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Edge Agreement: Graph-Theoretic Performance
Bounds and Passivity Analysis

Daniel Zelazo, Member, IEEE, and Mehran Mesbahi

Abstract—This work explores the properties of the edge variant
of the graph Laplacian in the context of the edge agreement
problem. We show that the edge Laplacian, and its corre-
sponding agreement protocol, provides a useful perspective on the
well-known node agreement, or the consensus algorithm. Specif-
ically, the dynamics induced by the edge Laplacian facilitates a
better understanding of the role of certain subgraphs, e.g., cycles
and spanning trees, in the original agreement problem. Using the
edge Laplacian, we proceed to examine graph-theoretic charac-
terizations of the � and performance for the agreement
protocol. These results are subsequently applied in the contexts
of optimal sensor placement for consensus-based applications.
Finally, the edge Laplacian is employed to provide new insights
into the nonlinear extension of linear agreement to agents with
passive dynamics.

Index Terms—Agreement protocol, consensus, networked dy-
namic systems, passivity.

I. INTRODUCTION

C OORDINATION and control of multi-agent systems has
become an increasingly active area of research in the sys-

tems and control community. Applications of such systems are
far reaching and include problems such as formation flying, co-
ordinated robotics, sensor fusion, and distributed computation
[2]–[6], [15], [20], [21], [27], [19]. An important sub-class of
these problems is known as the consensus, or agreement pro-
tocol. In consensus problems, agents in a distributed system are
able to agree on a common value of interest via a local interac-
tion protocol. There is a wealth of literature on consensus prob-
lems, and the reader is referred to the survey papers [23], [28],
and the references therein for a more detailed treatment of the
subject.

A fundamental theme of consensus problems is the conver-
gence properties of the protocol to a common value based on the
structural properties of the underlying graph. In this direction, it
is well known that the second smallest eigenvalue of the graph
Laplacian matrix, referred to as the algebraic connectivity of a
graph [10], is a judicious measure for relating the rate of conver-
gence of the protocol to the connectedness of the graph. In fact,
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the importance of the Laplacian spectra for convergence anal-
ysis has been explored in many contexts, including random net-
works [13], switching topologies [24], and noisy networks [32].

While convergence properties may arguably be the most crit-
ical feature of consensus-type problems, a more control theo-
retic approach to the analysis and synthesis of these systems is
also needed. Examples of such studies include a Nyquist-based
stability analysis for consensus-based feedback systems [9], a
graph-centric notion of controllability in consensus problems
[26], and consensus algorithms with guaranteed perfor-
mance [18]. An important theme in these approaches is the de-
velopment of a clear connection between certain properties of
the underlying connection topology and the system-theoretic
properties that these networked systems exhibit.

In this work, we focus on developing a systematic framework
for exploring connections between the properties of the network
on one hand, and notions from systems and control on the other,
in the setting of consensus problems. In this direction, we first
develop an edge variant of the graph Laplacian which we term
the edge Laplacian [33]. The edge Laplacian is a matrix rep-
resentation of the underlying network that offers a more trans-
parent understanding of how certain graph structures, such as
spanning trees and cycles, relate to the algebraic properties of
the corresponding matrix. We show that this alternative repre-
sentation relates to the graph Laplacian matrix via an appro-
priate similarity transformation. The importance of this matrix
representation has been implicitly realized in the literature [1],
[8], [22], [31]; one of our contributions in this paper is to explic-
itly highlight the insights that this matrix representation offers
in the analysis and synthesis of multi-agent networks.

The edge Laplacian is the primary construct used to con-
sider the edge agreement protocol. In consensus problems, the
exchange of information is dependent on the relative informa-
tion between neighboring agents. This relative information has
a natural interpretation in terms of the edges in the interconnec-
tion graph, and a corresponding dynamic description of the con-
sensus protocol can be written from the edge perspective. Using
the edge agreement model, we are then able to perform a system
theoretic analysis of the system’s performance using both
and norms. To provide a broader scope for this model,
we also introduce exogenous inputs in the form of process and
sensor noise. The analysis highlights the role of spanning trees
and cycles and also discusses the ramification of the analysis in
the context of -regular graphs. Subsequently, the utility of the
proposed framework is demonstrated via examples including

optimal sensor selection for consensus-type systems and
nonlinear consensus over networks consisting of passive agents.

The organization of this paper is as follows. In Section I-A, a
brief overview of our notation and a few concepts from algebraic
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graph theory are presented. These constructs are then used to
develop and introduce the edge Laplacian in Section II-A. The
edge agreement problem is then presented in Section II-C. In
Section III, an and performance analysis of the agree-
ment protocol is presented. Applications of the edge Laplacian
for passive networks is then given in Section IV, followed by
our concluding remarks in Section V.

A. Preliminaries and Notation

The matrix-theoretic notation used in the paper is as follows:
for a matrix , and denote, respectively, its range
space and null space. Diagonal matrices will be written as

, with denoting the -th entry on the diag-
onal. A matrix and/or a vector that consists of all zero entries
will be denoted by ; whereas, “0” will simply denotes the scalar
zero. Similarly, the vector denote the vector of all ones, and

The notation signifies that the func-
tion is bounded from above by some constant multiple of

for large enough values of . The set of real numbers will
be denoted as , and denotes the -norm of its argument
(e.g., , ), which will be used for vectors, matrices, and
system norms. For the set , denotes its cardinality.

Graphs and the matrices associated with them will be exten-
sively used in this work. The reader is referred to [11] for a de-
tailed treatment of the subject and we present here only a min-
imal summary of relevant constructs and results.

An undirected (simple) graph is specified by a vertex set
and an edge set whose elements characterize the incidence

relation between distinct pairs of . The notation is used
to denote that node is connected to node , or equivalently,

. We make use of the incidence ma-
trix, , for a graph with an arbitrary orientation, i.e., a graph
whose edges have a head (terminal node) and a tail (an initial
node). The columns of are then indexed by the edge set,
and the -th row entry takes the value “1” if it is the initial node
of the corresponding edge, “ ” if it is the terminal node, and
zero otherwise. From the definition of the incidence matrix it
follows that the null space of its transpose, , contains
the agreement subspace, . More generally,
for the matrix will be used to denote the subspace generated
by linear combinations of its columns. The rank of the incidence
matrix depends only on and the number of its connected
components [11]. The diagonal matrix of the graph con-
tains the degree of each vertex on its diagonal. The adjacency
matrix, , is the symmetric matrix with zero on
the diagonal and one in the -th position if node is adjacent
to node . The (graph) Laplacian of

(1.1)

is a rank deficient positive semi-definite matrix. The eigenvalues
are real and will be ordered and denoted as

.
A connected graph can be written as the union of two edge-

disjoint subgraphs on the same vertex set as , where
is a spanning tree subgraph and contains the remaining

edges that necessarily complete the cycles in . Similarly, the

Fig. 1. Example of regular graphs. (a)� graph (b)� graph (c) A 4-regular
graph.

columns of the incidence matrix for the graph can always be
permuted such that can be written as

(1.2)

The cycle edges can be constructed from linear combinations
of the tree edges via a linear transformation [29], [30], as

(1.3)

where

(1.4)

Using (1.3) we obtain the following alternative representation
of the incidence matrix of the graph:

(1.5)

the rows of the matrix

(1.6)

are viewed as the basis for the cut space of [11]. The matrix
, on the other hand, forms a basis for the flow space.

The matrix (1.6), which will play an important role
in the present work, has a close connection with a number of
structural properties of the underlying network. For example,
the number of spanning trees in a graph, , can be deter-
mined from the cut space basis [11], as

(1.7)

In order to apply the framework developed in this paper to
specific graphs, we will work with the complete graph and its
generalization in terms of -regular graphs, which are defined
as follows. The complete graph on nodes, , is the graph
where all possible pairs of vertices are adjacent, or equivalently,
if the degree of all vertices is . Fig. 1(a) depicts , the
complete graph on 10 nodes. When every node in a graph with

nodes has the same degree , it is called a -regular
graph. The -regular graph on nodes for is called the
cycle graph, . Fig. 1(b) and (c) show, respectively, the cycle
graph and a 4-regular graph. The line graph of , denoted
as , is the graph where the edges of correspond to the
nodes of , and two edges in are adjacent if they share
a node in .

The edges in a graph can be given orientations, which not
only facilitate defining the incidence matrix of a graph, but also
notions of the cut and the flow spaces of a graph. We define two
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edges to be positively (negatively) adjacent if they
share a node and point in opposite (same) directions relative to
this shared node. We denote the positive and negative adjacency
of edges as and , respectively. By conven-
tion, an edge is not considered adjacent to itself.

II. THE EDGE PERSPECTIVE

In this section, we define a matrix representation of graphs
that will be used to highlight the contribution of the edges on
the evolution of the consensus protocol. This is then followed
by an edge variant of the agreement protocol that we refer to as
the edge agreement protocol.

A. Edge Laplacian

We first introduce the edge Laplacian and present some graph
theoretic and algebraic interpretations of its structure. In this
venue, we will draw parallels between the graph and edge Lapla-
cians whenever possible. The edge Laplacian is defined as [33]

(2.8)

The structure of the edge Laplacian is closely related to the ad-
jacency matrix of the undirected line graph of , , as

(2.9)

where for a matrix denotes its entry-wise absolute value.
We note that the non-zero eigenvalues of are identical
to those of [14], and each independent cycle in corre-
sponds to an eigenvalue at zero in . The notion of an inde-
pendent cycle can be related algebraically to the number of in-
dependent columns in . Furthermore, the null space of the
edge Laplacian depends on the number of cycles in the graph.
Let us elaborate on this last statement via a few definitions and
observations.

Definition 2.1: Given an incidence matrix for a directed
graph, a signed path vector is a vector corresponding
to a path such that the th element of takes the value “ ” if
edge is traversed positively, “ ” if traversed negatively, and
“0” if the edge is not used in the path.

Lemma 2.2: Given a path with distinct initial and terminal
nodes described by a signed path vector in a graph , the
vector is defined as and the th element of

takes the value “ ” if node is the initial node of the path,
“ ” if it is the terminal node of the path, and “0” otherwise.

Proof: The proof follows directly from the structure of the
incidence matrix and Definition 2.1.

Theorem 2.3 [11]: Given a connected graph with arbitrary
orientation assigned, the null space of is spanned by all
the linearly independent signed path vectors corresponding to
the cycles in .

Proof: For any node used in a cycle, the path must enter and
exit that node an equal number of times. It then follows from the
structure of the incidence matrix that when is the
signed path vector for a cycle.

Theorem 2.3 is an example of the intricate relationship be-
tween the graphical and algebraic properties of a graph.

Theorem 2.4: Let and denote, respectively, the
edge Laplacian and the incidence matrix of the graph . Then

(2.10)

Proof: Let ; then
and it follows that . On the other hand when

, and
. Thus .

We can alternatively define the edge Laplacian in an analo-
gous way to the identity (1.1). In this venue, let us define the
edge adjacency matrix as

otherwise.

The edge degree matrix, , is a diagonal matrix with the
number of nodes connected to each edge. As we do not allow
self-loops, we have that . Thus, the edge Laplacian
can be equivalently defined as

(2.11)

This alternative definition can be used to further deepen the
connection between the edge Laplacian of and its line graph

. We note that the element of corresponds to
the degree of each node in the line graph of .

B. Similarity Between the Graph and Edge Laplacians

The connection between the edge and graph Laplacians can
be made explicit through the introduction of an appropriate sim-
ilarity transformation. Furthermore, we find similarity transfor-
mations that relate the Laplacians for connected graphs with cy-
cles to graphs on spanning trees. The following theorems as-
sume is a spanning tree subgraph of , and is
defined via (1.5).

Theorem 2.5: The graph Laplacian for a connected graph
containing cycles is similar to

Proof: We define the transformation

Applying the transformation leads to the
desired result.

Theorem 2.5 provides a transparent way to separate the zero
eigenvalue of the Laplacian for a connected graph while pre-
serving algebraic properties of the graph via the edge Laplacian.

Theorem 2.6: The edge Laplacian for a graph with cycles,
is similar to the matrix
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Fig. 2. Transformations between the node and edge Laplacians.

where the block-matrix of zeros is square with dimension equal
to the number of independent cycles in the graph.

Proof: Define the transformation matrix

where is the matrix representation of the orthonormal
basis for the null space of . As shown by Theorem 2.3,
the columns of span the cycle space of the underlying
graph. Applying the transformation leads
to the desired result.

Theorem 2.6 shows that the eigenvalues of
correspond to the non-zero eigen-

values of . We also note that the block matrix of zeros
is square of size equal to the dimension of the kernel of

. The above results can now be combined to characterize
a similarity transformation between the graph and edge
Laplacians.

Theorem 2.7: The edge Laplacian for a graph, , is sim-
ilar to the bordered graph Laplacian

where the block-matrix of zeros is square with dimension equal
to the number of independent cycles in the graph minus one.

Proof: We define the transformation

(2.12)

where

and is the identity matrix of the size of dimension of
minus one.

Theorem 2.7 highlights an important transformation between
the graph and edge Laplacians. In both representations, the al-
gebraic structure of the graph is retained while emphasizing the
role of spanning trees. Note that when (no cycles), then

and we see a direct connection between the graph and
edge Laplacians. Furthermore, for a connected graph , the
edge Laplacian is guaranteed to be invertible as all its eigen-
values are strictly positive. Fig. 2 shows a graphical representa-
tion of the relationship between the edge and graph Laplacians.

C. Edge Agreement

In this section we derive an edge variant of the agreement or
the consensus protocol using the edge Laplacian introduced in
Section II-A. One of the goals of this section is to develop an
input-output description of the consensus protocol in order to

derive the and performance of the system which we
will delve into in Section III.

The consensus model is built upon a general setup consisting
of a group of identical single integrator units each connected
to a fixed number of other units in the ensemble [23]. We gen-
eralize the setup by introducing a zero-mean Gaussian process
noise, , with , to each agent as

(2.13)

Labeling these units as 1 through , the interconnection be-
tween the dynamic units can be represented by a graph
with and denoting the set of pairwise inter-
unit couplings. The interaction or coupling between units’ dy-
namics is realized through the control input in (2.13), as-
sumed to be the sum of the differences between states of an agent
and its neighbors. This can be viewed as a decentralized output
feedback control, which in our setup is also corrupted by an un-
correlated zero-mean Gaussian measurement noise, , with

, as

(2.14)

Expressing the dynamic evolution of the resulting system in a
compact matrix form with , one has
for the noise-free case

(2.15)

where denotes the collection of node states.
Recall that the agreement set is the subspace

. Let us also define as the projection of states
onto the subspace orthogonal to the agreement subspace. This
subspace will be denoted by ; in [24] it is referred to as the
disagreement subspace. It then follows that ,
where .

Proposition 2.8 ([24]): The Laplacian dynamics (2.15) con-
verges to the agreement subspace from an arbitrary initial con-
dition if and only if the underlying graph is connected.

Equation (2.13) along with the relative measurements can be
considered as the open-loop consensus model. We denote this
open-loop system as

(2.16)

When the output-feedback control is ap-
plied, the system leads to a generalized consensus protocol with
noise. The noisy consensus model will be referred to as the
model specified by

(2.17)

In (2.17), the variable is introduced as a monitored perfor-
mance signal. The open-loop system is shown in Fig. 3 with the
consensus output-feedback law.

This set-up has a natural “edge interpretation” that we now
examine. In this direction, we introduce the coordinate transfor-
mation , where is defined in (2.12). Applying
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Fig. 3. Open-loop consensus system with output feedback.

this transformation to the consensus system with noise (2.17)
yields

The benefit of such a transformation is in view of the
preservation of the algebraic structure of the underlying
connection topology through the edge Laplacian. Further-
more, we note that the new state can be partitioned as

, where represents the relative
state information across the edges of a spanning tree of , and

is the mode in the subspace; the mode can be
interpreted as the “inertial state” for the entire formation. In
fact, we note that this transformation separates the system into
its controllable and observable parts; that is, the mode is
an unobservable mode of the system.

We can now consider a minimal realization of the system con-
taining only the states for analysis. We refer to this as the

system specified by

(2.18)

The signals and are the normalized process and mea-
surement noise signals. The performance variable, , con-
tains information on the tree states in addition to the cycle states.
Here we recall that the cycle states are linear combination of the
tree states and we note that actually contains redundant in-
formation. This is highlighted by recognizing that the tree states
converging to the origin forces the cycle states to do the same.
Consequently, we will consider the system with cycles as well
as a system containing only the tree states at the output, which
we denote as

(2.19)

This distinction will subsequently be employed to quantify the
effect of cycles on the system performance. In the noise-free
case, (2.18) reduces to the edge variant of the autonomous
system,

(2.20)

both systems (2.18) and (2.20) are referred to as the edge agree-
ment protocol.

The first simple, yet important observation, relates to the
meaning of agreement in the context of the edge states, leading
to an edge interpretation of Proposition 2.8.

Proposition 2.9: The edge agreement problem (2.20) con-
verges to the origin for arbitrary graphs.

Proof: If the graph is connected, then we note that the
agreement state is equivalent to having , as

for . In the edge setting, the agreement set
, maps to the origin. The projection of the edge states onto

this set, denoted as , is consequently the norm of the edge
states; it also satisfies
with respect to the distance to the agreement subspace. For a
disconnected graph with connected components, we can
conclude using the results of Section II-B that each component
of the edge agreement system will converge to the origin.

From Proposition 2.8, the node dynamics over a connected
graph converges to the agreement subspace, which implies that
the corresponding edge dynamics converges to the origin. An
important consequence of this result is the edge agreement will
not always correspond to the node agreement; having all the rel-
ative states converge to the origin will not guarantee that each
node state has the same value. This merely emphasizes the need
to work with connected graphs. Analogous to the node agree-
ment, in the edge agreement setting, the evolution of an edge
state depends on its current state and the states of its adjacent
edges, i.e., those that share a node with it.

Much of the literature related to consensus problems focuses
on the convergence rate of the system; a property dictated by the
second smallest eigenvalue of the graph Laplacian. The input-
output description of the consensus problem developed in this
section allows for a more general notion of performance for
these systems. We explore such ramifications next.

III. GRAPH-THEORETIC PERFORMANCE BOUNDS

In this section, we delve into the characterization of system
performances for the agreement protocol, measured in terms of
the and system norms, using the framework developed
in Section II. In this section, we will assume that the underlying
interconnection graph is connected; moreover, we will omit the
dependency of the matrix on when it is implicit and unam-
biguous. Furthermore, we introduce the shorthand notations
and in place of and .

A. Performance

We first recall that the performance of the system
characterizes how a (Gaussian) exogenous noise propagates
throughout the system and effects the energy of the monitored
output. In the context of the agreement protocol, therefore, the

system norm can be employed to reason about how noise
on the edges of the network result in the asymptotic deviation
of each node’s state from the consensus state. However, the
limiting factor for an analysis of the standard consensus
model whose system matrix is the graph Laplacian, is that for
any connected graph, the system has an unbounded norm
due to the presence of the zero eigenvalue. In this section, we
proceed to perform this analysis using the edge agreement
protocol.
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The norm of and can be calculated as [7]

(3.21)

where is the positive-definite solution to the Lyapunov
equation

(3.22)

The structure of (3.22) suggests that the solution will be depen-
dent on certain properties of the graph. In fact, the solution can
be found by inspection as

(3.23)

and we arrive at the following result.
Theorem 3.1: The norm of the (2.18) system is

(3.24)

On the other hand, the norm of the system (2.19) is

(3.25)

Proof: The proof follows from (3.23) and noting that
, or twice the number of edges in a

spanning tree.
We observe that is a linear function of the number of

edges in the graph. This has a clear practical relevance, as it indi-
cates that the addition of each edge corresponds to an amplifica-
tion of the noise in the consensus-type network. Let us consider
the implications of the graph-theoretic characterization of the

norm for two classes of graphs.
1) Spanning Trees: The first case resulting in a simplification

of (3.24) arises when is a spanning tree. In this case
and (3.25) simplifies to

(3.26)

A direct consequence of this result is that all spanning trees
result in the same system performance. That is, the choice
of spanning tree (e.g., a path or a star) does not affect this per-
formance metric. This is in contrast to results related to the rate
of convergence which would favor a tree with a larger .
As expected, in this scenario .

2) -Regular Graphs: Regular graphs also lead to a simplifi-
cation of (3.25). In general, any connected -regular graph will
contain cycles resulting in a non-trivial expression for the ma-
trix product . The norm is therefore intimately related
to the cut space of the graph.

Denote the eigenvalues of by and note that

where is the number of spanning trees in . The quantity
is recognized as a first minor of the matrix .

Fig. 4. �������������� � � for random 5-regular graphs.

Corollary 3.2: The cycle graph has spanning trees and
hence

(3.27)

Thereby, the norm of the system when the underlying
graph is the cycle graph is given as

(3.28)

Proof: Without loss of generality, we consider a di-
rected path graph on nodes, with initial node and
terminal node as the spanning tree subgraph . Index
the edges as . The cycle graph is formed
by adding the edge . For this graph, we have

and . It follows that
and all its first minors have value

. Combined with (3.24) yields the desired result.
Corollary 3.3: The complete graph has spanning

trees, and therefore

(3.29)

Thereby, the norm of the system when the underlying
graph is the complete graph is given as

(3.30)

Proof: Without loss of generality, we consider a star graph
with center at node and all edges are of the form

. Then the cycles in the graph are created by adding
the edges , and .
It then follows that:

and all the first minors have value . Combined with (3.24)
yields the desired result.

Fig. 4 depicts the sorted values of for 500
randomly generated regular graphs of degree five. As this figure
shows, although the degree of each node remains constant, the
actual cycle structure of each graph instance varies, effecting the
resulting norm of the corresponding consensus-type input-
output system.
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Using the above analysis, we now proceed to characterize
how the cycle structure of the graph effects the performance
for the corresponding consensus-type system. In fact, examining
the ratio

provides an indication of how the cycles increase the norm;
recall that is in general a graph containing cycles and
is the spanning tree subgraph.

For example, consider the cycle graph and assume unit
covariance for both the process and measurement noises. Then,
as the number of nodes increase, the ratio of the two norms
behaves as

(3.31)

indicating that for large cycles, the performance is a constant
multiple of the performance for the path graph .

In the meantime, for the complete graph we have

(3.32)

in this case, we see that the norm is amplified linearly as a func-
tion of the number of vertices in the graph. It is worth men-
tioning here that typical performance measures for consensus
problems, such as , would favor the complete graph over
the cycle graph. However, in terms of the performance, we
see that there is a penalty to be paid for faster convergence of-
fered by the complete graph due to its cycle structure.

Alternatively, insight is also gained by considering the ratio

which highlights the effects of including cycles in the perfor-
mance variable .

For the cycle graph we have

(3.33)

suggesting that the effect of including the cycle for performance
does not vary significantly with the size of the graph.

For the complete graph, on the other hand, one has

(3.34)

suggesting that the inclusion of cycles results in perfor-
mance that increases linearly as a function of vertices in the
graph.

B. Sensor Placement With Performance

Encouraged by the graph-theoretic characterization of the
performance for consensus-type systems, in this section, we
proceed to consider the problem of sensor selection and place-
ment for consensus-type systems. Consider, for example, a sce-
nario where there are two types of sensors available for the rel-
ative measurements in the open-loop consensus problem. One
sensor is high-fidelity and high cost, with associated noise co-
variance of . The other sensor is a less expensive lower fidelity

sensor with covariance of . When synthesizing the
topology for the consensus problem, the designer must consider
the tradeoff between the sensor costs and the overall system
performance.

In this direction, consider the system in (2.18) in the form

(3.35)
where and are the normalized noise signals, and the
matrix is a diagonal matrix with elements corresponding
to the variance of the sensor on edge . We note that the most
general version of this problem considers a finite set of sensors
each with an associated variance

(3.36)

where for each element there is an associated cost
. The cost function has the property that

if . Using (3.21)–(3.22), in order to find the optimal
placement of these sensors, one can consider the mixed-integer
program [17]

where represents a weighting on the performance of the
solution, and represents the maximum aggregated noise co-
variance. Note that in general .

The problem is combinatorial in nature, as a discrete de-
cision must be made on the placement and type of sensor in the
network. Although can certainly be solved by using mixed-
integer programming solvers [17], certain relaxations can be
made to convexify the resulting problem. Most notably, one ap-
proach involves relaxing the discrete nature of the set (3.36)
into a box-type constraint as

(3.37)

The cost function can now be written as a continuous map
which is convex and a strictly decreasing function. The

simplest version of such a function would be the linear map,
, for some . This relaxation leads to the

following modified program

As an example of the applicability of , we considered the
sensor selection for the graph in Fig. 5. A random graph on 10
nodes with an edge probability of 0.15 was generated. The re-
sulting graph is connected and contains two independent cycles,
resulting in a more general problem instance. The sensor con-
straints were and . Finally, the
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Fig. 5. Graph on 10 nodes with optimal sensor selection; � denotes the sensor
variance.

cost function weights were chosen as and . Solving
then resulted in a non-trivial selection of sensors for each

edge. The sensor covariance for each edge is labeled in Fig. 5;
we observe that the highest fidelity sensors tend to be concen-
trated around the node of highest degree. Also, the edge with
the lowest fidelity sensor is placed in “low traffic” areas.

C. Performance

We first recall that the norm for a dynamic system
captures how a measurable signal with finite energy, i.e., a
signal in , is amplified at the monitored output of the system.
Moreover, this norm has implications for robustness, distur-
bance rejection, and uncertainty management for dynamic
systems. Specifically, the norm of a linear system with
transfer-function representation can be characterized as

(3.38)

where denotes the largest singular value of the matrix . In
the context of the agreement protocol, therefore, the system
norm can be used to capture how disturbances and finite en-
ergy exogenous signals, including reference signals, result in the
asymptotic deviation of each node state from consensus. In this
section, in view of (2.18), we proceed to examine the -norm
for the agreement protocol using an edge perspective.

To begin this analysis, we first write the transfer-function rep-
resentation of (2.18) as

(3.39)

The transfer-function representation for is similarly de-
fined from its state-space representation. Before we begin our
analysis of the transfer-function matrix (3.39), let us provide
a useful result on the ordering properties of the eigenvalues of
congruent Hermitian matrices.

Theorem 3.4 ([14]): Let be a Hermitian matrix and a
nonsingular square matrix. Let the eigenvalues of and be
arranged in an increasing order. Then, for each ,
there exists a positive real number such that

and

(3.40)

Recall now that the state matrix in (2.18) arises
from a similarity transformation with the graph Laplacian, as
shown in (2.12). This allows us to infer that the eigenvalues

of are all positive and real, and the state matrix
is diagonalizable. Therefore, we can diagonalize the system
using a modal decomposition with transformation matrix to
obtain

(3.41)

where .
Consider first a variation of (3.41) where the output equation

is simplified to . The modified system has a transfer
matrix representation

(3.42)

where for notational simplicity we have defined
, noting that .

Proposition 3.5: For the system matrix in (3.42), one
has

(3.43)

Proof: From (3.38), we must find the singular values
of . This is facilitated by examining the eigenvalues
of . Defining and

we have
.

We note that the last identity describes as a
congruence transformation of the matrix , which is in the form
required to use Theorem 3.4. The matrix has the
form

(3.44)

Denote the eigenvalues of as
to highlight their dependency

on the frequency . It is now verified that for any fixed
frequency , we have .
Furthermore, for any , we have for

. We thereby invoke Theorem 3.4 to con-
clude that for for all .
At , and hence the singular values
of are a strictly decreasing function of . Therefore,
the maximum singular value must occur at which
corresponds to , concluding the proof.

It remains to show that introducing the output equation
does not change the frequency at which the

supremum in (3.38) occurs.
Proposition 3.6: The -norm for the system (3.41) corre-

sponds to the maximum singular value of its transfer matrix at
.

Proof: It suffices to show that
, where is defined in (3.42). The system

has a singular value decomposition ,
with and . Consider a pure
sinusoidal input expressed in terms of the basis vectors
in as
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where is the -th column of . We can express the output of
to the sinusoidal input as

Similarly, the matrix has a singular value decomposition
, with and . As is

connected in series with , we can express the output of the
overall system as

(3.45)

where we have expressed each signal as a linear combination of
the appropriate basis vectors, and is the -th singular value of

.
For , the norm of is equiv-

alently characterized by finding the frequency that maximizes
. Using (3.45), we express the output norm at a given

frequency as

where we used the property that for .
As we are restricting the input to be on the unit ball, we

have that . From Proposition 3.5 we have that
for all . Therefore, it is straightforward

to verify that the coefficients are maximized at
.

Using the above observations, we now state a general result
on the -norm of the edge agreement system.

Theorem 3.7: The norms for (2.18) and (2.19),
are, respectively

(3.46)

and

(3.47)

Proof: From Propositions 3.5 and 3.6, we can evaluate
(3.39) at and calculate the singular values of the cor-
responding matrix as

In general, is not square, so we determine the singular
values by finding the eigenvalues of . In this di-
rection, we observe that

(3.48)

We note that the second term in (3.48) is a projection matrix.
Moreover, the matrix has exactly eigen-
values at one, and the remaining eigenvalues at zero (with mul-
tiplicity equal to the number of independent cycles). As has
full row rank, and and are invertible matrices, we have
that both terms in (3.48) have the same null space. Therefore,
the eigenvalues of can be determined from
the first term in (3.48) which yields the desired result. For the

system, an analogous proof can used by replacing the obser-
vation matrix with identity.

As in Section III-A, we provide examples on how for certain
classes of graphs the expression (3.46) can be simplified and
interpreted.

1) Spanning Trees: When the underlying graph is a spanning
tree, we have that , and (3.47) reduces to

(3.49)

In the context of , we see that the choice of spanning tree is
important, as opposed to the corresponding scenario for the
norm. In [25] and [12] it was shown that the path graph has the
smallest largest eigenvalue of the graph Laplacian, and the star
graph has the greatest largest eigenvalue. As is deter-
mined by the inverse of the edge Laplacian, we conclude that the
star graph corresponds to the tree topology with minimum
norm, and the path graph with largest norm. As in the -norm
case, we have .

2) -Regular Graphs: As shown in Section III-A, regular
graphs admit certain algebraic simplifications that prove useful
for system norm calculations for the corresponding agreement
protocol. To maintain a parallel analysis with the problem,
we examine the cycle graph and complete graph as special cases
here. First, we note that the only spanning tree subgraph for the
cycle graph, , is the path graph, . We therefore state some
results on the path graph.

Proposition 3.8: The edge Laplacian for the path graph
is the tridiagonal matrix

. . .
. . .

. . . (3.50)

Proof: The structure of (3.50) follows from the edge ad-
jacency definition of the edge Laplacian (2.11). This structure
also assumes an ordering of nodes and edges such that node is
always connected to node by edge .

Proposition 3.9: The inverse of the edge Laplacian for the
path graph is determined by observing that

(3.51)

Proposition 3.10: For the cycle graph with

(3.52)
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Proof: For the cycle graph, it was shown in Sec-
tion III-A that . It then follows
that .

Proposition 3.11: The matrix

is similar to

(3.53)

Proof: Defining the transformation matrix

yields the desired result.
We note that the eigenvalues of the matrix (3.53) is

for , i.e., these eigenvalues are
the inverse of the non-zero eigenvalues of the graph Laplacian
for the cycle graph.

Corollary 3.12: The -norm of the system (2.18) when
the underlying graph is the cycle graph is given as

(3.54)

where denotes the second smallest eigenvalue of the
cycle graph Laplacian.

Proof: The proof follows from Theorem 3.7 and Proposi-
tion 3.11.

Proposition 3.13: The edge Laplacian for the star graph
is specified as

(3.55)

Proof: The structure of (3.55) follows from the edge ad-
jacency definition of the edge Laplacian (2.11) by noting that
every edge is adjacent to each other in the star graph. This struc-
ture also assumes each edge is positively adjacent to each other
edge.

Proposition 3.14: The inverse of the edge Laplacian for the
path graph is

(3.56)

Corollary 3.15: The norm of the system when the
underlying graph is the complete graph is given as

(3.57)

The norm of the system when the underlying graph is
the complete graph is given as

(3.58)

Proof: The proof follows from propositions 3.13, 3.14, and
the fact that for the complete graph.

We conclude this section by noting that for the system
(2.19), one has .

Fig. 6. Viewing edge agreement over a spanning tree as a strictly output passive
system.

IV. EDGE LAPLACIAN AND NONLINEAR AGREEMENT

In this section, we consider the application of the edge Lapla-
cian Section II-A for non-linear variations on the basic agree-
ment protocol. This includes viewing the protocol in the context
of Lyapunov theory as opposed to the machinery of LaSalle’s
invariance principle [16]. We then proceed to examine the non-
linear extensions of the agreement problem via the passivity
framework [1]. Our contribution in this section is to streamline
the analysis of the nonlinear consensus-type problems using the
edge Laplacian.

To begin our analysis, consider the noise-free version of the
edge agreement problem (2.18). Of course, an underlying as-
sumption of this edge variant of the consensus problem is the
linearity of the interaction rule. A natural generalization of this
model is to introduce non-linear passive elements in the general
setup. As we move from a linear to non-linear model, we ex-
plore how passivity theory, in conjunction with the edge Lapla-
cian, can be used to analyze this extension. First, we recall that
passivity pertains to nonlinear system of the form

(4.59)

where is locally Lipschitz and ; then (4.59) is
passive if there exists a continuously differentiable positive
semidefinite function , referred to as the storage function,
such that

(4.60)

for all . If in (4.60) can be replaced by for some
positive definite function , then we call the system strictly pas-
sive; in our case, since the output of the system is its state, (4.59)
could also be referred to as output strictly passive.

Theorem 4.1 ([16]): Suppose that (4.59) is output strictly
passive with a radially unbounded storage function. Then the
origin is globally asymptotically stable.

To demonstrate the utility of this passivity theorem in the
context of agreement protocol, consider the interconnection of
Fig. 6(a), with an integrator in the forward path and the edge
Laplacian of a spanning tree, in the feedback path, depicting the
edge agreement (2.18). Note that in this case denotes the
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Fig. 7. The feedback configuration for theorem 4.3.

vector of edge states . Then, with respect to the quadratic
storage function , one has

implying that the system is strictly (output) passive with a
storage function that is radially unbounded. This observation,
in turn, makes the convergence analysis for the edge agreement
over a spanning tree fall in the range of applicability of The-
orem 4.1. Hence, as and convergence to the
agreement subspace of the “node” states follows, providing an
alternative proof for Proposition 2.9.

The connection between the agreement protocol and The-
orem 4.1 can be used to extend the basic setup of the agreement
protocol in various directions, one of which is the following.

Corollary 4.2: Suppose that for a network of inter-
connected agents the edge states evolve according to

where for
which for all when is
connected. Then the corresponding node states converge to the
agreement subspace.

The above corollary suggests that many passivity-type results
from nonlinear systems theory can now be applied to the agree-
ment protocol in its edge context.

Corollary 4.3: Consider the feedback connection
shown in Fig. 7, where the time-invariant passive system

has a storage function
and the time invariant memory-less function is such

that for some positive definite
function . Then the origin of the closed loop system (with

) is asymptotically stable.
To illustrate the ramification of Corollary 4.3, suppose that

following the integrator block in Fig. 6, there exists a nonlinear
operator such that for some positive-definite functional ,
one has . Then

(4.61)

implying that the forward path of the feedback configuration
shown in Fig. 8(a) is passive with a storage function and
the function in Corollary 4.3 can be chosen as .
Hence, the asymptotic stability of the origin with respect to the
edge states can be implied by invoking Corollary 4.3.
The more general case of this result for a connected network
is also immediate in light of the identity (1.5) implying that

, where is a spanning tree of
the graph . This relationship suggests the loop transformation
depicted in Fig. 8, keeping in mind that passivity of the forward
path does not change under post- and pre-multiplication by ma-
trices and , and the linearity of the integrator operator al-
lows an operator reordering; Corollary 4.3 can now be invoked
under this more general setting.

Fig. 8. Loop transformation between feedback connection with edge Laplacian
over arbitrary connected graphs shown in (a) to one over spanning trees, shown
in (b).

An example that demonstrates the utility of the above obser-
vation for multi-agent systems pertains to the Kuramoto model
of -coupled oscillators interacting over the network as

(4.62)

In (4.62) the constant denotes the coupling strength between
the oscillators, which for the purpose of this section is assumed
to be positive. The nonlinear interaction rule (4.62) can com-
pactly be represented as

where and

After multiplying on both sides of the above equation,
we obtain

(4.63)

which monitors the relative phases between the oscillators with
for all . In order to mold the stability anal-

ysis of the Kuramoto model (4.63) in the context of passivity
theory, we write

(4.64)

where is the edge Laplacian of a spanning tree of
, and hence a positive definite matrix, or when viewed as

a dynamic system, a strictly passive element. Now we let
be a candidate storage function

for the Kuramoto model (4.64). In this case, for
all nonzero (mod ), , and ,
in reference to the identity (4.61) and Fig. 8(b). Using the
passivity machinery, combined with the edge Laplacian for-
malism, we thus conclude that for the Kuramoto model over
a connected graph, the synchronization state is asymptotically
stable.1 Finally, we note that the transformation used to arrive
at (4.63) is not invertible. While an invertible transformation
may be used, as in Section II-C, the transformation employed
here facilitates the use of the presented passivity approach.

1By synchronization we refer to the case when � � � � � � � � � �����.
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V. CONCLUSION

In this paper, we defined and explored the interpretation of an
edge variant of the graph Laplacian in the context of the edge
agreement problem and a number of its extensions. The results
presented in this work not only point to close connections be-
tween the well-studied node agreement problem and its edge
version, but argues that the edge formulation of the agreement
problem, lead to insights in the , and the nonlinear agree-
ment problems. We also showed how the edge Laplacian high-
lights the role of other features of the network, complementary
to its spectral properties, in the performance of the agreement
protocol and its extensions.
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