and plotting the numerical solutions
in Fig. 10 (initial condition again indicated by blue circles ( )
and configuration for some large time marked with red circles
( )), we find that the positions do not come to rest. Instead, the
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Fig. 10. Numerical solution of (12) for the Thomsen graph.

positions enter a periodic orbit on the circle while being evenly
spaced thereon. Let us try to explain this as we did before. To
this end, first notice that

α14 = ±π, α15 =
2π

6
, α16 = −2π

6
(20)

should asymptotically hold (again inferred from the plot). But
as the reciprocals thereof do not sum up to zero, this config-
uration, again, does not constitute an equilibrium of (12). We
would have to delete the edges (1, 4), (2, 5), and (3, 6) to let
this happen. If we removed these edges, we again arrived at
the cycle graph C6 , for which the points indeed come to rest
at an evenly distributed configuration (as we saw for n = 10 in
Example 2). In conclusion, we find that k-regular graphs, with
k an even positive number, are suited well for evenly spaced cir-
cular formations. These graphs are precisely the regular graphs
possessing Eulerian cycles.

The previous example provided some insight into the role of
graph theory for equilibria of (12). Next, we generalize these
observations. To this end, we adopt the notation (18). Equating
the right-hand side of (12) with zero, we arrive at all xi being
on the circle and the angles αij satisfying
⎡

⎢⎢⎢⎢⎢⎢⎣

0 W12/α12 · · · · · · W1n/α1n

W21/α21 0 W23/α23 · · · W2n/α2n

... W32/α32 0
...

...
...

. . .
Wn1/αn1 Wn2/αn2 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

1
...
...
...
1

⎤

⎥⎥⎥⎥⎥⎥⎦
= 0.

But, we defined the function (i, j) �→ Wij to be symmetric (i.e.,
our graph to be undirected). Knowing that the logarithm of the
transpose of a rotation matrix is just the negative logarithm of
that rotation matrix, we further find that αij = −αji . Substitut-
ing these findings into our last equation, we find that
⎡

⎢⎢⎢⎢⎢⎢⎣

0 W12/α12 · · · · · · W1n/α1n

−W12/α12 0 W23/α23 · · · W2n/α2n

... −W23/α23 0
...

...
...

. . .
−W1n/α1n −W2n/α2n · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

1
...
...
...
1

⎤

⎥⎥⎥⎥⎥⎥⎦
= 0

must hold for a configuration to make an equilibrium. Next,
noticing that the matrix on the left is a skew-symmetric matrix,
we know that it can be written as a linear combination of the
generators Ωij of the Lie algebra so (n), where we employ the
convention that the jth entry of the ith row of Ωij is 1, i.e.,
Ωij = eie

�
j − ej e

�
i . Thus, we have that

∑

j>i

Wij

αij
Ωij

⎡

⎢⎣
1
...
1

⎤

⎥⎦ =
∑

j>i

Wij

αij
(ei − ej ) = 0 (21)

must hold at an equilibrium, where ei ∈ Rn denotes the ith
vector of the standard basis. Letting E denote the weighted
incidence matrix of our graph, i.e., the matrix whose columns
are the nonzero vectors Wij (ei − ej ), with lexicographically
ordered indices (i, j), j > i, we are now ready to state the
following proposition.

Proposition 1: Let all xi lie on the circle. Denote by α the
vector whose entries are 1/αij , with αij defined as in (18),
and lexicographically ordered indices (i, j), j > i. Denote the
weighted incidence matrix of the undirected, weighted graph as-
sociated with the symmetric function (i, j) �→ Wij by E. Then
x is an equilibrium of (12) if and only if α is in the nullspace
of E.

Proof: The condition Eα = 0 is equivalent to (21). �
Let us assume for a moment that our graph is unweighted,

i.e., that all nonzero Wij are equal to 1. Then, the incidence
matrix E can be seen as a matrix over the Galois field GF (3).
Taking this point of view, a cycle in our graph is a collection
of columns of E that are linearly dependent over GF (3), i.e.,
each cycle can be thought of as a vector c over GF(3) for which
Ec = 0. These cycles (vectors) c constitute a vector space over
GF(3), the nullspace of E (over GF (3)), which is called the
cycle space of the graph [22]. Its dimension is, in this sense,
the number of linearly independent (over GF (3)) cycles in the
graph. Should we restrict our attention to unweighted graphs,
then the foregoing proposition tells us that an equilibrium con-
figuration must consist of reciprocal angles lying in the cycle
space (over R) of our graph and as the dimension of our cycle
space increases, the possible number of equilibrium configura-
tions increases as well. On the other hand, graphs with trivial
cycle spaces, such as line graphs (or any acyclic graphs), do not
admit equilibria of (12) whatsoever as α cannot be zero (in fact,
α does not only have to lie in the nullspace of E, but also in the
cone of vectors without zero entries). In this context, recall that
we had observed a connection between evenly spaced equilib-
rium configurations and regular graphs with Eulerian cycles in
Example 5. Now, having encountered the above-mentioned al-
gebraic characterization of equilibria, we are ready to generalize
and formalize this observation. In fact, the regularity assumption
may be omitted.

Corollary 1: Let all xi lie on the circle. Define αij as in
(18). If the undirected, unweighted graph associated with the
symmetric function (i, j) �→ Wij possesses an Eulerian cycle
(equivalently, if every vertex has even and positive degree), then
there is an equilibrium x of (12) such that all αij have the same
absolute value.
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Fig. 11. Moser spindle.

Proof: An Eulerian cycle is a vector c over GF(3) from the
nullspace of the incidence matrix E with the property that all of
its entries are either 1 or −1. Recalling Proposition 1, the claim
remains proven. �

We have seen that, when all positions xi are on the circle, then
Eα = 0 is a necessary and sufficient condition for x to be an
equilibrium of (12). Our next example explains why only solving
Eα = 0 alone (without having (18) in mind) is necessary, but
not sufficient.

Example 6: Consider the cycle graph Cn . Following our
above-mentioned convention of lexicographically ordering the
vectors ei − ej according to (i, j), j > i, its incidence matrix
E has the columns e1 − e2 , e1 − en , e2 − e3 , e3 − e4 , and so
forth. The equation Eα = 0 thus reads

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
−1 0 1 0

0 0 −1 1
0 0 0 −1
0 0 0 0 · · ·
...

...
...

...
0 0 0 0
0 −1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

1/α12
1/α1n

1/α23
1/α34

...

⎤

⎥⎥⎥⎥⎥⎦
= 0 (22)

from which we infer that α must be in the (one dimensional)
cycle space of Cn , spanned by the vector (1,−1, 1, . . . , 1). This
implies that our solution is of the form

α12 = −α1n = α23 = α34 = · · · (23)

and hence uniquely determined by, say, α12 . But not every solu-
tion of this form can be realized as points xi on the circle such
that (18) is satisfied. Recalling that the quantities αij in fact rep-
resent angles, we arrive at the additional “physical” constraint
requiring that

B�

⎡

⎢⎢⎢⎢⎢⎣

α12
α1n

α23
α34

...

⎤

⎥⎥⎥⎥⎥⎦
mod 2π = 0 (24)

holds, where B is a matrix over GF(3) whose columns are a
basis for the cycle space of Cn , i.e., EB = 0. The condition
can be seen as the algebraic equivalent of insisting that the an-
gles αij correspond to some realization of the positions xi such

that they lie on the circle. This being said, together with the
necessary condition Eα = 0, the latter equation constitutes a
sufficient condition for equilibria of (12). In the present exam-
ple, B is just the vector (1,−1, 1, . . . , 1) and we conclude that
(nα12) mod 2π = 0, which is indeed equivalent to the solution
α12 = 2π/n observed in Example 2.

Our previous example revealed that the condition Eα = 0,
together with (24), is sufficient to characterize equilibria of
(12). Still, both equations are hard to solve explicitly. As for
Eα = 0, this complication stems from the fact that solutions
must be contained in the cone of vectors that have all entries
nonzero, caused by the reciprocal angles appearing in α. Yet,
this complication is (partially) overcome by multiplying the pth
element of Eα with

∏

Wi p �=0
p>i

αip

∏

Wp j �=0
j>p

αpj , (25)

turning it into a symmetric polynomial, viz., symmetric with re-
spect to permutations of the indices {i �= p |Wip �= 0}. The ze-
ros of the resulting polynomials, i.e., the solutions to DEα = 0,
with D ∈ Rn×n being the (full-rank) diagonal matrix that has
the entries (25), p = 1, . . . , n, on its diagonal, hence character-
ize our equilibria, as well, which is summarized in the following
proposition.

Proposition 2: Let all xi lie on the circle and let αij be
defined as in (18). Then, x is an equilibrium of (12) if and
only if all αij are zeros of the n polynomials resulting from
multiplying

∑
i>p Wpi/αpi −

∑
j<p Wjp/αjp , with (25), p =

1, . . . , n. The zeros of the pth polynomial are invariant under
permutations of {i �= p |Wip �= 0}.

Proof: Recall Proposition 1. We notice that
∑

i>p Wpi/
αpi −

∑
j<p Wjp/αjp is the pth element of Eα. As our angles

αij cannot be zero, multiplication of Eα = 0 with the diago-
nal matrix D having (25) as its pth diagonal element does not
change the zeros of the resulting system of equations. Symmetry
with respect to permutations of {i �= p |Wip �= 0} follows from
finding that (25) remains invariant under such permutations. �

Our next example illustrates how the procedure suggested in
the foregoing proposition can turn out useful for computation
of equilibria of (12), particularly for graphs with large cycle
spaces.

Example 7: Following the approach from our previous ex-
ample, let us now try to characterize equilibria of (12) for more
complicated graphs: We consider n = 7 and the Moser spindle
depicted in Fig. 11 . Its incidence matrix is

E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0 0
−1 0 0 1 1 0 0 0 0 0 0

0 −1 0 −1 0 1 0 0 0 0 0
0 0 0 0 −1 −1 1 1 0 0 0
0 0 0 0 0 0 −1 0 1 1 0
0 0 0 0 0 0 0 −1 −1 0 1
0 0 −1 0 0 0 0 0 0 −1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and its (five dimensional) cycle space is the image of the matrix

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 1 1
−1 1 0 0 0

0 0 0 −1 −1
1 0 0 0 0
0 −1 0 1 1
0 1 0 0 0
0 0 1 1 0
0 0 −1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

over GF(3). Solving Eα = 0 and (24) at the same time, even
numerically, turns out to be a hard task. One complication is
that no entry of α can be zero in the seemingly linear equation
Eα = 0. This could be resolved by maximizing the support of
α subject to Eα = 0. Here, we opt to multiply the pth element
of Eα by (25), as suggested in Proposition 2, to obtain the
symmetric polynomials

α13α17 + α12α17 + α12α13 = 0

−α23α24 + α12α24 + α12α23 = 0

−α23α34 − α13α34 + α13α23 = 0

−α34α45α46 − α24α45α46 + α24α34α46 + α24α34α45 = 0

−α56α57 + α45α57 + α45α56 = 0

−α56α67 − α46α67 + α46α56 = 0

−α57α67 − α17α67 − α17α57 = 0

the pth polynomial only being symmetric with respect to per-
mutations not involving p. Having this formulation at hand, we
know that the angles for which x is at rest must be contained in
the intersection of the algebraic varieties containing the zeros
of these polynomials, i.e., we may now solve these equations
iteratively (by repeatedly intersecting these algebraic varieties),
here obtaining

α12 = α34 = α45 = α67 = −2 (5 +
√

5 ) π/11 (3 +
√

5 )

α13 = α24 = α46 = α57 = (3 +
√

5 ) α12/2

α17 = 2 (π + α12 + α13)

α23 = α56 = α13 − α12

which is indeed a solution to Eα = 0 as well as to (24). In-
deed, solving (12) numerically for some initial condition with
this choice of graph and plotting the numerical solutions in
Fig. 12 (with initial condition again indicated by blue circles
( ) and limiting point again marked with red circles ( )), this
computation is confirmed as the positions precisely approach
the configuration described by the above-mentioned angles.

An option, which we did not exploit yet, is to influence a
formation by scaling the values of our nonzero weights Wij .
As our characterization Eα = 0 reveals a rather explicit con-
nection of these weights and equilibria of (12), namely, that αij

Fig. 12. Numerical solution of (12) for the Moser spindle.

Fig. 13. Numerical solution of (12) for the cycle graph C8 but with
W12 = W34 = W56 = W78 = 1/4.

becomes
(
W ′

ij /Wij

)
αij as we change Wij to W ′

ij , influencing
individual angles by adapting the associated weights should be
comparatively simple. In the following example, we exploit this
observation to adjust the shape of a formation ad libitum.

Example 8: We exploit the possibility of adapting the
weights Wij so as to eventually attain a desired configuration.
Although we assumed that the weights may only be 0 or 1
for most of this paper, we now turn our attention to the case
where we have nonidentical weights and discuss how solutions
to Eα = 0 are affected. Let us consider eight edges and sup-
pose that our goal was to let the positions of systems (1, 2),
(3, 4), (5, 6), and (7, 8) be pairwise close to each other but to
still have these pairs be evenly spaced on the circle. Recall-
ing (22), it becomes evident that we must scale columns 1, 4,
6, and 8 of E with weights W12 = W34 = W56 = W78 � 1
in order to achieve this goal. Let us choose these weights to
be 1/4. Solving (12) numerically for this choice of graph and
plotting the numerical solutions in Fig. 13 (with initial con-
dition again indicated by blue circles ( ) and limiting point
again marked with red circles ( )), we find that the posi-
tions of systems (1, 2), (3, 4), (5, 6), and (7, 8) indeed move
pairwise close to each other, but with the pairs being evenly
spaced, as desired. In fact, evaluating Eα = 0, we find that
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α23 = α45 = α67 = α81 = 4α12 = 4α34 = 4α56 = 4α78 . The
condition (24) remains satisfied for B being a basis for the cycle
space of the unweighted graph.

In the light of Corollary 1, the observation from the foregoing
example can be expressed in a more general fashion.

Corollary 2: Let all xi lie on the circle. Define αij as in (18).
If the undirected, weighted graph associated with the symmet-
ric function (i, j) �→ Wij possesses an Eulerian cycle (equiva-
lently, if every vertex has even and positive degree), then there
is an equilibrium x of (12) such that all Wij/αij have the same
absolute value.

Proof: The claim is proven alike Corollary 1: Let c be an
Eulerian cycle, i.e., every entry of c is either 1 or −1 and
EW−1c = 0 for E being the weighted incidence matrix and
W being the diagonal matrix that has the weights Wij , with
lexicographically ordered indices (i, j), j > i, as its diagonal
entries (since EW−1 is the unweighted incidence matrix). Now,
Proposition 1 tells us that Eα = 0 classifies all equilibria. Thus,
α = W−1c, and hence Wα = c, defines an equlibrium and thus
the claim is proven. �

Until now, we restricted our attention to M being the circle
but we initially said that any formula that applies to the circle
can be continuously transformed into a formula applicable to a
(smooth) Jordan curve. Thus, we now briefly consider the case
where M is the image of some Jordan curve γ : [0, 1] → R2 ,
similar to the efforts taken in [3]. Instead of the definition for
the angles (18), we must now introduce the scalars Sij such that
they satisfy

(Sj − Sij ) mod 1 = Si if Si − Sj ≤ 1/2 (27)

(Si + Sij ) mod 1 = Sj if Sj − Si ≤ 1/2 (28)

where the scalars Si are defined as

Si := γ|−1
[0,1)(r (xi)) (29)

and replace our previous formulations Eα = 0 and (24) by the
conditions

E

⎡

⎢⎢⎢⎣

1/S12
1/S13
1/S14

...

⎤

⎥⎥⎥⎦ = 0 and B�

⎡

⎢⎢⎢⎣

S12
S13
S14

...

⎤

⎥⎥⎥⎦ mod 1 = 0 (30)

respectively, where the entries 1/Sij and Sij (only occurring if
the corresponding weight Wij is nonzero) are lexicographically
ordered according to the indices (i, j), j > i.

VI. BALANCING ON THE SPECIAL EUCLIDEAN GROUP

In formation control, one sometimes wishes to associate an
attitude to a system in addition to its position. For instance, in
formation flight, one would not only want that the positions
of the airplanes arrange in a certain shape, but also that their
heading angles agree. This interest is reflected by recent efforts
to extend the formation control algorithms based upon rigid
frameworks to the special Euclidean group [23], [24]. In this
section, we thus enhance the technique proposed in Section III
with the capability of taking orientations into account. That is,

we consider formation control problems in the special Euclidean
group SE (m) (one would expect that m then is either 2 or
3). To this end, let the desired shape describe our formation
as a compactly and smoothly embedded submanifold M of
SE (m). Our formation control problem can then be cast as
asymptotically bringing the poses (positions and attitudes) of
our systems to an evenly spaced configuration on M in a stable
fashion. If one replaces the special Euclidean group with the
sphere, then this idea is conceptually related to the approach
taken in [25].

In order to adapt our approach from Section III to systems
living on the special Euclidean group, we must first refresh
our terminology. Let Tx SE (m)n denote the tangent space of
SE (m)n at x. Then, TxMn is the subspace of Tx SE (m)n con-
sisting of velocity vectors tangent to Mn at x and NxMn is the
orthogonal complement of TxMn in Tx SE (m)n . The normal
bundle of Mn is a the vector bundle composed of the fibers
NxMn , x ∈ Mn . Now, for some x ∈ SE (m)n , employ the no-
tation x = (R, p) with R ∈ SO (m)n and p ∈ Rmn . Similarly,
denote a vector from Tx SE (m)n by (Ω, v). A tubular neighbor-
hood of Mn is a diffeomorphic image of NMn → SE (m)n ,

((R, p) , (Ω, v)) �→ (
R exp

(
R�Ω

)
, p + v

)
(31)

where exp : so (m)n → SO (m)n denotes the exponential map.
The retraction from the tubular neighborhood onto Mn is then
given by

r :
(
R exp

(
R�Ω

)
, p + v

) �→ (R, p) . (32)

Our function φ : Mn → R is still defined by (6), with d (xi, xj )
being the length of the shortest curve (in M ) joining xi and xj .
Thus, grad φ takes elements of Mn to tangent vectors thereof.
Finally, thinking of x = (R, p) in its homogeneous represen-
tation, let x−1 denote the inverse element

(
R�,−R�p

)
. Then,

instead of (7) we consider

ẋ = x log
(
x−1 r (x)

)
+ xr (x)−1 grad φ (r (x)) (33)

where log : SE (m)n → se (m)n is the logarithmic map
and xr (x)−1 grad φ (r (x)) is just the parallel transport of
grad φ (r (x)) from Tr(x) SE (m)n to Tx SE (m)n .

Theorem 2: Let X be a superlevel set of φ on which φ is regu-
lar away from the maximizers X∗. These maximizers constitute
an asymptotically stable set of equilibria of (33) and r−1 (X) is
a subset of their region of asymptotic stability.

Proof: The proof of Theorem 1 carries through except that
x − r (x) must be replaced by log

(
x−1r (x)

)
in the second part

of the proof (cf. [26, Proof of Th. 1]). �

VII. TUTORIAL EXAMPLES: CIRCLE AND SPHERE IN THE

SPECIAL EUCLIDEAN GROUPS

The terminology we had to set up in order to work on the
special Euclidean group became quite involved. It is instructive
to see how the proposed differential equation (33) reads for a
particular choice of M . In our next example, we thus explicitly
compute the right-hand side of (33) for a formation that should
be relevant in applications.
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Fig. 14. Numerical solution of (12) and (35) for the cycle graph C8 .

Example 9: Let m = 2, i.e., consider the special Euclidean
group SE (2). A formation that should be of practical interest is
to have n agents arrange at equal distance around a target, say
the origin, and face the target, with some device mounted along
a body-fixed axis, say e1 , the first vector of the standard basis
of R2 . Letting pi and Ri denote the position (in R2) and the
orientation (in SO (2)), respectively, of the ith system, then this
goal is formalized by requiring that

pi + Rie1 = 0, (34)

shall asymptotically hold for the ith system, if possible in a sta-
ble fashion. This being said, our target manifold M is constituted
by all points in SE (2) for which (34) holds. It is now a conve-
nient fact that ‖pi‖ = 1 and Ri = Ωpie

�
2 − pie

�
1 is equivalent

to (Ri, pi) ∈ M , where e2 is the second vector of the standard
basis of R2 . This reveals that M is just the circle, embedded in
SE (2). Thus, here, we may still employ the differential equation
(12) to control the positions and the differential equations

Ṙi = Ri log
(

1
‖pi‖R�

i

(
Ωpie

�
2 − pie

�
1
))

(35)

to govern the orientations, wherein log : SO (2) → so (2) is the
logarithmic map. Similarly, we could opt to merely steer pi

toward −Rie1 and then balance the orientations only. The dis-
tinction between these two approaches is that we only have to
communicate positions in the former case while only having to
communicate orientations in the latter. We now consider n = 8
systems coupled through the unweighted cycle graph C8 . With
this choice of graph, we solved (12) and (35) numerically for
some initial condition; the numerical solutions are plotted in
Fig. 14. Therein, the initial condition is indicated by blue circles
with arrows ( ) and the limiting point is marked by red cir-
cles with arrows ( ). The arrows are obtained by multiplying
the attitudes Ri with e1 . We find that the positions approach
an evenly spaced configuration on the circle while facing the
origin, as desired.

If, on the other hand, one wishes that the orientations of our
systems shall asymptotically point outward, then it is sufficient
to multiply the argument of the logarithmic map in (35) with
−1. The resulting numerical solution is depicted in Fig. 15. If

Fig. 15. Numerical solution of (12) and (35) for the cycle graph C8 ,
where Ωpi e

�
2 − pi e

�
1 is replaced by pi e

�
1 − Ωpi e

�
2 in (35).

Fig. 16. Numerical solution of (12) and (35) for the cycle graph C8 ,
where R�

i is replaced by R�
i Ω in (35).

one, instead, inserts Ω in between R�
i and Ωpie

�
2 − pie

�
1 in

that logarithm, then one makes M the submanifold of SE (2)
composed of the points on the circle and orientations aligned
with the tangent spaces of the circle, numerical solutions of the
resulting differential equation being depicted in Fig. 16.

Now, if m was 3, i.e., our systems moved in SO (3), and
we would again ask for our systems to eventually face the
origin, now with some device mounted along the body-fixed
axis e3 (the third vector of the standard basis of R3), then we
could apply the injection (16) to − (1/ ‖pi‖) pi and replace
(1/ ‖pi‖)

(
Ωpie

�
2 − pie

�
1
)

in (35) with the obtained rotation
matrix in order to asymptotically stabilize the desired forma-
tion, where now log : SO (3) → so (3). For n = 5 systems cou-
pled through the unweighted complete graph K5 , we solved the
resulting differential equation, together with (17), numerically
for some initial condition, and plotted the numerical solution
in Fig. 17. Therein, again, the initial condition is indicated by
blue circles with arrows ( ) and the limiting point is marked
by red circles with arrows ( ). The arrows are obtained by
multiplying the attitudes Ri with e3 . We find that the positions
approach the vertices of a triangular bipyramid while facing the
origin, as desired.
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Fig. 17. Numerical solution of (17) and (35) for the complete graph
K5 , where (1/ ‖pi‖)

(
Ωpi e

�
2 − pi e

�
1

)
is replaced by the rotation matrix

obtained from applying (16) to − (1/ ‖pi‖) pi in (35).

VIII. FURTHER EXTENSIONS

Some feasible extensions of the techniques proposed above
will not be elaborated in detail herein. Yet, we briefly point out
a few options to enhance our control (7).

Backstepping: If we could not influence the velocities of our
systems directly, but could only actuate them on the accelera-
tion level, i.e., if we had to control second-order dynamics, such
as they arise in mechanical systems, then our approach is still
applicable by virtue of the backstepping technique. More pre-
cisely, the system ẋ = v, v̇ = u would asymptotically behave
as (7) if we applied the control u = −v − Jf (x) v − 2f (x),
wherein f (x) denotes the right-hand side of (7) and Jf :
Rmn → Rmn×mn is the Jacobian of f .

Nearest neighbor communication: Adaptive communication
graphs could readily be incorporated into our setting. An ex-
ample that should be of particular interest is to have the ith
system communicate only with the systems whose positions are
in a ball of certain radius, centered at xi . If each system only
communicated with its two closest neighbors, then we would
precisely arrive at the cycle graph, which turned out to be suited
for stabilization of evenly spaced configurations on the circle,
as investigated in Example 2. More general, if each system only
communicated with its k closest neighbors, with k an even pos-
itive number, we had a k-regular communication graph, leading
to an evenly spaced configuration on the circle, as well, as dis-
cussed in Example 5.

Moving submanifolds: Suppose we would not want all sys-
tems to eventually come to rest on M , but to have them collec-
tively move in the desired formation. This could be formulated
by translating our manifold M , i.e., to add the solution to some
exosystem ż = f (z) to M and hence replace M by the affine
translation M + z throughout. Moreover, f (z) would have to
be added to the differential equation governing xi , for all i, in
order to guarantee asymptotic tracking of M + z.

Moving on the submanifold: If we wanted our systems to
move on the submanifold in the desired formation, such as de-
picted in Fig. 10, then this could be incorporated into our setting

by defining a vector field f on M and then adding f (r (xi))
to the differential equation governing xi , for all i. This would
cause all systems to move along the orbits of f but to maintain
the formation determined by the maxima of φ while doing so.

Formation shapes with singularities: Triangular formations
are relevant in applications, particularly in aviation [27], and
have thus also been subject to theoretical studies [28], [29].
It would therefore be of interest to treat the case of M being
a polyhedron. In order to apply our methods, we would have
to remove the singular points of M , for instance by locally
smoothing them out, in order to recover the structure of a smooth
manifold. This can indeed be done as locally as desired, as
long as the singular points are isolated (which is the case for
polyhedra). In [30], we illustrated this possibility on the very
example of a triangle (cf., [30, Fig. 5]).

IX. CONCLUSION

We proposed a method for solving formation control prob-
lems. Our approach is based upon letting the shape of our for-
mation be defined by some smooth compact submanifold. We
then had our systems maximize a certain scalar field, defined
on the submanifold, which itself has a rich history in the ex-
act sciences (in which context the maximizers are called Fekete
points). The control we proposed consists of a decentralized and
a distributed component by construction. We demonstrated the
flexibility of our approach on different examples and provided
a graph-theoretical interpretation of the configurations that will
eventually be attained through our control. Finally, we equipped
our control with the capability of taking into account formations
that also specify the orientations of the systems and pointed out
several further extensions.
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diffusively coupled systems on compact Riemannian manifolds in the
presence of drift,” Syst. Control Lett., vol. 76, pp. 19–27, 2015.

[16] R. Olfati-Saber and R. M. Murray, “Distributed cooperative control of
multiple vehicle formations using structural potential functions,” in Proc.
15th IFAC World Congr., 2002.

[17] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinitesi-
mally rigid formations of multi-robot networks,” Int. J. Control, vol. 82,
no. 3, pp. 423–439, 2009.

[18] G. E. Bredon, Topology and Geometry. Berlin, Germany: Springer, 1993.
[19] J. M. Montenbruck, M. Bürger, and F. Allgöwer, “Compensating drift
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and formation control,” in Proc. 54th IEEE Conf. Decis. Control, 2015,
pp. 3645–3650.

Jan Maximilian Montenbruck received the
B.Sc. and M.Sc. degrees in mechanical engi-
neering from the University of Duisburg-Essen,
Duisburg, Germany, in 2011 and 2012, respec-
tively, and the doctoral degree in engineering
from the University of Stuttgart, Stuttgart, Ger-
many, in 2016.

He is currently a Postdoctoral Researcher
and Lecturer at the University of Stuttgart. His
research interests include systems and control
theory.

Daniel Zelazo received the B.Sc. and M.Eng.
degrees in electrical engineering from the Mas-
sachusetts Institute of Technology, Cambridge,
MA, USA, and the Ph.D. degree in aeronau-
tics and astronautics from the University of
Washington, Seattle, WA, USA, in 1999, 2001,
and 2009, respectively.

He is currently an Assistant Professor of
aerospace engineering at Technion—Israel In-
stitute of Technology, Haifa, Israel. From 2010
to 2012, he was a Postdoctoral Research As-

sociate and Lecturer in the Institute for Systems Theory and Automatic
Control, University of Stuttgart. His research interests include multiagent
systems, optimization, and graph theory.
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