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A B S T R A C T

This work considers the economic dispatch problem for a single micro gas turbine, governed by a discrete state–
space model, under combined heat and power (CHP) operation and coupled with a utility. If the exact power
and heat demands are given, existing algorithms can be used to give a quick optimal solution to the economic
dispatch problem. However, in practice, the power and heat demands cannot be known deterministically,
but are rather predicted, resulting in an estimate and a bound on the estimation error. We consider the
case in which the power and heat demands are unknown, and present a robust optimization-based approach
for scheduling the turbine’s heat and power generation, in which the demand is assumed to be inside an
uncertainty set. We consider two different choices of the uncertainty set relying on the 𝓁∞- and the 𝓁1-norms,
each with different advantages, and consider the associated robust economic dispatch problems. We recast
these as robust shortest-path problems on appropriately defined graphs. For the first choice, we provide an
exact linear-time algorithm for the solution of the robust shortest-path problem, and for the second, we provide
an exact quadratic-time algorithm and an approximate linear-time algorithm. The efficiency and usefulness of
the algorithms are demonstrated using a detailed case study that employs real data on energy demand profiles
and electricity tariffs.
1. Introduction

In recent years, combined cycle systems, in which local consumers
provide electricity, hot water and heat for themselves, have become
popular [1]. The attractiveness of such combined heating and power
(CHP) units was shown in recent studies [2,3], and the economically
favorable conditions toward integrating micro gas turbines (MGT) pow-
ered CHP units into the smart-grid was examined in [4,5]. However,
these works consider a generic MGT model and do not include re-
alistic demand profiles nor the variable pricing of electricity. More
recently, [6] presented a solution to the CHP economic dispatch (ED)
problem for a single MGT coupled to the utility with a realistic MGT
performance model and known demand, i.e., an economically-optimal
schedule of the MGT was computed for a consumer generating its own
power and heat. In this paper, we propose a solution to a similar
economic dispatch problem for the case of unknown demand by using
the framework of robust optimization.
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beni@cukurel.org (B. Cukurel).

1.1. Micro gas turbines

Micro gas- turbines (MGT) offer many advantages for small-scale
CHP production, such as low greenhouse gas emissions, theoretical high
thermal efficiency and reduced noise. They are also capable of short
start-up times and rapid transitions between partial and full-load, due
to their low mechanical and thermal inertia. For these reasons, [4,5]
examined the economically favorable conditions of integrating MGTs
into the smart-grid. However, theoretical analysis of MGTs, especially
in an economic framework, can be hard due to physical limitations.
These include, but are not limited to:

(i) Many MGTs can only shutdown from or startup to certain opera-
tion levels [7,8].

(ii) When some MGTs are turned off, they must be cooled down
before they can be turned on again. For example, the Capstone
C65 MGT must cool down for up to 10 min before coming online
again [7].

(iii) Even when the turbines are active, not any generation level
between the maximum and minimum capacity is allowed. This
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is due to structural and rotordynamic resonances rendering the
engines unstable or unsafe for certain rotation speeds [6,9–11].

(iv) From an aerodynamic perspective, compressor blade fluttering
introduces additional permeating operational boundaries, which
may interrupt the continuity of engine’s operating line [12,13].

(v) Gas turbine emissions such as carbon monoxide (CO), unburned
hydrocarbons (UHC) and nitric oxides (NOx) cause an increasing
concern. Percentage of CO, HC, NOx is directly correlated to
the combustor temperature, equivalent ratio and pressure [14],
which are highly variant throughout engine’s operating region.
Towards reducing the amount of emissions, authorities impose
strict regulations on gas turbine operators, which create zones
in the operating line which are undesirable. Furthermore, the
majority of modern engines with reduced emissions are operating
with lean combustion, which is more prone to exhibit thermoa-
coustic instability (interaction between an acoustic field and a
combustion process that increases pressure oscillations that may
even lead to complete failure of the gas turbine unit). [15,16].
Then, avoiding the combustor thermoacoustic instabilities also
impose additional discontinuities in engine’s operational field.

ny thorough economic analysis of a system including MGTs, includ-
ng economic viability of MGTs or optimal generation planning, must
ccount for the physical limitations of the MGT.

.2. Economic analysis of power generation

The economic analysis of power generation is usually done by
onsidering the Economic Dispatch (ED) optimization problem. Gener-
lly, ED considers a collection of supply mechanisms generating power
nd/or heat, where the goal is to schedule the machines’ generation
o guarantee that the demand is met, while minimizing the overall
roduction costs [17]. This paper considers the ED problem for a single
GT and a utility, from which both power and heat can be purchased.1
hus, the ED problem must account for the physical limitations (i)–(iii),
s well as other physical limitations that the particular MGT model
ight possess.

Economic dispatch has been considered for many different types of
ystems, including steam engines, gas turbines, and wind turbines [6,
8,19]. Most literature on ED simulate the generators as having contin-
ous states based on first principle modeling of the system, where the
enerated power and heat can take any value between a minimum and
maximum capacity, and the corresponding cost function, mapping

eneration level to economic cost, is assumed to be quadratic [18,
9]. The resulting ED problem is usually solved using standard con-
ex optimization techniques, e.g. gradient descent or dual-gradient
ethods [19,20]. These methods can also be combined with other

echniques, e.g. consensus-based algorithms [21]. More recent works
ry to apply learning-based approaches [22,23] or particle swarm op-
imization methods [24,25] to solve the convex optimization problem.
he reader is referred to the following recent reviews on the subject for
ore information and Refs. [26,27].

Unfortunately, this convex optimization framework fails to capture
he fundamental constraints imposed by the physical limitations of
GTs, e.g. points (i)–(v) described in Section 1.1, unless augmented

roperly, for multiple reasons. First, in a low-demand scenario, not all
roviders should be active, so we should also schedule their startup and
hutdown. This is usually done by considering the unit commitment
UC) problem [28]. However, due to the flexibility of MGTs and their
uick start up and shutdown times, as well as the physical limita-
ion (i), this decoupling will result in a wasteful scheduling policy.

1 Heat is not directly sold by the utility, but can be modeled as an additional
uel or electricity cost. Most consumers satisfy their heat demand with a boiler,
n which case we model the heating cost with the price of natural gas.
2

Therefore, we do not decouple the UC and ED problems, and instead
incorporate the inactive state into the ED problem. This is usually
done by introducing binary variables determining when the machines
should be active [18,19]. Moreover, the physical limitation (ii) implies
we need more than one inactive state per MGT. Furthermore, the
physical limitations (iii)–(v) mean that we cannot model the generation
of the turbine (when active) as a continuous variable with minimum
and maximum capacities. Other turbine-specific limitations can impose
additional constraints on the model.

1.3. Shortest-path algorithms and uncertain demand

Combining the restrictions described above, we get a model for the
MGT having multiple discrete (inactive) states and complex constraints
on the allowed generation level when active, meaning that the ED
problem is a constrained mixed-integer problem, which can be NP-
hard in general. One possible solution is to discretize the state space
and cost function, which works well for complex engine models, as
the fuel consumption can be computed numerically. In this setting,
the combined UC and ED problem is a discrete-time optimal control
problem with a discrete state–space representation for the plant. This
is an integer optimization problem where generated power and heat
can only take values within a finite set. A solution to this problem is
available using dynamic programming, namely by using the shortest-
path algorithm on an appropriately defined graph [6,29]. However,
this method, as well as most other approaches for ED, assumes the
demands are known throughout the time horizon [6,19,20,30–33],
e.g. by using one of the many load forecasting techniques that appear
in the literature, see e.g. [34–37] and references therein.

One might try to simply ignore the issue of unknown future de-
mands by solving the ED problem with respect to an ad-hoc estimate
of the demand level. However, this approach can fail miserably, as is
known that for some real-world optimization problems, the optimal
solution changes drastically when some parameters in the problem
change even by a minuscule amount [38,39]. Another approach to
overcome this problem is to consider a stochastic optimization frame-
work, in which we try and minimize the average cost of generation [40–
42]. These require prior knowledge on the probability distribution
of the underlying uncertainty, which must be estimated from past
data, resulting again in the same problem of parameter inaccuracy.
Another approach taken by recent studies is the incorporation of robust
optimization techniques, in which the demand is assumed to be in
a given set, which is known as the ‘‘uncertainty set’’. The choice of
uncertainty set requires us to have knowledge about the possible values
the demand can take, which again results in a problem of parameter
inaccuracy. Fortunately, there is evidence that robust algorithms for
general problems are significantly less vulnerable to parameter un-
certainty [43]. However, robust shortest-path problems are known to
be generally NP-hard [44], meaning that a careful treatment of the
problem and the uncertainty set is needed to assure that the resulting
optimization problem is tractable. We discuss in detail about previous
results regarding robust shortest-path problems in Section 2.4 below,
but all existing solution methods are either overconservative or suffer
from very prolonged runtimes even for small graphs with a few hundred
nodes. For comparison, the MGT ED problem with known demand
in [6] is converted to a shortest-path problem on a graph with roughly
250,000 nodes.

1.4. Contributions

In this work, we consider the ED problem of a single MGT with
a known discrete state–space representation, and unknown power and
heat demands. The turbine is also connected to a utility from which
power and heat can be purchased at a time-dependent cost1. We apply
the robust optimization framework for the mixed-integer ED problem,
which results in a robust shortest-path problem. We study multiple
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possible choices for the uncertainty set. In the first case, the demand
at each time is within a given confidence interval. In the second case,
we similarly restrict the demand at each time to lie inside confidence
intervals with given centers and radii, but a certain bound (a ‘‘budget’’)
is put on the aggregate deviation of the demand from the interval
centers throughout the time horizon, i.e. the uncertainty is ‘‘budgeted’’
throughout the time horizon. In both cases, we present linear-time
algorithms for finding the optimal solution, and prove their validity.
To the best of the authors’ knowledge, the algorithms we present are
the first to give a tractable solution to the robust shortest path problem
when the edge costs are positively correlated (see Section 2.4 for more
details).

The paper is structured as follows. Section 2 presents some back-
ground about ED, the shortest-path problem and robust optimization,
as well as a literature review on the robust shortest path problem.
Section 3 considers the robust ED problem as a worst-case shortest-path
problem, including multiple possible cases for the uncertainty set, and
presents efficient algorithms for solving the robust ED problem in these
cases. Section 4 portrays a case study demonstrating the algorithms.

Preliminaries. We let N = {1, 2,…} be the set of all natural numbers.
We use notions from graph theory [45]. A directed graph  = ( , )
consists of a finite set of vertices  and a set of edges  which are pairs
of vertices of  . An edge from 𝑢 ∈  to 𝑣 ∈  will be denoted as 𝑢 → 𝑣,
where 𝑢 is the tail of the edge and 𝑣 is its head. A path from a vertex
𝑢 to a vertex 𝑣 is a sequence of edges 𝑒1,… , 𝑒𝓁 such that 𝑢 is 𝑒1’s tail,
𝑣 is 𝑒𝓁 ’s head, and for any 𝑖, 𝑒𝑖’s head is 𝑒𝑖+1’s tail. A directed graph

is called a DAG (directed acyclic graph) if there are no paths which
egin and end at the same vertex. For a node 𝑣 ∈  , the in-degree
eg(𝑣) is the number of edges 𝑒 ∈  which have 𝑣 as a head. As each
dge has exactly one head, we have that ∑𝑣∈ deg(𝑣) = ||. A weighted
irected graph is a triplet ( ,  , 𝑤) where ( , ) is a directed graph and
∶  → R is called the weight function. The cost of a path is defined

s the sum of the weights of its edges. The shortest path problem for a
raph  is a combinatorial optimization problem in which the goal is
o find the path with the smallest cost from a node 𝑠 to a node 𝑞.

We consider some notions from convex analysis [46]. For a convex
et  ⊂ R𝑑 , we say 𝑥 ∈  is an extreme point if for any 𝑦, 𝑧 ∈  and
ny 𝑡 ∈ (0, 1), if 𝑥 = 𝑡𝑦 + (1 − 𝑡)𝑧 then 𝑥 = 𝑦 = 𝑧. The collection of

extreme points of  is denoted by ext(). If 𝑓 ∶  → R is a convex
function and  is bounded and closed, it is known that max𝑥∈ 𝑓 (𝑥) =
ax𝑥∈ext() 𝑓 (𝑥) [46, Theorem 32.2]. For a norm ‖ ⋅ ‖ on R𝑁 , the norm
all of radius 𝑟 > 0 around 𝑥0 ∈ R𝑁 is equal to {𝑥 ∈ R𝑁 ∶ ‖𝑥−𝑥0‖ ≤ 𝑟}.
oreover, a weighted 𝓁∞ norm on R𝑁 is given by ‖𝑥‖ = max𝑁𝑖=1{𝑤𝑖|𝑥𝑖|}
here 𝑤1,… , 𝑤𝑁 > 0 are the associated weights. Similarly, a weighted
1-norm is given by ‖𝑥‖ =

∑𝑁
𝑖=1 𝑤𝑖|𝑥𝑖|. The Minkowski sum of two sets

, 𝐵 is given by 𝐴 + 𝐵 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

. Turbine models, ED, and robust optimization

This section provides the required background material, including a
odel for the MGT, the ED and shortest-path problems, and some basic
otions from robust optimization.

.1. Discrete state–space models for turbines

We consider a micro gas turbine (MGT) with a discrete state space,
hich is a generalization of [6]. Due to the low mechanical and

hermal inertia of the proposed class engine and with sufficiently
igh discretization resolution, transition time between engine states
ecomes negligible. Therefore, only MGT steady states are considered.
e denote the state space of the MGT by  , which is assumed to be
finite set. The state 𝑥(𝑡) of the turbine evolves in discrete time. The

ynamics can be modeled by two functions 𝑓, 𝑐 and a state-indexed
et  (𝑥), i.e., for each 𝑥 ∈  , we denote the set of admissible control
3

ignals by  (𝑥). The function 𝑓 (𝑥, 𝑢) describes the allowable transitions o
etween turbine states, and the function 𝑐(𝑥, 𝑢) describes the transition
imes between states. More precisely, we assume that the function
(𝑥, 𝑢) ∈ N for all pairs (𝑥, 𝑢), and consider the equation governing the
tate evolution of the turbine:

(𝑡 + 𝑐(𝑥(𝑡), 𝑢(𝑡))𝛥𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)),

here 𝑢(𝑡) is the control input at time 𝑡 and 𝛥𝑡 is the time increment.
n other words, if the control input 𝑢(𝑡) is applied at the state 𝑥(𝑡), the
ext state will be 𝑓 (𝑥(𝑡), 𝑢(𝑡)) and it will take 𝑐(𝑥(𝑡), 𝑢(𝑡))𝛥𝑡 time to get
here. As 𝑐(𝑥, 𝑢) ∈ N for all pairs (𝑥, 𝑢), the state 𝑥(𝑡) evolves at time
, 𝛥𝑡, 2𝛥𝑡,….

For each state 𝑥 and control input 𝑢, we let 𝑃MGT(𝑥, 𝑢) be the power
eneration associated with the state-control pair (𝑥, 𝑢) for one time step
𝑡, and let 𝐻MGT(𝑥, 𝑢) be the heat generation associated with the same
tate-control pair for one time step 𝛥𝑡. For example, let 𝑥 ∈  be a state
n which the turbine is switched off, and 𝑢 is a control input for which
(𝑥, 𝑢) = 𝑥, i.e. the turbine is also switched off at the next time step,

hen 𝑃MGT(𝑥, 𝑢) = 𝐻MGT(𝑥, 𝑢) = 0. We emphasize that both the power
nd heat generation can also depend on 𝑢. Indeed, because 𝑃MGT and
MGT aggregate the generation between two times 𝑡0 and 𝑡0 + 𝛥𝑡, the

ontrol 𝑢(𝑡0) does not only determine the state of the turbine at time
0+𝛥𝑡, but also the generated amount in the intermediate time. Indeed,
he turbine generates power in continuous-time, even though our model
s discrete-time.

emark 1. The discretization methodology presented is general for
ny micro gas turbine, and does not inherently assume a specific
hysical model while solving the ED problems in Section 3. More
recisely, given any data set predicting the performance of the turbine
nalytically, numerically or empirically, we can achieve a discrete
odel by choosing a grid for each of the turbine parameters that
efine its state. Then, we compute the power output 𝑃MGT(𝑥, 𝑢), the
eat output 𝐻MGT(𝑥, 𝑢), and the fuel flow consumed by the turbine for
ach possible transition between two states. The fuel flow consumption
efines the cost of operating the turbine, and is described in Section 2.2.
oreover, we can choose to impose certain generation or ramp-rate

onstraints by limiting either the allowable physical state, the allowable
ontrol actions, or pairs thereof before performing the discretization.

xample 1. Consider the MGT model in [6], consisting of a single stage
entrifugal compressor, a can-type combustor, a single stage turbine,
recuperator and a separate heat recovery unit. There, the active

tates of the turbine are characterized by two parameters, 𝑝 and ℎ. The
ariable 𝑝 is the speed of the engine, and can take values p1,…ps, while
he variable ℎ is the position of a recuperator bypass valve, and can
ake values h1,… , hv, so  = {(p𝑖, h𝑗 ) ∶ 𝑖 = 1,… , s, 𝑗 = 1,… , v}. The
llowable transitions change the speed of the engine, the recuperator
ypass valve position, or both by one level. Changing the position of the
alve or slowing down the engine takes one unit of time (i.e. 𝑐(𝑥, 𝑢) = 1
n this case), while revving up the engine takes two units of time (so
(𝑥, 𝑢) = 2 for this transition).

xample 2. Consider a turbine that generates p units of power and
units of heat when active. When the turbine is on, it can be turned

ff at any time, within 15 s. However, once it is turned off, it has a
ool-down time of 45 s (i.e., three time steps). We model the turbine
sing a discrete state–space representation with time instances 𝛥𝑡 = 15𝑠
part and with || = 4 possible states - one active state, 𝑥on, and
hree off states, 𝑥off ,1, 𝑥off ,2, 𝑥off ,3+, which represent that the turbine has
een inactive for 1,2, or at least 3 units of time, respectively. Here,
(𝑥on) = {keep, shutdown},  (𝑥off ,3+) = {keep, start}, and  (𝑥off ,1) =
(𝑥off , 2) = {keep}. The control signal ‘‘keep’’ moves 𝑥on to itself,

off , 1 to 𝑥off , 2, 𝑥off , 2 to 𝑥off , 3+ and 𝑥off , 3+ to itself. Moreover, the
ontrol signal ‘‘shutdown‘‘ moves 𝑥on to 𝑥off , 1, and the control signal
‘start’’ moves 𝑥off , 3+ to 𝑥on. These transitions all take one time step,
.e. 𝑐(𝑥, 𝑢) = 1 for all pairs (𝑥, 𝑢). The possible evolution of the state 𝑥(𝑡)

f the turbine across 5 time steps can be seen in Fig. 1.
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Fig. 1. The state transition graph corresponding to the ED problem for the turbine in
Example 2 with time horizon 𝑇 = 5.

2.2. Economic dispatch and the shortest-path problem

The ED problem aims at scheduling the generation of the turbine
throughout a time horizon 𝑇 as to minimize the cost while generating
the required amount of heat and power. For each state-control pair
(𝑥, 𝑢), we define 𝐶MGT(𝑥, 𝑢) as the total cost of operating the turbine
for 𝑐(𝑥, 𝑢) units of time, starting at state 𝑥 and issuing the control input
𝑢. In other words, this is the cost of the transition defined by the state-
control pair (𝑥, 𝑢). We let (𝑃 (𝑡),𝐻(𝑡))𝑇𝑡=1 be the power and heat demand,
which are known throughout the time horizon.

Besides the turbine, we can also draw power and heat from a utility.
For a time 𝑡, we denote the power and heat purchased from the utility
by 𝑥𝑃𝑈 (𝑡) and 𝑥𝐻𝑈 (𝑡) respectively. The cost of purchasing 𝑥𝑃𝑈 units of
power and 𝑥𝐻𝑈 units of heat from the utility at time 𝑡 is denoted by
𝐶𝑃
𝑈,𝑡(𝑥

𝑃
𝑈 ), 𝐶

𝐻
𝑈,𝑡(𝑥

𝐻
𝑈 ) respectively. We assume the cost function 𝐶𝑃

𝑈,𝑡 is
defined for 𝑥𝑃𝑈 , which corresponds to the case in which the MGT tries
to sell power to the utility. For example, a negative cost corresponds to
selling power to the utility, and an infinite cost corresponds to inability
to sell power. Moreover, we assume the function 𝐶𝐻

𝑈,𝑡 is defined for
𝑥𝐻𝑈 < 0 and satisfies 𝐶𝐻

𝑈,𝑡(𝑥
𝐻
𝑈 ) = 0. In other words, we can exhaust excess

generated heat with no extra cost. We further assume that the functions
𝐶𝑃
𝑈,𝑡, 𝐶

𝐻
𝑈,𝑡 are non-decreasing on the sets {𝑥𝑃𝑈 ∈ R ∶ 𝐶𝑃

𝑈,𝑡(𝑥
𝑃
𝑈 ) < ∞} and

{𝑥𝐻𝑈 ∈ R ∶ 𝐶𝐻
𝑈,𝑡(𝑥

𝐻
𝑈 ) < ∞} respectively, i.e. that buying more power and

heat from the utility will cost more, and that selling power to the utility
(if possible) will earn more. The ED problem is defined as follows:

min
𝑇
∑

𝑡=1

[

𝐶MGT(𝑥(𝑡), 𝑢(𝑡)) + 𝐶𝑃
𝑈,𝑡(𝑥

𝑃
𝑈 (𝑡)) + 𝐶𝐻

𝑈,𝑡(𝑥
𝐻
𝑈 (𝑡))

]

(1)

s.t. 𝑥(𝑡 + 𝑐(𝑥(𝑡), 𝑢(𝑡))𝛥𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), ∀𝑡 = 1,… , 𝑇

𝑃MGT(𝑥(𝑡), 𝑢(𝑡)) + 𝑥𝑃𝑈 (𝑡) = 𝑃 (𝑡), ∀𝑡

𝐻MGT(𝑥(𝑡), 𝑢(𝑡)) + 𝑥𝐻𝑈 (𝑡) = 𝐻(𝑡), ∀𝑡

𝑥(𝑡) ∈  , 𝑢(𝑡) ∈  (𝑥(𝑡)), 𝑥𝑃𝑈 (𝑡), 𝑥
𝐻
𝑈 (𝑡) ∈ R, ∀𝑡

This problem is evidently a nonlinear mixed-integer problem. How-
ever, [6] offers a quick solution method using a directed graph  =
( , ). The vertices are given by the pairs (𝑡, 𝑥) where 𝑡 ∈ {1,… , 𝑇 } and
𝑥 ∈  . For a fixed time 𝑡, the nodes {(𝑡, 𝑥)}𝑥∈ designate the state of
the turbine at time 𝑡. As for the edges, 𝑒 = (𝑡1, 𝑥1) → (𝑡2, 𝑥2) ∈  if there
is some 𝑢1 ∈  (𝑥1) such that 𝑓 (𝑥1, 𝑢1) = 𝑥2 and 𝑡2 = 𝑡1 + 𝑐(𝑥1, 𝑢1). The
cost of said edge is defined as the total cost of the transition, given by
4

the following expression:

𝑤𝑒 = 𝐶MGT(𝑥1, 𝑢1) +
𝑡2
∑

𝑡=𝑡1

[𝐶𝑃
𝑈,𝑡(𝑃 (𝑡) − 𝑃MGT(𝑥1, 𝑢1)) (2)

+𝐶𝐻
𝑈,𝑡(𝐻(𝑡) −𝐻MGT(𝑥1, 𝑢1))].

The edges and their cost represent the possible transitions for the
turbine. For example, the corresponding graph for the turbine in Ex-
ample 2 with time horizon 𝑇 = 5 can be seen in Fig. 1. Thus, a possible
trajectory (𝑥(𝑡))𝑇𝑡=1 of the state of the turbine corresponds to a path in
the graph.2 If we define the cost of a path as the sum of the costs of
the corresponding edges, we get a one-to-one correspondence between
paths on the graph  and generation schedules of the turbine, in which
the total cost of a schedule is identical to the cost of the corresponding
path. Therefore, the ED problem can be restated as finding the cheapest
path from some node (1, 𝑥) to some other node (𝑇 , 𝑦), where 𝑥, 𝑦 ∈ 
are the initial and final state of the turbine.

Suppose we add a node 𝑠 (called the source node) and a node 𝑞
(called the terminal node) to the graph, and add edges 𝑠 → (1, 𝑥),
(𝑇 , 𝑥) → 𝑞 from all 𝑥 ∈  having zero weight. Any path from some
node (1, 𝑥) to some other node (𝑇 , 𝑦), where 𝑥, 𝑦 ∈  , uniquely defines
a path from 𝑠 to 𝑞. Moreover, these paths share the same cost. Thus,
the ED problem can be understood as finding the cheapest path from 𝑠
to 𝑞, known as the shortest path problem [29]. If we denote the set of all
paths from 𝑠 to 𝑞 in  by PATHs→q(), we get the following optimization
problem in the variable Path𝑠→𝑞 :

min
Paths→q

⎧

⎪

⎨

⎪

⎩

∑

𝑒∈Paths→q

𝑤𝑒 ∶ Paths→q ∈ PATHs→q()
⎫

⎪

⎬

⎪

⎭

. (3)

As  is a directed acyclic graph (DAG), standard dynamic programming
methods solve this problem quickly, with computational complexity
equal to 𝑂(||). Moreover, standard graph theory software provides
implementation of said methods. Thus, the ED problem for an MGT
can be solved quickly using off-the-shelf software.

However, this approach is inapplicable if the demands are unknown
and the weights of the edges cannot be determined accurately. Usually
an estimate on the demand throughout the horizon is known, so it is
tempting to try and solve this problem with the estimate, disregarding
the estimation error. However, the optimal solution to many complex
real-life optimization problems can perform poorly when the parame-
ters of the problems are changed by even a minuscule amount [38,39].
This motivates using tools from robust optimization, giving a bound on
the worst-case behavior of a proposed solution.

2.3. Robust optimization

Consider a minimization problem in the variable 𝑥, where both
the cost function 𝐹 (𝑥, 𝜉) and constraints 𝜙(𝑥, 𝜉) ≤ 0 are affected by
an uncertain variable 𝜉 ∈ 𝛯, where the inequalities are understood
component-wise. In our case, the uncertain variables are the power and
heat demands. In classical robust optimization, we choose a subset  ⊆
𝛯 defining all possible values of the uncertainty we consider, coined the
uncertainty set, and define the worst-case optimization problem [38]:

min
𝑥

max
𝜉∈

{𝐹 (𝑥, 𝜉) ∶ 𝜙(𝑥, 𝜉) ≤ 0, ∀𝜉 ∈ } .

This optimization problem assures that the solution is feasible for any
value of the uncertainty within the uncertainty set, and gives a bound
on its cost. However, checking that 𝜙(𝑥, 𝜉) ≤ 0 for any 𝜉 ∈  is usually
very hard or even impossible if  is infinite. Instead, we reformulate
the constraint as sup𝜉∈ 𝜙(𝑥, 𝜉) ≤ 0, which is easier to verify if the
supremum can be computed analytically. For example, if 𝜙 is a bi-linear

2 See the notations section for a precise definition of a path in a graph.
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function and  is defined using finitely many linear inequalities, the
constraint can be reformulated to be linear. A common choice for  is

= {𝜉 ∶ ‖𝜉‖ ≤ 𝛿} for some norm ‖ ⋅ ‖, for which the supremum can
e computed using the dual norm, defined as ‖𝜂‖⋆ = sup

‖𝜉‖≤1 𝜉⊤𝜂 [38].
ommon choices for ‖ ⋅ ‖ are the 𝑝-norm for 𝑝 = 1, 2,∞, for which the
ual norm is 𝑞-norm with 𝑞 = ∞, 2, 1 correspondingly. The parameter 𝛿
ust be tuned accordingly to avoid over-conservatism as well as over-

ptimism. See [43] for more on the implications of choosing a specific
ncertainty set.

.4. Robust shortest-path problems

The shortest path problem (3) depends on two parameters - the
raph , and the edge weights {𝑤𝑒}𝑒∈ . The robust shortest-path prob-
em studies the case in which the edge weights are unknown, but are
ssumed to lie inside a set  ⊆ R||, coined as the ‘‘uncertainty set’’.
ore specifically, the problem aims to minimize the worst-case cost:

min
aths→q

max
𝑤∈

⎧

⎪

⎨

⎪

⎩

∑

𝑒∈Paths→q

𝑤𝑒 ∶ Paths→q ∈ PATHs→q()
⎫

⎪

⎬

⎪

⎭

. (4)

he edge weights are said to be uncorrelated if there exist sets 𝑒 ⊆ R
or all 𝑒 ∈  such that  = {𝑤 ∈ R|| ∶ 𝑤𝑒 ∈ 𝑒}, i.e. knowing the
ost of some edge does not give any more information about the cost
f other edges. It is known that the robust shortest path problem for
general uncertainty set  is NP-hard [44]. For that reason, several
orks in the literature proposed uncertainty sets  which lead to

ractable problems.
In [47,48], the authors assume edge costs are uncorrelated, and

hoose an uncertainty set consisting of confidence intervals for the cost
ithout budgeting the uncertainty, i.e., the uncertainty set was taken
s  = {𝑤 ∈ R|| ∶ lower𝑒 ≤ 𝑤𝑒 ≤ upper𝑒}. Hence, the achieved
olution is also robust against the case in which all edges incur the
aximum possible cost, rendering it vastly overconservative for real-
orld scenarios in many applications. This issue is addressed in [49],

n which a budgeted uncertainty set is considered by bounding the
mount of edges whose cost can be different than the nominal value.
his method cannot be applied to the problem of ED, as the costs of
he edges are demand-dependent, and in practice, the demand will
e different from our estimate at any time step, even if by a small
mount. More recent works consider either a more complex uncertainty
udgeting mechanism [50], or a more sophisticated robustification
ethod [51]. However, the former can yield NP-hard problems, while

he latter yields problems which take a long amount of time to solve
n practice, even for small graphs with only hundreds of nodes [51].
or ED, the problem in [6] is converted to a shortest-path problem on
graph with roughly 250,000 nodes, rendering the approach of [51]

s inapplicable. Moreover, all of these methods assume that the edge
osts are either uncorrelated or negatively correlated with each other
i.e., if the cost 𝑤𝑒1 significantly deviates from its mean, then the cost
𝑒2 is less likely to deviate from its mean). However, in shortest-path
roblems inspired by economic dispatch, e.g. in [6], the costs of edges
orresponding to the same time step are positively correlated, as both
re determined by the demand at the corresponding time step, and
larger demand leads to a larger cost. These reasons motivate the

erivation of the algorithms presented in Section 3.

. Robust economic dispatch with uncertain demands

Consider an ED problem of the form (1), where the demand 𝜉 =
𝑃 (𝑡),𝐻(𝑡))𝑇𝑡=1 is assumed to be unknown. Assume further that the true
emand profile is contained in a set  ⊆ R2𝑇 . Note that in the ED
roblem, the turbine variables 𝑥(𝑡), 𝑢(𝑡) must be scheduled in advance,
fter which the true demand is revealed and the utility variables
𝑃 𝐻
5

𝑈 (𝑡), 𝑥𝑈 (𝑡) are computed from the power- and heat-balance equations, c
𝑥𝑃𝑈 (𝑡) = 𝑃 (𝑡) − 𝑃MGT(𝑥(𝑡), 𝑢(𝑡)) and 𝑥𝐻𝑈 (𝑡) = 𝐻(𝑡) − 𝐻MGT(𝑥(𝑡), 𝑢(𝑡)). In
ther words, the turbine variables 𝑥(𝑡), 𝑢(𝑡) are treated as initial decision
ariables, and 𝑥𝑃𝑈 (𝑡), 𝑥

𝐻
𝑈 (𝑡) are therefore viewed as recourse variables.

e use the graph-based interpretation of the problem. For every edge
∈  , we let 𝑤𝑒(𝜉) be equal to (2), where 𝜉 = (𝑃 (𝑡),𝐻(𝑡))𝑡 = 1𝑇 .

min
Paths→q

max
𝜉∈

∑

𝑒∈Paths→q

𝑤𝑒(𝜉) (RSPP)

s.t. Paths→q ∈ PATHs→q().

The main focus of this section is to study the tractability of (RSPP)
s a consequence of the choice of  .

.1. Positively-extreme profiles and ∞-based uncertainty

The tractability of (RSPP) boils down to the following question -
hat demand profiles 𝜉 are the worst-case for a specific path in the
raph ? Intuitively, the higher the demand, the higher the generation
ost. It is easy to see by (2) that if 𝑃1(𝑡) ≤ 𝑃2(𝑡) and 𝐻1(𝑡) ≤ 𝐻2(𝑡) for
ll 𝑡, then 𝑤𝑒(𝜉1) ≤ 𝑤𝑒(𝜉2) for every 𝑒 ∈  , where 𝜉𝑖 = (𝑃𝑖(𝑡),𝐻𝑖(𝑡))𝑇𝑡=1 for
= 1, 2. Thus, for any 𝜉1, 𝜉2 ∈ R2𝑇 , we have:

𝜉1)𝑘 ≤ (𝜉2)𝑘, ∀𝑘 = 1,… , 2𝑇 ⟹ 𝑤𝑒(𝜉1) ≤ 𝑤𝑒(𝜉2). (5)

his suggests the following definition:

efinition 1. Let  ⊆ R2𝑇 be any set. We say that 𝜉 ∈  is positively
xtreme if for all 𝜁 ∈  there exists some 𝑘 such that 𝜉𝑘 > 𝜁𝑘. In other
ords, we cannot find a point in  whose entries are all bigger than

’s. The collection of all positively extreme points in  will be denoted
s pe().

xample 3. If  = {𝜉 ∈ R2𝑇 ∶ max𝑖 𝑎𝑖|𝜉𝑖| ≤ 𝜇} then pe() contains
nly the point ( 𝜇

𝑎1
,… , 𝜇

𝑎2𝑇
).

xample 4. If  = {𝜉 ∈ R2𝑇 ∶
∑

𝑖 𝑎𝑖|𝜉𝑖| ≤ 𝜇}, pe() contains all points
such that 𝜉𝑖 ≥ 0 and ∑

𝑖 𝑎𝑖𝜉𝑖 = 𝜇. In particular, pe() is infinite.

Theorem 1. Let  be any bounded closed subset of R2𝑇 , and assume
all functions 𝑤𝑒 satisfy (5). The problem (RSPP) for  is equivalent to the
problem (RSPP) for pe(), i.e.,

min
Paths→q

max
𝜉∈

∑

𝑒∈Paths→q

𝑤𝑒(𝜉) = min
Paths→q

max
𝜉∈pe()

∑

𝑒∈Paths→q

𝑤𝑒(𝜉). (6)

roof. Take any path Paths→q from 𝑠 to 𝑞, and let 𝑒1,… , 𝑒𝓁 be its edges.
We show that max𝜉∈

∑𝓁
𝑖=1 𝑤𝑒𝑖 (𝜉) = max𝜉∈pe()

∑𝓁
𝑖=1 𝑤𝑒𝑖 (𝜉). Take some

𝜁 ∈  . We claim that there exists a point 𝜉 ∈ pe() such that 𝜁𝑖 ≤ 𝜉𝑖 for
all 𝑖. Indeed, this is true because the set ∩{𝜉 ∶ 𝜁𝑖 ≥ 𝜉𝑖} is also bounded
and closed, hence it has a positively-extreme point, which must be in
pe() by definition. In particular, we conclude by (5) that
𝓁
∑

𝑖=1
𝑤𝑒𝑖 (𝜁 ) ≤

𝓁
∑

𝑖=1
𝑤𝑒𝑖 (𝜉) ≤ max

𝜉∈pe()

𝓁
∑

𝑖=1
𝑤𝑒𝑖 (𝜉).

Maximizing over 𝜁 ∈  completes the proof. □

We now examine a corollary of Theorem 1 that considers an esti-
mate for the power and heat demand at a time 𝑡, denoted by 𝑃0(𝑡),𝐻0(𝑡)
respectively, and an estimation error that is bounded by variables
𝛥𝑃 (𝑡), 𝛥𝐻(𝑡) respectively.

orollary 1. Suppose that the set  is given by:

=
{

(𝑃 (𝑡),𝐻(𝑡))𝑇𝑡=1 ∶
|𝑃 (𝑡) − 𝑃0(𝑡)| ≤ 𝛥𝑃 (𝑡),
|𝐻(𝑡) −𝐻0(𝑡)| ≤ 𝛥𝐻(𝑡)

}

, (7)

The robust ED problem with uncertainty set  is equivalent to the ED
roblem with demand 𝑃 (𝑡) = 𝑃0(𝑡) + 𝛥𝑃 (𝑡), 𝐻(𝑡) = 𝐻0(𝑡) + 𝛥𝐻(𝑡). Thus, it
an be solved in 𝑂(||) = 𝑂(max 𝑐(𝑥, 𝑢)||𝑇 ) time.
𝑥,𝑢
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Proof. It suffices to show that (RSPP) for the set  is equivalent to the
hortest path problem with weights 𝑤𝑒(𝜉) for 𝜉 = (𝑃0(𝑡) + 𝛥𝑃 (𝑡),𝐻0(𝑡) +
𝐻(𝑡))𝑇𝑡=1. This follows immediately from Theorem 1 and the fact that
y definition, pe() = (𝑃0(𝑡) + 𝛥𝑃 (𝑡),𝐻0(𝑡) + 𝛥𝐻(𝑡))𝑇𝑡=1. Solving the
hortest path problem in a DAG takes 𝑂(||) time [29]. □

The corollary above shows that the robust ED problem can be
olved in a tractable manner if  has the form (7), as it is equivalent
o a shortest-path problem. However, in (7), the demand is merely
ssumed to be within given confidence intervals for each time step. This
ssumption might lead to mediocre results in practice - if the confidence
ntervals are taken too large, the solution may be over-conservative,
nd if they are taken too small, we do not account for unforeseen
hort demand spikes. A common way to deal with this problem is to
se uncertainty sets which also specify the 1-norm, i.e. they budget
he uncertainty over all time steps. This will be the focus of the next
ubsection.

Before moving forward, we want to return to Example 4. There,
e() was infinite, meaning that the problem max𝜉∈pe()

∑

𝑤𝑒(𝜉) is
ard to solve, unless more assumptions are added. If we assume the
unctions 𝑤𝑒 are convex in 𝜉, the maximized function is also convex,
o the maximum is attained at an extreme point of the set pe() [46,
heorem 32.2]. The convexity of the functions 𝑤𝑒 can be understood
sing the convexity of the functions 𝐶𝑃

𝑈,𝑡, 𝐶
𝐻
𝑈,𝑡 ∶

roposition 1. All of the functions {𝑤𝑒}𝑒∈ are convex if and only if all
f the functions 𝐶𝑃

𝑈,𝑡, 𝐶
𝐻
𝑈,𝑡 are convex

roof. We fix an edge 𝑒 from a node (𝑡1, 𝑥1) to a node (𝑡2, 𝑥2), where
1, 𝑥2 ∈  are states of the turbine. Because there exists an edge
etween (𝑡1, 𝑥1) and (𝑡2, 𝑥2), there exists a control action 𝑢1 ∈  (𝑥1)

such that 𝑓 (𝑥1, 𝑢1) = 𝑥2 and 𝑡2 = 𝑡1 + 𝑐(𝑥1, 𝑢1)𝛥𝑡. Recall that 𝑤𝑒
was defined as a function of 𝜉 = (𝑃 (𝑡),𝐻(𝑡))𝑇𝑡=1 using the following
expression:

𝑤𝑒(𝜉) = 𝐶MGT(𝑥1, 𝑢1)+
𝑡2
∑

𝑡=𝑡1

[𝐶𝑃
𝑈,𝑡(𝑃 (𝑡) − 𝑃MGT(𝑥1, 𝑢1))

+ 𝐶𝐻
𝑈,𝑡(𝐻(𝑡) −𝐻MGT(𝑥1, 𝑢1))]

The result now follows from the fact that 𝐶MGT(𝑥1, 𝑢1), 𝑃MGT(𝑥1, 𝑢1) and
𝐻MGT(𝑥1, 𝑢1) are all constant with respect to 𝜉. □

For that reason, we make the following assumption:

Assumption 1. For every time 𝑡, the utility cost functions 𝐶𝑃
𝑈,𝑡, 𝐶

𝐻
𝑈,𝑡

are convex. Equivalently, the cost functions 𝑤𝑒 are convex.

Remark 2. The convexity of 𝐶𝑃
𝑈,𝑡 can be easily deduced for many cases.

For example, the cost function implemented in European electricity
markets is a linear function, in which the per-unit price is achieved by
an optimization problem aggregating all the demands and generations
in the network [52]. In other cases, service operators explicitly convex-
ify this cost function [53]. Alternatively, utility operators put a fixed
per-unit cost, as well as fixed costs and demand charges which only go
into effect if the demand is positive [54]. In this case, if we cannot sell
power back to the utility, then 𝐶𝑃

𝑈,𝑡(𝑥
𝑃
𝑈 ) = 𝐴𝑡𝑥𝑃𝑈 + 𝐵𝑡 for some possibly

time-dependent parameters 𝐴𝑡, 𝐵𝑡 and 𝑥𝑃𝑈 ≥ 0, and 𝐶𝑃
𝑈,𝑡(𝑥

𝑃
𝑈 ) = ∞ if

𝑥𝑃𝑈 < 0. Thus, 𝐶𝑃
𝑈,𝑡 is convex. If we instead consider the case in which

there is only a fixed per-unit cost and a fixed cost, then 𝐶𝑃
𝑈,𝑡 is affine

and thus convex.
For heat, most consumers use a boiler to satisfy their heat demand,

in which case one can model the heating cost with the price of natural
gas. In that case, the cost function 𝐶𝐻

𝑈,𝑡 is given by

𝐶𝐻
𝑈,𝑡(𝑥

𝐻
𝑈 ) =

{

𝐴𝑥𝐻𝑈 , 𝑥𝐻𝑈 ≥ 0
𝐻

6

0, 𝑥𝑈 ≤ 0, a
as excess heat can be exhausted with no extra cost. In particular, 𝐶𝐻
𝑈,𝑡

is convex. See [6] for more details.
In any case, if either 𝐶𝑃

𝑈,𝑡 or , 𝐶𝐻
𝑈,𝑡 is not convex, and Assump-

tion 1 is needed, we approximate them by convex functions. We thus
yield a suboptimal solution for (RSPP), whose quality depends on the
approximation error of 𝐶𝑃

𝑈,𝑡, 𝐶
𝐻
𝑈,𝑡.

Under Assumption 1, we can prove an analogue of Theorem 1 which
relies on the notion of extreme points:

Corollary 2. Let  ⊆ R2 be bounded and closed, and assume 𝑤𝑒 satisfies
(5) and Assumption 1. The problem (RSPP) for  is equivalent to the
problem (RSPP) for ext(pe()).

Proof. Fix any path Paths→q from 𝑠 to 𝑞, and let 𝑒1,… , 𝑒𝓁 be its edges.
We show that max𝜉∈

∑𝓁
𝑖=1 𝑤𝑒𝑖 (𝜉) = max𝜉∈ext(pe())

∑𝓁
𝑖=1 𝑤𝑒𝑖 (𝜉). First, by

Theorem 1, we have that max𝜉∈
∑𝓁

𝑖=1 𝑤𝑒𝑖 (𝜉) = max𝜉∈pe()
∑𝓁

𝑖=1 𝑤𝑒𝑖 (𝜉).
Second, we note that ∑𝓁

𝑖=1 𝑤𝑒𝑖 (𝜉) is a convex function in 𝜉, so by [46,
Theorem 32.2], for any closed bounded set  we have that

max
𝜉∈

𝓁
∑

𝑖=1
𝑤𝑒𝑖 (𝜉) = max

𝜉∈ext()

𝓁
∑

𝑖=1
𝑤𝑒𝑖 (𝜉).

Choosing  = pe() completes the proof. □

Example 5. If  = {𝜉 ∈ R2𝑇 ∶
∑

𝑖 𝑎𝑖|𝜉𝑖| ≤ 𝜇}, then ext(pe()) =
{𝜉(1),… , 𝜉(2𝑇 )}, where 𝜉(𝑗)𝑖 = 𝜇

𝑎𝑖
1{𝑖=𝑗}.

3.2. Mixed 1 ⧵ ∞ uncertainty

For this subsection, we assume Assumption 1 holds. We want to
consider an uncertainty set  including both unforeseen short demand
spikes as well as a constant bias from the estimate. A natural choice
here is:

 =

⎧

⎪

⎨

⎪

⎩

(𝑃 (𝑡),𝐻(𝑡))𝑇𝑡=1 ∶
|𝑃 (𝑡) − 𝑃0(𝑡)| ≤ 𝛥𝑃 (𝑡),

|𝐻(𝑡)−𝐻0(𝑡)|≤𝛥𝐻(𝑡)
∑𝑇

𝑡=1

[

|𝑃 (𝑡)−𝑃0(𝑡)|
𝛥𝑃 (𝑡) + |𝐻(𝑡)−𝐻0(𝑡)|

𝛥𝐻(𝑡)

]

≤𝜇

⎫

⎪

⎬

⎪

⎭

.

owever, it is possible to show that unless 𝜇
2𝑇 ≪ 1 or 1 − 𝜇

2𝑇 ≪
1, |ext(pe())| is exponential in 𝑇 . Thus, Corollary 2 will not yield

tractable optimization problem. Instead, we consider a different
ncertainty set:

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑃 (𝑡),𝐻(𝑡))𝑇𝑡=1 ∶

𝑃 (𝑡) = 𝑃0(𝑡) + 𝜂𝑃1 (𝑡) + 𝜂𝑃∞(𝑡),
𝐻(𝑡) = 𝐻0(𝑡) + 𝜂𝐻1 (𝑡) + 𝜂𝐻∞ (𝑡),

∑𝑇
𝑡=1

[

|𝛿𝑃 ,𝑡𝜂𝑃1 (𝑡)| + |𝛿𝐻,𝑡𝜂𝐻1 (𝑡)|
]

≤ 𝜇1,
|𝜂𝑃∞(𝑡)| ≤ 𝛥𝑃 (𝑡), |𝜂𝐻∞ (𝑡)| ≤ 𝛥𝐻(𝑡), ∀𝑡

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (8)

here 𝜇1, 𝛥𝑃 (𝑡), 𝛥𝐻(𝑡), 𝛿𝑃 ,𝑡, 𝛿𝐻,𝑡 ≥ 0 are parameters. This uncertainty
et will be called the ‘‘mixed 1/∞ uncertainty set’’. Intuitively, it
issects the uncertainty in the demand into two factors — the first,
𝑃
1 (𝑡), 𝜂

𝐻
1 (𝑡), corresponds to large-but-short unforeseen demand spikes,

nd the second, 𝜂𝑃∞(𝑡), 𝜂𝐻∞ (𝑡), corresponds to a small-but-long bias from
he estimated demand, (𝑃0(𝑡),𝐻0(𝑡))𝑇𝑡=1. If 𝜇1, 𝛥𝑃 (𝑡), 𝛥𝐻(𝑡), 𝛿𝑃 ,𝑡, 𝛿𝐻,𝑡 are

tuned correctly, the uncertainty set can model both without being too
conservative. Similarly to Example 4, the set ext(pe( )) consists of
2𝑇 elements, (𝑃 (𝑡) + 𝛥𝑃 (𝑖)(𝑡), 𝐻̄0(𝑡))𝑇𝑡=1 and (𝑃0(𝑡), 𝐻̄0(𝑡) + 𝛥𝐻 (𝑖)(𝑡))𝑇𝑡=1 for
𝑖 = 1,… , 𝑇 , where:

𝑃0(𝑡) = 𝑃0(𝑡) + 𝛥𝑃 (𝑡), 𝐻̄0(𝑡) = 𝐻0(𝑡) + 𝛥𝐻(𝑡). (9)

𝛥𝑃 (𝑖)(𝑡) =
𝜇1
𝛿𝑃 ,𝑡

1{𝑖=𝑡}, 𝛥𝐻
(𝑖)(𝑡) =

𝜇1
𝛿𝐻,𝑡

1{𝑖=𝑡}.

The demands 𝑃0(𝑡) and 𝐻0(𝑡) serve as a worst-case scenario if there
re no demand spikes, similarly to Corollary 1. For each 𝑖 = 1, 2,… , 𝑇 ,
he terms 𝛥𝑃 (𝑖), 𝛥𝐻 (𝑖) correspond to the highest possible demand spike
t time 𝑖. In particular, for any 𝑖, the sum of these terms serves as
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a possible worst-case scenario for the uncertainty set (8). Thus, the
robust ED problem for  is reduced to (RSPP) with 2𝑇 possible demand
profiles - 2 demand profiles for each time 𝑖, in which the power or heat
demand spikes at time 𝑖, respectively. We want to use an augmented
form of the shortest-path algorithm to solve this problem. In order
to do so, we first reformulate it as a problem closer to the classical
shortest-path problem.

For each edge 𝑒 = (𝑡1, 𝑥1) → (𝑡2, 𝑥2) ∈  , we consider the cost 𝑤𝑒 for
all 2𝑇 possible scenarios. We first define 𝑊𝑏𝑖𝑎𝑠(𝑒) as 𝑤𝑒((𝑃0(𝑡), 𝐻̄0(𝑡))),
which is the cost on the edge 𝑒 corresponding the worst-case spikeless
demand, stemming only from the long-but-small bias in demand, which
must be paid for each of the extreme 2𝑇 scenarios, no matter when the
spike occurs. We also let 𝑊spike(𝑒) be the highest possible additional
cost stemming from unforeseen demand spikes, defined as

max
𝑡1≤𝑘<𝑡2

{𝑤𝑒((𝑃0(𝑡) + 𝛥𝑃 (𝑘)(𝑡), 𝐻̄0)(𝑡)), (10)

𝑤𝑒((𝑃0(𝑡), 𝐻̄0(𝑡) + 𝛥𝐻 (𝑘)(𝑡)))} −𝑊bias(𝑒),

That is, 𝑊spike(𝑒) is defined as the maximum possible cost of the
edge 𝑒 in any of the 2𝑇 possible scenarios, minus 𝑊bias(𝑒). Given a
path Paths→𝑃q from 𝑠 to 𝑞, the cost function max𝜉∈

∑

𝑒∈Paths→q
𝑤𝑒(𝜉) is

the sum of ∑

𝑒∈Paths→q
𝑊bias(𝑒) and max𝑒∈Paths→q

𝑊spike(𝑒). Indeed, if the
demand profile is equal to (𝑃0(𝑡) +𝛥𝑃 (𝑘)(𝑡), 𝐻̄0(𝑡))𝑇𝑡=1 or to (𝑃0(𝑡), 𝐻̄0(𝑡) +
𝛥𝐻 (𝑘)(𝑡))𝑇𝑡=1, meaning there is a spike in demand at time 𝑘, then all
edges corresponding to transitions outside time 𝑘 only have the ‘‘bias’’
cost, while the single edge corresponding to a transition at time 𝑘 has
a 𝑊bias + 𝑊spike. Moreover, given any edge 𝑒 = (𝑡1, 𝑥1) → (𝑡2, 𝑥2) ∈  ,
there is at least one 𝑘 for which this edge has an additional cost equal
to 𝑊spike. Thus, the optimization problem becomes:

min
∑

𝑒∈Paths→q

𝑊bias(𝑒) + max
𝑒∈Paths→q

𝑊spike(𝑒) (11)

s.t. Paths→q ∈ PATHs→q().

We would like to consider an algorithm for solving the problem
(RSPP) in this case. A key idea that will be used is to consider the graph
 with a different set of weights. For each number 𝛼 ∈ R, we define
the 𝛼-restricted graph 𝛼 as a weighted graph ( ,  , 𝜔𝛼), where  =

( , ) and 𝜔𝛼(𝑒) =

{

𝑊bias(𝑒) 𝑊spike(𝑒) ≤ 𝛼
∞ 𝑊spike(𝑒) > 𝛼.

We present the following

algorithm for solving the problem. First, we compute all parameters as
in (9), and define 𝑊bias,𝑊spike as above. Second, we define an array
of thresholds called Thresh. For each threshold 𝛼 ∈ Thresh, we solve
the classical shortest-path problem on the weighted graph 𝛼 . We let
𝑉path(𝛼) be this shortest path on 𝛼 , and let 𝑉cost (𝛼) as the total cost
of this path in the problem (11). We then choose the return the path
𝑉path(𝛼) for which 𝑉cost (𝛼) is minimal over all thresholds 𝛼. We show
that choosing the set of thresholds as {𝑊spike(𝑒)}𝑒∈ guarantees that we
achieve an optimal solution of (11).

Theorem 2. Algorithm 1 solves (RSPP) for the uncertainty set  of the
form (8), with computational complexity 𝑂(||2).

Proof. Let Path⋆𝑠→𝑞 be the optimal solution of (RSPP). By optimality,
for any other path Path𝑠→𝑞 at least one of the following holds:

∑

𝑒∈Path⋆s→q

𝑊bias(𝑒) ≤
∑

𝑒∈Paths→q

𝑊bias(𝑒), (12)

max
𝑒∈Path⋆s→q

𝑊spike(𝑒) ≤ max
𝑒∈Paths→q

𝑊spike(𝑒), (13)

where if at least one holds with equality, then both inequalities hold.
Consider the graph 𝐺𝛼 for 𝛼 = max𝑒∈Path⋆ 𝑊spike(𝑒). For this graph, if a
7

path Paths→q satisfies the inequality (13), it does so with equality. Thus,
Algorithm 1 Optimal Economic Dispatch for Mixed 1/∞ Uncertainty
Input: An uncertainty set  of the form (8).
Output: An optimal solution to the corresponding robust economic
dispatch problem.
1: Define 𝑃0(𝑡), 𝐻̄0(𝑡), 𝛥𝑃 (𝑖)(𝑡), 𝛥𝐻 (𝑖)(𝑡) as in (9).
2: Define four arrays 𝑊bias,𝑊spike, 𝑉cost , 𝑉path.
3: for each edge 𝑒 in the graph do
4: Define 𝑊bias(𝑒) = 𝑤𝑒((𝑃0(𝑡), 𝐻̄0(𝑡))𝑇𝑡=1).
5: Define 𝑊spike(𝑒) as in (10).
6: end for
7: Define the array Thresh = 𝑊spike.
8: for 𝛼 ∈ Tresh do
9: Solve the shortest-path problem from 𝑠 to 𝑞 for 𝛼 . Let Path𝑠→𝑞

the optimal path. If there is a tie, favor the path with the lower
maximal 𝑊spike.

0: Define 𝑉path(𝛼) = Path𝑠→𝑞 .
1: Define 𝑉cost (𝛼) =

∑

𝑒∈Path𝑠→𝑞
𝑊bias(𝑒) + max𝑒∈Path𝑠→𝑞

𝑊spike(𝑒), the
cost of the path Path𝑠→𝑞 for the problem (11).

2: end for
3: Find 𝛾 = argmin𝛽 𝑉cost (𝛽).
4: return: 𝑉cost (𝛾), 𝑉path(𝛾).

it must satisfy (12), meaning that Path⋆ is the shortest path from 𝑠 to 𝑞
in 𝛼 . By the tie break rule and conditions (12), (13), we conclude that
path(𝛼) = Path⋆. Moreover, for any path 𝑉path(𝛽), we have:

cost (𝛽) =
∑

𝑒∈𝑉path(𝛽)
𝑊bias(𝑒) + max

𝑒∈𝑉path(𝛽)
𝑊spike(𝑒)

hus, by optimality of Path⋆, 𝛼 = argmin𝛽 𝑉cost (𝛽), and the returned
ath is Path⋆. This proves the correctness of the algorithm. As for the
ime complexity, the parts outside the for-loop on 𝛼 take 𝑂(||) time.
nside the for-loop, we build the DAG 𝛼 , which takes 𝑂(||) time, and
olve the shortest-path problem on it, which also takes 𝑂(||) time. The
or-loop has 𝑂(||) iterations, so get a time complexity of 𝑂(||2). □

emark 3. The complexity of graph-based algorithms is traditionally
ritten in terms of the number of vertices || in the graph, or the
umber of edges || in the graph. The complexity estimate of Theo-
em 2 follows this norm, writing the complexity as 𝑂(||2). However,
e would like to connect this complexity estimate to the turbine model.

To do so, for any 𝑥 ∈  , we let 𝜌(𝑥) = | (𝑥)| be the number of
ossible control actions at 𝑥. We also let 𝜌 = 1

||

∑

𝑥∈ 𝜌(𝑥) be the
verage number of control actions at a state. If the time horizon 𝑇 is
ong enough, then || = 𝑂(𝑇 ||𝜌 ). For example, this happens if 𝑇
s at least twice as long as the longest transition, max𝑥,𝑢 𝑐(𝑥, 𝑢). In that
ase, the complexity estimate is 𝑂(2) = 𝑂(𝑇 2

||

2𝜌2 ). This estimate
ill also be helpful later, when we present more efficient algorithms
ith complexity 𝑂(||) = 𝑂(𝑇 ||𝜌 ).

emark 4. The complexity bound 𝑂(||2) can sometimes be too high
or real-world economic dispatch problems, in which the graph  can
ave more than a million edges [6]. Instead, we note that if 𝛿𝑃 ,𝑡, 𝛿𝐻,𝑡
efined in (8) do not change too often, the array Thresh contains many
epetitions. If Thresh contains 𝐿 ≤ || different elements, then the
omputational complexity of the algorithm is 𝑂(||𝐿). We denote the
umber of different values that 𝛿𝑃 ,𝑡, 𝛿𝐻,𝑡 take for 𝑡 = 1,… , 𝑇 as 𝑛𝑃 , 𝑛𝐻
espectively. It is easy to see that if 𝑇 ≫ max𝑥,𝑢 𝑐(𝑥, 𝑢), so that each
ossible transition appears about the same number of times, then 𝐿
cales linearly with 𝑛𝑃 + 𝑛𝐻 . Thus, we get that 𝐿 = 𝑂

(

||
𝑇 (𝑛𝑃 + 𝑛𝐻 )

)

.

Therefore, we get an algorithm whose time complexity 𝑂(||𝐿) =
𝑂
(

||2
𝑇 (𝑛𝑃 + 𝑛𝐻 )

)

grows linearly with the time horizon 𝑇 , as for a fixed
state–space representation, || = 𝑂(𝑇 ) holds.
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Algorithm 1, together with Remark 4, give a linear-time algorithm
if most 𝛿𝑃 ,𝑡, 𝛿𝐻,𝑡 have the same value. If this is not the case, we can give
a linear-time algorithm that achieves an approximation of the optimal
solution. Namely, we prove:

Lemma 1. Consider the problem (RSPP) for the uncertainty set  of the
form (8), and let Path⋆𝑠→𝑞 be the optimal solution, 𝛼 = max𝑒∈Path⋆ 𝑊spike(𝑒),
and let 𝛽 ≥ 𝛼 be any number. Denote Path𝛽𝑠→𝑞 as the shortest path from 𝑠
to 𝑞 in 𝛽 . If:

𝑉 ⋆ =
∑

𝑒∈Path⋆𝑠→𝑞

𝑊bias(𝑒) + max
𝑒∈Path⋆𝑠→𝑞

𝑊spike(𝑒)

𝑉 𝛽 =
∑

𝑒∈Path𝛽𝑠→𝑞

𝑊bias(𝑒) + max
𝑒∈Path𝛽𝑠→𝑞

𝑊spike(𝑒),

then 𝑉 ⋆ ≤ 𝑉 𝛽 ≤ min{𝑉 ⋆ + 𝛽 − 𝛼, 𝛽𝛼 𝑉
⋆}.

Proof. It suffices to show that the right side of the inequality holds.
First, as 𝛽 ≥ 𝛼, the path Path⋆𝑠→𝑞 has a finite cost in the graph 𝛽 , equal
to its cost in . Thus, we find that:

∑

𝑒∈Path𝛽𝑠→𝑞

𝑊bias(𝑒) ≤
∑

𝑒∈Path⋆𝑠→𝑞

𝑊bias(𝑒). (14)

Moreover,

max
𝑒∈Path𝛽𝑠→𝑞

𝑊spike(𝑒) ≤ 𝛽 = 𝛼 + 𝜖 ≤ max
𝑒∈Path⋆𝑠→𝑞

𝑊spike(𝑒) + 𝜖. (15)

Summing (14) and (15) gives 𝑉 𝛽 ≤ 𝑉 ⋆ + 𝜖. Moreover, as 𝜏 ≥ 1, we
have,

∑

𝑒∈Path𝛽𝑠→𝑞

𝑊bias(𝑒) ≤ 𝜏
∑

𝑒∈Path⋆𝑠→𝑞

𝑊bias(𝑒), (16)

and

max
𝑒∈Path𝛽𝑠→𝑞

𝑊spike(𝑒) ≤ 𝛽 = 𝜏𝛼 ≤ 𝜏 max
𝑒∈Path⋆𝑠→𝑞

𝑊spike(𝑒). (17)

Summing (16) and (17) gives 𝑉 𝛽 ≤ (1 + 𝜇)𝑉 ⋆. □

Lemma 1 can be used to prescribe linear-time algorithms approx-
imating the optimal solution of (RSPP) for the uncertainty set (8):

Theorem 3. Consider Algorithm 1 and take any 𝜖 > 0. Suppose that we
change step 7 and define

Thresh =
{

min
𝑒∈

𝑊spike(𝑒),min
𝑒∈

𝑊spike(𝑒) + 𝜖,

min
𝑒∈

𝑊spike(𝑒) + 2𝜖,… ,max
𝑒∈

𝑊spike(𝑒)
}

.

Let 𝑉 ⋆,𝜖 be the value provided by this modified algorithm, and let 𝑉 ⋆ be
the optimal value of (RSPP) for the uncertainty set  of the form (8).
Then 𝑉 ⋆ ≤ 𝑉 ⋆,𝜖 ≤ 𝑉 ⋆ + 𝜖. Moreover, the computational complexity of
the modified algorithm is 𝑂

(

|| ⋅
⌈max𝑒∈ 𝑊spike(𝑒)−min𝑒∈ 𝑊spike(𝑒)

𝜖

⌉)

.

Proof. Suppose that 𝛼 is max𝑒 𝑊spike(𝑒), where the maximum is taken
over the optimal solution to (RSPP). By construction, there exists some
𝛽 ∈ Thresh such that 𝛽 ≤ 𝛼 and 𝜖 ≤ 𝛽−𝛼. By Lemma 1, we conclude that
𝑉 ⋆ ≤ 𝑉cost (𝛽) ≤ 𝑉 ⋆+𝜖. By step 13 , we have that 𝑉 ⋆,𝜖 ≤ 𝑉cost (𝛽) ≤ 𝑉 ⋆+𝜖.
The inequality 𝑉 ⋆ ≤ 𝑉 ⋆,𝜖 is clear, as 𝑉 ⋆ is the optimal cost over all pos-
sible trajectories. Thus 𝑉 ⋆ ≤ 𝑉 ⋆,𝜖 ≤ 𝑉 ⋆+𝜖. As for the time complexity,
the same argument as in the proof of Theorem 2 shows that the time
complexity is 𝑂(||𝑁), where 𝑁 is the number of points in Thresh. It
can easily be seen that 𝑁 =

⌈max𝑒∈ 𝑊spike(𝑒)−min𝑒∈ 𝑊spike(𝑒)
𝜖

⌉

+ 1, which
gives the desired complexity bound. This completes the proof. □

Similarly, we prove:
8

Fig. 2. Normed ball in R2. The black set is an 𝓁∞-normed ball, and the green set is
an 𝓁1-normed ball. The yellow set is a larger 𝓁∞-normed ball, which is the analogue
of (7). The blue set is the Minkowski sum of the black and purple sets, which is the
analogue of (8). The blue set is a subset of the yellow set which does not include
points in which both entries are large in absolute value.

Theorem 4. Consider Algorithm 1 and take any 𝜇 > 0. Suppose that we
change step 7 and define

Thresh =
{

min
𝑒∈

𝑊spike(𝑒), (1 + 𝜇) min
𝑒∈

𝑊spike(𝑒),

(1 + 𝜇)2 min
𝑒∈

𝑊spike(𝑒),… ,max
𝑒∈

𝑊spike(𝑒)
}

.

Let 𝑉 ⋆,𝜇 be the value provided by this modified algorithm, and let 𝑉 ⋆ be
the optimal value of (RSPP) for the uncertainty set  of the form (8). Then
𝑉 ⋆ ≤ 𝑉 ⋆,𝜇 ≤ (1 + 𝜇)𝑉 ⋆. Moreover, the computational complexity of the
modified algorithm is 𝑂

(

|| ⋅
⌈ logmax𝑒∈ 𝑊spike(𝑒)−logmin𝑒∈ 𝑊spike(𝑒)

log(1+𝜇)

⌉)

.

Proof. As before, let 𝛼 = max𝑒 𝑊spike(𝑒), where the maximum is taken
over the optimal solution to (RSPP). By construction, there exists some
𝛽 ∈ Thresh such that 1 ≤ 𝛽

𝛼 ≤ 1 + 𝜇. By Lemma 1, we conclude that
𝑉 ⋆ ≤ 𝑉cost (𝛽) ≤ (1 + 𝜇)𝑉 ⋆. By step 13, we have that 𝑉 ⋆,𝜇 ≤ 𝑉cost (𝛽) ≤
(1 + 𝜇)𝑉 ⋆. Together with 𝑉 ⋆ ≤ 𝑉 ⋆,𝜇 , stemming from optimality, we
conclude that 𝑉 ⋆ ≤ 𝑉 ⋆,𝜇 ≤ (1 + 𝜇)𝑉 ⋆. As for the time complexity,
the same argument as in the proof of Theorem 2 shows that the time
complexity is 𝑂(||𝑁), where 𝑁 is the number of points in Thresh. It
can easily be seen that 𝑁 =

⌈ logmax𝑒∈ 𝑊spike(𝑒)−logmin𝑒∈ 𝑊spike(𝑒)
log(1+𝜇)

⌉

+1, which
gives the desired complexity bound. □

3.3. Discussion about uncertainty sets and algorithms

In the previous sections, we presented two possible choices for the
uncertainty set. The first one, (7), can be understood as a norm ball of
a weighed 𝓁∞-norm, centered around the point (𝑃0(𝑡),𝐻0(𝑡)). Indeed,
the condition in (7) can be restated as 1

𝛥𝑃 (𝑡) |𝑃 (𝑡) − 𝑃0(𝑡)| ≤ 1 and
1

𝛥𝐻(𝑡) |𝐻(𝑡) −𝐻0(𝑡)| ≤ 1, which define a norm ball of radius 1 around
the point (𝑃0(𝑡),𝐻0(𝑡)). The second choice of uncertainty set, (8), can be
similarly seen as a Minkowski sum of two norm balls centered around
(𝑃0(𝑡),𝐻0(𝑡)), the first being a weighted 𝓁1-norm, and the second being
a weighted 𝓁∞-norm.

The tunable parameters 𝛥𝑃 (𝑡), 𝛥𝐻(𝑡), 𝛿𝑃 ,𝑡, 𝛿𝐻,𝑡, 𝜇1 are used to deter-
mine the size and exact shape of these uncertainty set. Fig. 2 demon-
strates the 𝓁1-normed ball, 𝓁∞-normed ball, and their Minkowski sum
in R2. It is seen in Fig. 2 that with correct scaling, the Minkowski sum is
a subset of an 𝓁∞-normed ball which does not contain points in which
all entries are ‘‘large’’ in absolute value, but still contains points in
which a subset of the entries is large.
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We now return to the uncertainty sets (7) and (8). With correct
tuning, the set (8) is a subset of (7) which removes scenarios in which
the realization of the demand uncertainty is ‘‘large’’ in absolute value
for all times, but includes scenarios in which the realization of the
demand uncertainty is ‘‘large’’ only for a subset of times. When solving
(RSPP), smaller uncertainty sets allow us to reduce our conservatism,
and hence improve our performance, assuming the uncertainty set
contains the (unknown) true demand. This will become evident in the
next section, which will test the prescribed algorithm in a case study.

To conclude, the mixed uncertainty set (8) considers more realis-
tic scenarios, in which the demand does not simultaneously peak at
all time steps. In practice, if the nominal demand (𝑃0(𝑡),𝐻0(𝑡))𝑇𝑡=1 is
achieved from a load prediction algorithm, e.g. one appearing in [34–
37], the parameters 𝛥𝑃 (𝑡), 𝛥𝐻(𝑡), 𝛿𝑃 ,𝑡, 𝛿𝐻,𝑡, 𝜇1 are fitted by looking at
the deviation of the algorithm. Some prediction algorithms report their
expected standard deviation, while for others, we can look at the accu-
racy of the algorithm in the past. It might seem as if we return to the
previous problem, where parameter inaccuracy jeopardized the perfor-
mance of the algorithm, there are evidence that the robust algorithms
are much less vulnerable to such parameter inaccuracies [43].

Before moving on to the case studies illustrating the performance
of the algorithms, we wish to elaborate a bit more on the complexity
of the algorithms displayed above in terms of the discretization of the
turbine:

Remark 5. Corollary 1 and Theorems 2–4 prescribe complexity bounds
on the algorithms presented in this section. The complexity bound is
stated in terms of the number of edge || in the graph, which is the
custom for graph-based algorithms in computer science [29]. However,
we would like to understand it in terms of the discretization of the
turbine.

The number of vertices || in the graph is equal to 𝑇 ||, where
𝑇 is the horizon of the problem and  is the discrete state–space
of the turbine. The relationship between the number of vertices and
the number of edges is a bit more complex. Generally, we know that
|| ≤ || ≤ ‖‖2, as any vertex is connected to at least one other vertex,
but no more than ‖‖ other vertices. A more precise relationship can
be achieved by considering the dynamics of the discretized model.
Namely, the number of edges is smaller than 𝑇

∑

𝑥∈ | (𝑥)|, and both
are roughly equal if 𝑇 is much larger than most transition lengths
𝑐(𝑥, 𝑢). If we assume that the number of control actions in each state
is bounded between min and max, then 𝑇𝑈min|| ≤ || ≤ 𝑇𝑈max||.
In that case, linear-time and quadratic-time algorithms in || are also
linear-time and quadratic-time algorithms in ||, respectively.

4. Case studies

4.1. Modeling and pricing

We demonstrate the benefit of the presented algorithm in the eco-
nomic dispatch of an MGT for CHP operation, whose cost functions are
inspired by a discretized version of the Capstone C65 turbine [7]. The
engine unit consists of a single stage centrifugal compressor, a can-type
combustor, a single stage turbine, a recuperator and a separate heat
recovery unit. In order to accommodate the changing ratio between
power and heat generation demand, the recuperator is equipped with a
controllable valve which alters the amount of exhaust gasses bypassing
the heat exchanger. The cycle’s schematic is presented in Fig. 3.

In order to optimize the MGT cycle during its operation, two input
parameters (shaft speed and recuperator bypass valve position) are
selected and simulated to yield a number of solution states (electrical
power and heat output that prescribes fuel mass flow). The discrete
state space consists of 1501 states (1500 active states and one ‘off’ state),
corresponding to 30 different engine shaft speeds (38.4–96 krpm) and
50 bypass valve positions (0–45%). The thermodynamic performance of
9

the MGT is characterized in electrical power and heat output domains
Fig. 3. Engine schematic cycle.

ranging between 5–65 kWel and 27–216 kW respectively; see Fig. 4(a)–
(c). The lowest heat to power output ratio varies between 1.7–3.3 for
0–45% bypassing conditions.

We adopt the edge weight scheme appearing in [6] and determine
the cost of an edge in the graph  as follows: for an edge between a state
𝑥(𝑡1) and a state 𝑥(𝑡2), the power generation is defined as the average
power 𝑥(𝑡1)+𝑥(𝑡2)

2 times the transition time 𝑡2 − 𝑡1. The transition time
is defined as 15 s if we do not increase the engine rpm, and as 30 s
if we increase it by one step. The heat generation, fuel consumption
and demand on the edge are defined similarly. The cost of the edge is
now defined as the sum of the fuel cost, plus the cost of buying power
and heat from the utility, while ensuring the power- and heat-balance
equations are satisfied. In addition, there is a cost associated with the
start-up and shut-down of the unit.

The cost of a gas turbine engine is roughly $75,000. Thus, assuming
a low cycle fatigue life of 10,000 cycles [55], we estimate the cost of
shutdown and startup as $3.75 each. We assume the MGT is offline
throughout start-up (lasting 6 mins) and shut-down (lasting 3 mins)
sequences, so all power and heat must be purchased from the utility.

The dispatch problem is considered for a residential building of
multiple apartments. The demand profile of each apartment stems from
the data published by the U.S. Department of Energy for the entire year
of 2004 [56–58]. Within this database, we only consider the residential
buildings internally specified as ‘‘Residential High’’.3 In order to decide
how many apartments benefit from the same MGT, the demand is
scaled such that 95% of the time, the turbine’s electrical capacity is
80% of the consumer demand. This roughly corresponds to the needs
of 9.3 apartments for our 65 kWe turbine capacity.

For the cost of energy supplied from the utility, the price of elec-
tricity was determined according to data from PSEG Long Island New
York [59], similar to [6]. In particular, the price of electricity is
different between peak hours4 and off-peak hours, as well as between
winter days5 and summer days.6 See [6, Table 2,3] for residential
buildings for more information. In addition to electricity, the energy
source for heat/chill can also be obtained from the utility to achieve
energy balance between the demand and supply. As most consumers
use a boiler to satisfy their heat demand, we model the heating cost
with the price of natural gas — as shown in Eq. 24 in Ref. [6]. As
for the cost of energy supplied by the MGT, the natural gas is the
only consumable. The price of natural gas was taken to be $18.42 per
thousand cubic feet,7 which was the residential price of natural gas in
August 2020 [60]. If the MGT produces excess electricity beyond that

3 The full name of the file is USA_NY_New.York-Central.
Park.725033_TMY3_HIGH.csv.

4 These are the hours between 10 AM and 8 PM.
5 These are days between October 1st and May 31st.
6 These are days between June 1st and September 30th.
7 Or equivalently, about 95 cents per kilogram.
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Fig. 4. Solution grid over the states of the gas turbine model.
of the local demand, the output is sold to the utility at the same tariff
rate as the retail cost.

In our previous work [6], it was shown that the solution to the
ED problem under deterministic and known demand profiles leads to
four fundamental modes of operation for the MGT: electricity, heat,
maintenance-cost and profit driven. Electricity and heat driven modes
are dependent on the customer demand profiles in which peak electric-
ity and peak heat requests vary through yearly seasons and day hours.
Maintenance-cost driven behavior is geared towards minimizing losses
associated with low cycle fatigue cost for each shutdown and startup,
along with fuel burned during these sequences. This operational state
is manifested by running the MGT at a minimal electricity and heat
production level (typically during the off-peak tariff period) despite
the fulfillment of the demand from the utility appears to be more
economical. Finally, in the profit driven state, the MGT operates at an
electricity production level significantly beyond the consumer demand,
selling all the excess electricity to the grid.

4.2. Algorithms and running time

We treat the year 2004 as real time for assessing the performance
of each algorithm. The dispatch problem is considered for a horizon of
24 h, dividing it to 𝑇 = 5760 intervals, each 15 s long. Although we
have the ground-truth demand for each day, it is not available when
solving the economic dispatch problem in practice, since we cannot
predict the ‘‘future’’ accurately. Instead, we must use an estimate of the
demand. For a given day, we use the ground-truth demand data from
the previous two weeks (which are indeed available in practice while
solving the ED problem) to compute an estimate of the demand for that
day. For each time of day 𝑡, we compute the sample mean 𝜇𝑃 (𝑡), 𝜇𝐻 (𝑡)
and the standard deviation 𝜎𝑃 (𝑡), 𝜎𝐻 (𝑡) of both power and heat demand
from the preceding two weeks.

The performance of three algorithms are compared. Firstly, the ED
algorithm from [6] that does not account for demand uncertainty is
applied to the forecasted mean demand (𝜇𝑃 (𝑡), 𝜇𝐻 (𝑡)) - we term this
as the nominal algorithm. Moreover, the two robust ED algorithms
presented in this work are considered. Their uncertainty sets use the
standard deviation 𝜎𝑃 (𝑡), 𝜎𝐻 (𝑡) of the power and heat demands, in
addition to the forecasted mean demand.

The first uncertainty set we choose is of the form (7) with 𝑃0(𝑡) =
𝜇𝑃 (𝑡),𝐻0(𝑡) = 𝜇𝐻 (𝑡) and 𝛥𝑃 (𝑡) = 𝛼∞

𝜎𝑃 (𝑇 ), 𝛥𝐻(𝑡) = 𝛼∞
𝜎𝐻 (𝑡) for

some parameter 𝛼∞
> 0. The tuning parameter 𝛼∞

represents the
trade-off between conservatism and accuracy. If 𝛼∞

grows larger, the
probability that the ground-truth demand is inside the uncertainty set
becomes bigger. However, this also implies the algorithm considers
greater likelihood for outlier events associated with worst-case demand
profiles; hence the solution becomes more conservative. In this study,
𝛼∞

is selected to be 0.13. The second uncertainty set we choose
is of the form (8) where 𝑃0(𝑡) = 𝜇𝑃 (𝑡),𝐻0(𝑡) = 𝜇𝐻 (𝑡), 𝛥𝑃 (𝑡) =
𝛼Mixed,1𝜎𝑃 (𝑇 ), 𝛥𝐻(𝑡) = 𝛼Mixed,1𝜎𝐻 (𝑡), 𝛿𝑃 ,𝑡 = 1

𝜎𝑃 (𝑡)
, 𝛿𝐻,𝑡 = 1

𝜎𝐻 (𝑡) , and
𝜇 = 𝛼 . The parameters 𝛼 , 𝛼 determine the size of the
10

1 Mixed,2 Mixed,1 Mixed,2
uncertainty set and are tunable. Here, we chose 𝛼Mixed,1 = 0.03 and
𝛼Mixed,2 = 40.

All the algorithms were computed on a Dell Latitude 7400 computer
with an Intel Core i5-8365U processor. The nominal algorithm utilizes
the shortest path formulation presented in [6]. For the first robust ED
algorithm choice, Corollary 1 shows that a single application of the
shortest path algorithm suffices as well. Both the nominal algorithm
and the first robust algorithm use the same underlying combinato-
rial solution provided by the MATLAB internal shortest path solver,
meaning they have nearly identical running times. For a total of 1500
discretization level combinations, building the graph and finding the
shortest path takes about 2 min. For the second robust ED algorithm
choice, we must apply Algorithm 1. As the number of edges in the
underlying graph is in the millions, the application of Algorithm 1
would require running the shortest path algorithm on roughly 10 mil-
lion different graphs. We instead use the approximate version described
in Theorem 3, where 𝜖 is chosen such that exactly 𝑁 = 30 applications
of the shortest path problems are performed. Even then, the runtine
is significantly longer, about 7 min. However, it is still considered
fast enough to be applicable in real-world systems. (Note that these
runtimes can vary for different choices of the turbine discretizations.)

In addition to these three cases that forecast the demand, in order
to contrast the performance of the algorithms with the global optimum,
the shortest-path algorithm is applied to the ground-truth demand,
which cannot be used in practice, as this quantity is unknown at the
time of scheduling. Since this case produces the best possible schedule,
we present it as the ‘‘benchmark’’ in all solutions.

4.3. Schedules and associated costs for residential buildings

In order to demonstrate the performance of the algorithms, a few
exemplary days were analyzed considering their known two week de-
mand histories: one winter day (February 5th), one spring day (March
24th), one summer day (June 28th), and one autumn day (September
19th). We note that the winter electricity tariff is used in the winter
and spring days, whereas the summer electricity tariff is used in the
summer and autumn days. For each day, the two robust algorithms
(with demand uncertainty) and the nominal algorithm (without de-
mand uncertainty) are evaluated based on the forecasted demand, and
compared to the benchmark schedule stemming from known ground
truth demand. Figs. 5–8 present the resulting MGT electricity and heat
production schedules of the 3 algorithms and contrasts it with the
benchmark case utilizing ground-truth demand, which is also charted
separately. The blue bands around the power and heat schedules indi-
cate the forecasted demands with the standard deviations utilized in the
uncertainty sets of the robust algorithms. In order to clarify the actual
impact on the engine control parameters, spool speed and bypass valve
position are separately charted for each algorithm. The schedules are
computed for 𝑇 = 5760 intervals, each 15 s long.

In the winter day of February 5th, Fig. 5, it can be seen that all
four algorithms keep the MGT spool speed constant at its minimum
operational value at almost all times, yielding the smallest amount
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of local electricity production, consistently below the power demand,
which is predominantly met by purchase from the utility. However, the
differences in schedules arise from changes in bypass valve schedule
and the associated MGT heat production. Thus, the solution seems to be
heat demand driven. The first robust algorithm gives the closest results
to the benchmark case, followed by the second robust algorithm, and
the worst case is the nominal algorithm absent of uncertainty.

Similarly, in the spring day of March 24th, Fig. 6, all four algorithms
keep the MGT spool speed constant at its minimum operational value at
almost all times, significantly below the power demand, which is met
by purchase from the utility. The second robust algorithm produces the
same schedule as the nominal algorithm, but the first robust algorithm
and the benchmark induce different schedules by choosing different
trajectories for the bypass valve. This suggests that the solution is
heat driven also in this scenario. The first robust algorithms slightly
outperforms the others, although the schedules produced by all three
algorithms have similar associated costs.

In the summer day of June 28th, Fig. 7, the first robust algorithm
and the nominal algorithm produce identical schedules, and the second
robust algorithm produces almost the same schedule as the benchmark.
All algorithms decide to start the day operational. In the morning hours
of the day (0–10 AM), the MGT spool speed is near its minimum level
and the electricity production is below the local demand. Moreover,
the bypass valve is set to 0%, manifesting maintenance-cost driven
behavior. At around 10 AM, the MGT spool speed increases to about
78krpm in order to satisfy the local demand. However, the electricity
output of the turbine is not maximized, as the MGT does not reach its
highest rpm. This appears to be an electricity demand driven operation,
which lasts until around 19:00. From 20:00 until midnight, the first
robust and the nominal algorithms decide to turn the turbine off, where
as the second robust algorithm decides to keep it operating close to
the minimum capacity. In fact, the second robust algorithm achieves a
nearly identical schedule to the benchmark, with only a small change
around 8–9 PM, and a difference in cost of less than 1 cent.

In the fall day of September 19th, see in Fig. 8, according to the
benchmark case, the optimal schedule is to shut down the MGT for the
entire day. This corresponds to a maintenance-cost driven solution, as
it implies that the possible savings that could be achieved by turning
on the turbine are negated by the low cycle fatigue cost associated with
each startup and shutdown. Only the second robust algorithm manages
to replicate this behavior. Both the first robust and the nominal algo-
rithms turn on the turbine, and achieve an identical schedule, with a
difference in cost of $6.4.

Table 1 summarizes the daily scheduling cost of all cases, where
the most favorable forecasting solution of that day is highlighted by
italics. In each of the days, both robust algorithms perform at least
as well as the nominal algorithm. Moreover, the first robust algorithm
outperformed the nominal algorithm for all days with winter electricity
tariff, with savings up to $0.89 per day. The second robust algorithm
utperformed the nominal algorithm for all days with summer electric-
ty tariff, with savings up to $6.37 per day. In fact, the second robust
lgorithm has exactly the same scheduling cost as the benchmark case
n these days, meaning it successfully finds the global minimum.

We can consider an alternative performance metric for the robust
lgorithms. It is clear that the benchmark cost is the optimum over all
ossible schedules. The nominal algorithm is an uncertainty-agnostic
lgorithm which represents the baseline from which we begin, in an
ffort to reduce the cost. The margin in cost between the nominal
lgorithm and the benchmark represents the potential benefit that any
obust algorithm can offer. In Table 1, indicated in parentheses, we
alculate the reduction of excess cost as a percentage of this margin,
uch that 100% and 0% reduction, implies that the robust algorithm
erforms identically to the benchmark and nominal cases respectively.
or the four days considered, the first robust algorithm has an average
11

eduction in excess cost of about 4%, and the second robust algorithm o
Fig. 5. Schedules produced by the algorithms for February 5th (winter).

Fig. 6. The schedules produced by the algorithms for the spring day, March 24th. The
econd robust algorithm produces the same schedule as the nominal algorithm.

as an average reduction in excess cost of about 51%. This is expected
onsidering the discussion in Section 3.3, as the first robust algorithm
as an uncertainty set of the form (7) and the second robust algorithm
as an uncertainty set of the form (8).

. Conclusion

We considered the economic dispatch problem with uncertain de-
and for a single micro gas turbine, providing combined heat and
ower, coupled with utility. We considered the case in which the de-
and is assumed to be contained in a given uncertainty set and showed

n equivalence between the economic dispatch problem and the robust
hortest-path problem. Two different models of an uncertainty set were
roposed: one including time-dependent confidence intervals with no
urther assumption, and another coupling with a budgeting assumption
hroughout the time horizon. Both algorithms relied on adaptations
f the classical shortest-path problem, and we presented proofs for
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Fig. 7. The schedules produced by the algorithms for the summer day, June 28th. The
irst robust algorithm produces the same schedule as the nominal algorithm, and the
econd robust algorithm produces a similar schedule to the benchmark.

Fig. 8. The schedules produced by the algorithms for the autumn day, September 19th.
he first robust algorithm produces the same schedule as the nominal algorithm, and
he second robust algorithm produces the same result as the benchmark.

able 1
chedule costs for the benchmark algorithm, the nominal algorithm, and the two
obust algorithms. The reduction of excess costs for the robust algorithms compared
o the nominal algorithm is displayed in parentheses. The costs associated with the
est-performing algorithm in each day are highlighted by italics.
Schedule cost in $ Winter Spring Summer Autumn
(Reduction in excess cost in %) Feb. 5th Mar. 24th Jun. 28th Sep. 19th

Benchmark case 293.02 196.86 188.83 126.48

Nominal algorithm 299.39 202.30 191.35 133.32

First robust algorithm 298.48
(14.29%)

202.16
(2.57%)

191.35
(0.00%)

133.32
(0.00%)

Second robust algorithm 299.16
(3.61%)

202.30
(0.00%)

188.83
(100.00%)

126.48
(100.00%)
12
their correctness and analyses of their time complexity. Both proposed
algorithms were demonstrated in a case study, in which we examined
their performance under realistic demand framework and tariffs of a
residential unit. Our results indicate that the robust algorithms pro-
posed in this manuscript with forecasted demand and uncertainty sets
outperform the nominal, non-robust algorithm with forecasted demand.
More precisely, when the benchmark algorithm displays heat-driven
behavior, the ∞-norm robust algorithm outperforms the nominal al-
gorithm. Moreover, in electricity-driven and maintenance-cost driven
settings, the mixed-norm robust algorithm outperforms the nominal
algorithm, and actually reaches the globally optimal schedule stemming
from a fully known heat and power demand.

This is a first step toward a robust integration of micro gas turbines
with complex models and restrictions into a micro-grid setting, which
cannot deterministically predict the future demand. The presented
methods can also be applied to the case of arrays of multiple gas
turbines by defining 𝑥(𝑡) as a tuple including the states of all the
turbines in the array. Unfortunately, this methods scales exponentially
with the number of turbines, so it can only be applied to modest
size arrays. Future work can try to improve the performance of the
algorithms on large turbine arrays by either partitioning the corre-
sponding robust shortest path problem to multiple smaller problems, or
by using dual-gradient methods, which will apply the robust algorithms
described herein as intermediate steps when calculating the gradient.
Another possible avenue for future research is the development of more
complex scheduling strategies which consider updates in the demand
uncertainty over time. The demand uncertainty can change when a part
of the unknown demand in revealed. Such methods can use a rolling-
horizon, receding-horizon or a model-predictive control approach, all
relying on iterative optimization over time, and will therefore rely on
the robust-shortest path algorithms developed in this paper.
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