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Cooperative Manipulation via Internal Force
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Abstract—This article considers the integration of
rigid cooperative manipulation with rigidity theory.
Motivated by rigid models of cooperative manipulation
systems, i.e., where the grasping contacts are rigid, we
introduce, first, the notion of bearing and distance rigidity
for graph frameworks in SE(3). Next, we associate the
nodes of these frameworks to the robotic agents of rigid
cooperative manipulation schemes and we express the
object-agent internal forces by using the graph rigidity
matrix, which encodes the infinitesimal rigid body motions
of the system. Moreover, we show that the associated
cooperative manipulation grasp matrix is related to the
rigidity matrix via a range-nullspace relation, based on
which we provide novel results on the relation between the
arising interaction and internal forces and, consequently,
on the energy-optimal force distribution on a cooperative
manipulation system. Finally, simulation results enhance
the validity of the theoretical findings.

Index Terms—Bearing rigidity, cooperative manipulation,
distance rigidity, infinitesimal rigidity.

I. INTRODUCTION

MULTIROBOT systems have received a considerable
amount of attention during the last few decades, due

to the advantages they offer with respect to single-robot setups.
Example problems include consensus/rendezvous, connectivity
maintenance, formation control, and robotic manipulation. In
the latter case, multirobot frameworks can yield significant
advantages due to the potentially heavy payloads or challeng-
ing maneuvers. This work focuses on bridging the fields of
cooperative robotic manipulation and robot formation control
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by associating the interagent interaction forces of the first to
interagent geometric relations of the latter.

The goal of robot formation control is to control each robot
using local information from neighboring agents so that the
entire team forms a desired spatial geometric pattern [1]. A
special instance of formation control with numerous applications
is rigid formations. Two cases of rigid formation control have
been widely studied in the literature, namely, distance rigidity
and bearing rigidity. Rigidity theory, a branch of discrete mathe-
matics, explores under what conditions can the geometric pattern
of a network be determined given that the length (distance) or
bearing of each edge in a network of nodes is fixed. This theory
has been applied in distance and bearing formation control and
localization problems [2]–[6].

In this article, we introduce the notion of distance and
bearing rigidity, which studies under what conditions can the
geometric pattern of a multiagent system be uniquely deter-
mined if both the distance and the bearing of each edge are
fixed. Moreover, we combine the latter with rigid cooperative
manipulation, i.e., configurations where a number of robots carry
an object via rigid contact points. Cooperative manipulation
is a special form of constrained dynamical system [7]–[12].
The majority of related works assumes that the robotic agents
are attached to the object via rigid grasps and, hence, the
overall system can be considered as a closed-chain robotic
agent. In terms of control design, most works consider decen-
tralized schemes, where there is no communication between
the agents, and use impedance and/or force control [13]–[16],
possibly with contact force/torque measurements (e.g., [17],
[18]). In addition, numerous works consider unknown dynam-
ics/kinematics of the agents and the object and/or external
disturbances [19]–[22].

An important property in rigid cooperative manipulation sys-
tems that has been studied thoroughly in the related literature
is the regulation of internal forces. Internal forces are forces
exerted by the agents at the grasping points that do not contribute
to the motion of the object. While a certain amount of such
forces is required in many cases (e.g., to avoid contact loss in
multifingered manipulation), they need to be minimized in order
to prevent object damage and unnecessary effort of the agents.
Most works in rigid cooperative manipulation assume a certain
decomposition of the interaction forces in motion-inducing and
internal ones, without explicitly showing that the actual internal
forces will be indeed regulated to the desired ones (e.g., [17],
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[18]); [9], [12], [23]–[25] analyze specific load decompositions
based on whether they provide internal force-free expressions,
whereas [26] is concerned with the cooperative manipulation in-
teraction dynamics. The decompositions in the aforementioned
works, however, are based on the interagent distances and do not
take into account the actual dynamics of the agents. The latter, as
we show in this article, are tightly connected to the internal forces
as well as their relation to the total force exerted by the agents.
More specifically, the contribution of this article is two-fold.
First, we integrate rigid cooperative manipulation with rigidity
theory. Motivated by rigid cooperative manipulation systems,
where the interagent distances and bearings are fixed, we intro-
duce the notion of distance and bearing rigidity in the special
Euclidean group SE(3). Based on recent results, we show next
that the internal forces in a rigid cooperative manipulation
system, consisting of more than two robotic agents, depend
on the distance and bearing rigidity matrix, a matrix that en-
codes the allowed coordinated motions of the multiagent-object
system. Moreover, we prove that the cooperative manipulation
grasp matrix, which relates the object and agent velocities, is
connected via a range-nullspace relation to the rigidity matrix.
Second, we rely on the aforementioned findings to provide new
results on the internal force-based rigid cooperative manipula-
tion. We derive novel results on the relation between the arising
interaction and internal forces in a cooperative manipulation
system. This leads to novel conditions on the internal force-free
object-agents force distribution and consequently to optimal, in
terms of energy resources, cooperative manipulation. Bearing
rigidity has been used before in [27] to analyze the properties of
virtual closed-loop mechanisms and parallel robots; similarly,
our analysis provides new physical insights for the fields of co-
operative manipulation and rigidity theory. This article extends
our preliminary conference version [28], which tackles optimal
cooperative manipulation by regulating the internal forces. That
work, however, does not associate cooperative manipulation
with rigidity theory or provide explicit results on the optimal
object-agents force distribution.

The rest of this article is organized as follows. Section II pro-
vides notation and necessary background. Section III provides
the cooperative manipulation model and Section IV discusses
distance and bearing rigidity. The main results of the article
are given in Section V, and Section VI discusses features of
our analysis. Section VII presents simulation results. Finally,
Section VIII concludes this article.

II. PRELIMINARIES

The set of positive integers is denoted by N and the real
n-coordinate space, with n ∈ N, by Rn. The n× n identity
matrix is denoted by In, the n-dimensional zero vector by 0n,
and the n×m matrix with zero entries by 0n×m. We write 0
instead of 0n when n is clear from the context. The vectors
of the canonical basis of Rd are indicated as ei, i ∈ {1 . . . d},
and they have a one in the (imod d)th entry and zeros else-
where. Given a matrix A ∈ Rn×m, we use A† for its Moore–
Penrose inverse, and null(A), range(A) for its nullspace and
range space, respectively. For a discrete set N , |N | denotes its

cardinality. Given a, b ∈ R3,S(a) is the skew-symmetric matrix
defined according to S(a)b = a× b. In addition, Sn denotes
the (n+ 1)-dimensional sphere and SO(3), SE(3) the rotation
and special Euclidean group, respectively; Pr(x) := In − xx�

‖x‖2
projects vector x ∈ Rn onto the orthogonal complement of x,
i.e., the subspace {y ∈ Rn : y�x = 0}. A graph G is a pair
(N , E), where N is a finite set of N = |N | ∈ N nodes and
E ⊆ N ×N is a finite set of |E| edges. The complete graph onN
nodes is denoted by KN . All vectors and vector differentiations
are expressed with respect to a known inertial reference frame,
unless otherwise stated.

We also make use of some properties from linear algebra.
1) For any matrix H , it holds that H† = H�(HH�)† [29, Th.
3.8]. 2) For a matrix A ∈ Rn×m, and B := KA, where K ∈
Rn×n is an invertible matrix, it holds that A†A = B†B. 3) Let
A,B ∈ Rn×m such that range(A�) = null(B). Then, it holds
that A†A+B†B = Im. 4) For matrices A,B ∈ Rn×m, A is left
equivalent (or row equivalent) to B if and only if there exists an
invertible matrix P ∈ Rn×n such that A = PB. It then can be
shown that A and B are left-equivalent if and only if null(A) =
null(B).

Lemma 1 (Gauss’ principle [10], [11]): Let an unconstrained
system described by the configuration variables q ∈ Rn evolve
according to M(q, t)q̈ = Q(q, q̇, t), where M ∈ Rn×n is pos-
itive definite. Assume now that the system is subjected to m
consistent constraints of the form A(q, q̇, t)q̈ = b(q, q̇, t). Then,
the acceleration q̈ of the constrained system is given by the
constrained minimization problem

min
q̈

[q̈ − α]�M(q)[q̈ − α] s.t. A(q, q̇, t)q̈ = b(q, q̇, t)

where α := M(q)−1Q(q, q̇, t) is the acceleration of the uncon-
strained system.

III. COOPERATIVE MANIPULATION MODELING

We provide in this section the dynamic modeling of the rigid
cooperative manipulation system. A key feature of the model
is the grasp matrix, which, as will be clarified, motivates the
introduction of the notion of distance and bearing rigidity in the
next section and the association between the two.

Consider N robotic agents, indexed by the set N :=
{1, . . . , N}, rigidly grasping an object. We denote by qi, q̇i ∈
Rni , with ni ∈ N ∀i ∈ N , the generalized joint-space variables
and their derivatives of agent i. The overall joint configuration is
then q := [q�1 , . . . , q

�
N ]�, q̇ := [q̇�1 , . . . , q̇

�
N ]� ∈ Rn, with n :=∑

i∈N ni. In addition, we denote the position and rotation matrix
of the ith end-effector bypi ∈ R3 andRi ∈ SO(3), respectively.
Similarly, the velocity of the ith end-effector is denoted by vi :=
[ṗ�i , ω

�
i ]

�, whereωi ∈ R3 is the respective angular velocity, and
it holds that vi = Ji(qi)q̇i, where Ji : Si → R6×ni is the robot
Jacobian, and Si := {qi ∈ Rni : dim(null(Ji(qi))) = 0} is the
set away from kinematic singularities [30], ∀i ∈ N . Moreover,
we denote xi := (pi, Ri) ∈ SE(3) and x := (x1, . . . , xN ) ∈
SE(3)N . The task-space dynamics of the agents are [30]

M(x)v̇ + C(x, ẋ)v + g(x) = u− h (1)
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Fig. 1. Two robotic agents rigidly grasping an object.

where v := [v�1 , . . . , v
�
N ] ∈ R6N , h := [h�

1 , . . . , h
�
N ]�, u :=

[u�
1 , . . . , u

�
N ]�, g := [g�1 , . . . , g

�
N ]� ∈ R6N ; the terms Mi :

Si → R6×6,Ci : Si × R6 → R6×6, gi : Si → R6 are their pos-
itive definite inertia, Coriolis, and gravity terms, respectively,
which are well-defined when qi ∈ Si, i ∈ N ; hi ∈ R6 are the
forces between the object and the agents, and ui ∈ R6 the
task-space inputs ∀i ∈ N .

Regarding the object, we denote by xO := (pO, RO) ∈ SE(3)
and vO := [ṗ�O, ω

�
O ]

� ∈ R12 the pose and generalized velocity
of the object’s center of mass, respectively. We consider the
following second-order dynamics, which can be derived based
on the Newton–Euler formulation:

ṘO = S(ωO)RO (2a)

MO(xO)v̇O + CO(xO, ẋO)vO + gO(xO) = hO (2b)

where MO : SE(3) → R6×6 is the positive definite inertia ma-
trix, CO : SE(3)× R6 → R6×6 is the Coriolis matrix, gO :
SE(3) → R6 is the gravity vector, and hO ∈ R6 is the vector
of generalized forces acting on the object’s center of mass.

In view of Fig. 1 and the grasping rigidity, one obtains [19]

vi = JOi
(xi)vO ∀i ∈ N (3)

where JOi
: SE(3) → R6×6 is the object-to-agent Jacobian ma-

trix, with

JOi
(xi) =

[
I3 −S(piO)

03×3 I3

]
(4)

and piO := pi − pO, ∀i ∈ N ; JOi
is always full-rank, due to the

rigidity of the grasping contacts. The grasp matrix is formed by
stacking J�

Oi
as

G(x) :=
[
JO1

(x1)
�, . . . , JON

(xN )�
] ∈ R6×6N (5)

and has full-column rank due to the rigidity of the grasping
contacts; (3) can now be written in stack vector form as

v = G(x)�vO. (6)

The kineto-statics duality [30] along with the grasp rigidity
suggests that the force hO acting on the object’s center of mass
and the generalized forces hi, i ∈ N , exerted by the agents at
the grasping points, are related through

hO = G(x)h. (7)

By using (1), (2), and (7), we obtain the coupled dynamics

Mc(x̄)v̇O + Cc(x̄, ˙̄x)vO + gc(x̄) = G(x)u (8)

where Mc := MO +GMG�, Cc := CO +GCG� +GMĠ�,
gc := gO +Gg, x̄ is the coupled state x̄ := [x�, x�

O]
� ∈

SE(3)N+1, and we have omitted the arguments for brevity. The
interaction forces h between the object and the agents can be
decoupled into motion-induced and internal forces

h = hm + hint. (9)

The internal forces hint are squeezing forces that the agents
exert to the object and belong to the nullspace of G(x)
[i.e., G(x)hint = 0]. Intuitively, when h = hint, it holds that
G(x)(u−Mv̇ − Cv − g) = 0 and the object moves according
to hO = MOv̇O + COvO + gO = 0. Hence, hint does not con-
tribute to the object’s motion and results in internal stresses that
might damage it. An analytic expression for h and hint is given
in Section V.

Note from (6) that the agent velocities v belong to the range
space of G(x)�. Therefore, since G(x) is a matrix that encodes
rigidity constraints, this motivates the association of G(x) to
the rigidity matrix used in formation rigidity theory, and of
the rigid cooperative manipulation scheme to a multiagent rigid
formation scheme. To this end, we introduce next in Section IV
the notion of distance and bearing rigidity. In Section V-A,
we connect the latter with the cooperative manipulation system
(8), and in Section V-B, we use this connection to derive new
results on cooperative manipulation free from internal forces.
We argue that the association of rigid cooperative manipulation
with rigidity theory, which has not been considered before,
provides new physical insights in the intersection of the two
fields (illustrated in Theorem 1 of Section V). It also paves the
way for drawing novel links that could help solve problems of
one by leveraging the rich literature of the other.

IV. DISTANCE AND BEARING RIGIDITY IN SE(3)

We begin by recalling that the range space of the grasp matrix
G(x)T corresponds to the rigid body translations and rotations of
the system. While G appears naturally in the context of dynamic
modeling of rigid bodies, it is also indirectly related to the notion
of structural rigidity in discrete geometry.

In the classical structural rigidity theory, one considers a col-
lection of rigid bars connected by joints allowing free rotations
around the joint axis (bar-and-joint frameworks). One is then
interested in understanding what are the allowable motions of
the framework, i.e., those motions that preserve the lengths of
the bars and their connections to the joints. The so-called trivial
motions for these frameworks are precisely the rigid body trans-
lations and rotations of the system. For some frameworks, there
may be additional motions, known as flexes, that also preserve
the constraints. This is captured by the notion of infinitesimal
motions of the framework and is characterized by the rigidity
matrix of the framework [31].

Since, in a rigid cooperative manipulation system, the relative
distances and bearings among the agents and the object are fixed,
we naturally consider frameworks that encode both the lengths
of bars and pose of the joints, leading to a distance- and bearing-
type framework. This relates notions from distance rigidity, and
recent works in bearing rigidity for frameworks embedded in
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SE(2) and SE(3) [32], [33]. In this direction, we introduce the
concept of distance and bearing rigidity (abbreviated as D&B
rigidity). For this work, we focus on the notion of infinitesimal
rigidity for D&B frameworks. We first formally define a D&B
framework in SE(3).

Definition 1: A framework in SE(3) is a triple (G, pG , RG),
where G := (N , E) is a graph, pG : N → R3 is a function map-
ping each node to a position in R3, and RG : N → SO(3) is a
function associating each node with an orientation element of
SO(3) (both with respect to an inertial frame).

In this work, we employ the special orthogonal group (rota-
tion matrices) {R ∈ R3×3 : R�R = I3, det(R) = 1} to express
the orientation of the agents. Moreover, we use the shorthand
notation pi := pG(i),Ri := RG(i), p := [p�1 , . . . , p

�
N ]� ∈ R3N ,

R := (R1, . . . , RN ) ∈ SO(3)N , xi := (pi, Ri) ∈ SE(3), and
x := (x1, . . . , xN ) ∈ SE(3)N .

The distances and bearings in a framework can be summarized
through the following SE(3) D&B rigidity function, γG , that
encodes the rigidity constraints in the framework. Consider a di-
rected graph G = (N , E), where E ⊆ {(i, j) ∈ N 2 : i �= j}, as
well as Eu := {(i, j) ∈ E : i < j} ⊆ E . Then, γG can be formed
by the distance and bearing functions γe,d : R3 × R3 → R≥0,
γe,b : SE(3)2 → S2, with

γe,d(pi, pj) :=
1

2
‖pi − pj‖2 ∀e = (i, j) ∈ Eu (10a)

γe,b(xi, xj) := R�
i

pj − pi
‖pi − pj‖ ∀e = (i, j) ∈ E (10b)

which encodes the distance ‖pi − pj‖ between two agents as
well as the local bearing vector R�

i
pj−pi
‖pi−pj‖ , expressed in the

frame of agent i. Now γG is formed by stacking the afore-
mentioned distance and bearing functions, i.e., γG : SE(3)N →
R|Eu| × S2|E|, with

γG :=

[
γd(p)

γb(x)

]
:=

[
γ1,d, . . . , γ|Eu|,d, γ

�
1,b, . . . , γ

�
|E|,b

]�
. (11)

We have introduced the edge set Eu for the symmetric distance
functions γ(i,j),d = γ(j,i),d in order to avoid redundancy in the
rows of γG . Note that the aforementioned expressions for γe,d,
γe,b are not unique and other choices that capture the rigidity
constraints can also be made. We also mention our slight abuse
of notation, where the index k in γk,d and γk,b refers to a labeled
edge in Eu and E .

In this work, we are interested in the set of D&B infinitesimal
motions of a framework in SE(3). These can be thought as
perturbations to a framework in SE(3) that leave γG unchanged.
This set is characterized by the nullspace of the matrix appearing
in the rate-of-change of γG under the kinematic equations associ-
ated with rotational motion in SE(3) [33]. That is, the nullspace
of the matrix ∇(p,R)γG , termed the SE(3)-D&B rigidity matrix

RG : SE(3)N → R(|Eu|+3|E|)×6N := ∇(p,R)γG , i.e.,

RG(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂γ1,d
∂p1

∂γ1,d
∂R1

. . .
∂γ1,d
∂pN

∂γ1,d
∂RN

...
. . .

...
∂γ|Eu |,d
∂p1

∂γ|Eu |,d
∂R1

. . .
∂γ|Eu |,d
∂pN

∂γ|Eu |,d
∂RN

∂γ1,b
∂p1

∂γ1,b
∂R1

. . .
∂γ1,b
∂pN

∂γ1,b
∂RN

...
. . .

...
∂γ|E|,b
∂p1

∂γ|E|,b
∂R1

. . .
∂γ|E|,b
∂pN

∂γ|E|,b
∂RN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

with

∂γe,d
∂xi

=
[
∂γe,d
∂pi

∂γe,d
∂Ri

]
=

[
(pi − pj)

� 01×3

]
∂γe,d
∂xj

=
[
∂γe,d
∂pj

∂γe,d
∂Rj

]
=

[
(pj − pi)

� 01×3

]
∂γe,b
∂xi

=
[
∂γe,b
∂pi

∂γe,b
∂Ri

]
=

[
−Pr(γe,b)

‖pj−pi‖R
�
i S(γe,b)R

�
i

]
∂γe,b
∂xj

=
[
∂γe,b
∂pj

∂γe,b
∂Rj

]
=

[
Pr(γe,b)
‖pj−pi‖R

�
i 03×3

]
.

The projection operator Pr(·) [5] is defined as in Section II. In-
finitesimal motions, therefore, are motions x(t) produced by ve-
locities v(t) that lie in the nullspace ofRG , for which it holds that
γ̇G = RG(x(t))v(t) = 0, where v := [ṗ�1 , ω

�
1 , . . . , ṗ

�
N , ω�

N ]�,
as defined in Section III. The infinitesimal motions therefore
depend on the number of motion degrees of freedom the entire
framework possesses. This directly relates to the structure of
the underlying graph. Motions that preserve the distances and
bearings of the framework for any underlying graph are called
D&B trivial motions. This leads to the definition of infinitesimal
rigidity.

Definition 2: A framework (G, pG , RG) is D&B infinitesi-
mally rigid in SE(3) if every D&B infinitesimal motion is a
D&B trivial motion.

We now aim to identify what the trivial motions of a D&B
framework are, and to determine conditions for a framework
to be infinitesimally rigid based on properties of RG . Before
we proceed, we note that the D&B rigidity function in SE(3)
can be seen as a superposition of the rigidity functions asso-
ciated with the classic distance rigidity theory [31] and the
SE(3) bearing rigidity theory [32]. In particular, we note that
RG,d : R3N → R|Eu|×3N := ∇pγd is the well-studied (distance)
rigidity matrix, while RG,b : SE3N → R3|E|×6N := ∇(p,R)γG,b
is the SE(3) bearing rigidity matrix. Note that RG,d is asso-
ciated with the framework (G, pG), which is the projection of
(G, pG , RG) to R3. With an appropriate permutation, PR, of the
columns of RG , we have that
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R̃G := RGPR

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂γ1,d
∂p1

. . .
∂γ1,d
∂pN

∂γ1,d
∂R1

. . .
∂γ1,d
∂RN

...
. . .

...
∂γMG ,d

∂p1
. . .

∂γMG ,d

∂pN

∂γMG ,d

∂R1
. . .

∂γMG ,d

∂RN
∂γ1,b
∂p1

. . .
∂γ1,b
∂pN

∂γ1,b
∂R1

. . .
∂γ1,b
∂RN

...
. . .

...
∂γMG ,b

∂p1
. . .

∂γMG ,b

∂pN

∂γMG ,b

∂R1
. . .

∂γMG ,b

∂RN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

which is equal to

R̃G =

[[
RG,d 0|Eu|×3N

]
RG,b

]
=:

[
R̄G,d
RG,b

]
.

The nullspace of R̃G , therefore, is the intersection of the
nullspaces of R̄G,d and RG,b.

With the above interpretation, we can now understand the
trivial motions to be the intersection of trivial motions associated
to distance rigidity with those associated to SE(3) bearing
rigidity. In particular, let

Sd := span
{
1N ⊗ I3,L�

R3(G)
}

denote the trivial motions associated to a distance framework
[31]. That is, 1N ⊗ I3 represents translations of the entire frame-
work, and L�

R3(G) is the rotational subspace induced by the
graph G in R3, i.e.,

L�
R3(G) = span {(IN ⊗ S(eh)) pG , h = 1, 2, 3} .

These motions can be produced by the linear velocities of the
agents. It is known that Sd ⊆ null(RG,d) for any underlying
graph G [31]. For the matrix R̄G,d, we can define the corre-
sponding set

S̄d := span

{[
1N ⊗ I3

�

]
,

[
L�

R3(G)
�

]}
⊆ null(R̄G,d).

Note that the distance rigidity does not explicitly depend on the
orientation of the nodes when expressed as a point in SE(3). This
accounts for the free � entry in the subspace S̄d corresponding
to the rotations. Thus, the set of trivial motions in R3 can be
seen as the projection of S̄d in R3.

Similarly, for an SE(3) bearing framework one can define the
subspace [32]

Sb := span

{[
1N ⊗ I3

03N×3,

]
,

[
pG
03N ,

]
,L�

SE(3)(G)
}

where the vector [pTG , 0
T
3N ]T represents a scaling of the frame-

work. The space L�
SE(3)(G) is the rotational subspace induced

by G, in SE(3),

L�
SE(3)(G) = span

{[
(IN ⊗ S(eh)) pG

1N ⊗ eh

]
, h = 1, 2, 3

}
. (14)

It is also known that Sb ⊆ null(RG,b). Thus, Sb describes the
trivial motions of an SE(3) bearing framework [32]. The above
discussion leads to the following result.

Proposition 1: The trivial motions of a D&B framework are
characterized by the set

Sdb := S̄d ∩ Sb = span

{[
1N ⊗ I3

03N×3

]
,L�

SE(3)(G)
}
.

Furthermore, it follows that Sdb ⊆ null(R̃G).
Having characterized the trivial motions, it now follows

from Definition 2 that for infinitesimal rigidity, we require that
null(R̃G) = Sdb. This is summarized as follows.

Proposition 2: The framework (G, pG , RG) is D&B infinites-
imally rigid in SE(3) if and only if

null(R̃G) = null(R̄G,d) ∩ null(RG,b)

= span

{[
1N ⊗ I3

03N×3,

]
,L�

SE(3)(G)
}

= Sdb. (15)

Equivalently, the D&B framework is infinitesimally rigid in
SE(3) if and only if

rank(R̃G) = dim(R̃G)− dim(null(R̃G)) = 6N − 6. (16)

Hence, all the motions produced by the nullspace of R̃G for
an infinitesimally rigid framework must correspond to trivial
motions, i.e., translations and coordinated rotations.

Moreover, given (13), it follows that (G, pG , RG) is D&B
infinitesimally rigid in SE(3) if and only if

null(RG) = {x = PRy ∈ SE(3)N : y ∈ null(R̃G)} (17)

i.e., the nullspace of RG consists of the vectors of null(R̃G)
whose elements are permutated by PR.

It is worth noting that the aforementioned results are
not valid if the rigidity matrix loses rank, i.e., rank(RG) <
max{rank(RG(x)), x ∈ SE(3)}. These are degenerate cases
that correspond, for example, to when all agents are aligned
along a direction v ∈ S2. In particular, frameworks with N = 2
nodes are also degenerate by this definition. For more discus-
sion on these cases, the reader is referred to [33]. As a last
remark, we observe that frameworks over the complete graph,
(KN , pKN

, RKN
), are (except for the degenerate configurations)

infinitesimally rigid. That is, rank(R̃KN
) = 6N − 6. This result

follows from the literature on distance- and SE(3)-rigidity the-
ory [31], [32]. This leads to the following corollary.

Corollary 1: Consider the D&B frameworks (G, pG , RG)
and (KN , pG , RG) for nondegenrate configurations (pG , RG).
Then, (G, pG , RG) is D&B infinitesimally rigid if and only if
rank(R̃G) = rank(R̃KN

) = 6N − 6.
In the next section, we use the aforementioned results to link

the D&B rigidity matrix of a complete graph to the internal
forces from (9).

V. MAIN RESULTS

In cooperative manipulation schemes, the most energy-
efficient way of transporting an object is to exploit the full
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potential of the cooperating robotic agents, i.e., each agent
does not exert less effort at the expense of other agents, which
might then potentially exert more effort than necessary. For
instance, consider a rigid cooperative manipulation scheme,
with only one agent (a leader) working toward bringing the
object to a desired location, whereas the other agents have zero
inputs. Since the grasps are rigid, if the leader is equipped
with sufficiently powerful actuators, it will achieve the task
by “dragging” the rest of the agents, compensating for their
dynamics, and creating non-negligible internal forces. In such
cases, when the cooperative manipulation system is rigid (i.e.,
the grasps are considered to be rigid), the optimal strategy of
transporting an object is achieved by regulating the internal
forces to zero. Therefore, from a control perspective, the goal of
a rigid cooperative manipulation system is to design a control
protocol that achieves a desired cooperative manipulation task,
while guaranteeing that the internal forces remain zero.

This section provides the main results of this work. We first
give, in Section V-A, a closed-form expression for the internal
forces of the coupled object-agents system, by connecting them
with the D&B rigidity matrix introduced in Section IV. Next,
we use these results in Section V-B to provide a novel relation
between the arising interaction and internal forces; we further
give conditions on the agent force distribution for cooperative
manipulation free from internal forces.

A. Internal Forces Based on the D&B Rigidity Matrix

In this section, we provide a closed-form expression for the
internal forces of the coupled object-agents system and link them
to the D&B rigidity matrix notion introduced in Section IV. In
particular, we consider that the robotic agents form a graph that
will be defined in the sequel. Note that, due to the rigidity of
the grasping points, the forces exerted by an agent influence, not
only the object, but all the other agents as well. Hence, since
there exists interaction among all the pairs of agents, we model
their connection as a complete graph, as explicitly described
below. Moreover, as will be clarified later, the rigidity matrix of
this graph encodes the constraints among the agents, imposed
by the rigidity of the grasping points, and plays an important
role in the expression of the internal forces.

Let the robotic agents form a framework (G, pG , RG) in SE(3),
where G := (N , E) is the complete graph, i.e., E = {(i, j) ∈
N 2 : i �= j}, and pG := [p�1 , . . . , p

�
N ]�, RG := (R1, . . . , RN ).

Consider also the undirected partEu = {(i, j) ∈ E : i < j}ofE ,
as also described in Section IV. Since the graph is complete, we
conclude that |E| = N(N − 1) and |Eu| = N(N−1)

2 . Consider
now the rigidity functions γe,d : R3 × R3 → R≥0, ∀e ∈ Ēu and
γe,b : SE(3)2 → S2, ∀e ∈ E , as given in (10), as well as the

stack vector γG : SE(3)N → R
N(N−1)

2 × S2N(N−1) as given in
(11). The rigidity constraints of the framework are encoded in
the constraint γG = const. Since the rigidity of the framework
stems from the rigidity of the grasping points, these constraints
encode also the rigidity constraints of the object-agent coop-
erative manipulation. By differentiating twice γG = const., one
obtains

RG(x)v̇ = −ṘG(x)v (18)

where RG : SE(3)N → R
7N(N−1)

2 ×(6N) is the rigidity matrix
associated to G and has the form (12). Note that (18) is de-
rived from γG , which corresponds to the distance and bearing
constraints for a complete graph; hence, using Corollary 1,
γG encodes rigid body motions (coordinated translations and
rotations of the system). Therefore, by assuming that the agents
satisfy the constraint γ̇G = RGv = 0 initially,1 we conclude that
the motion of the cooperative object-agents manipulation system
that is enforced by (18) corresponds to rigid body motions
(coordinated translations and rotations of the system). Hence,
since G is complete, the analysis of Section IV dictates that
these motions are the infinitesimal motions of the framework
and are the ones produced by the nullspace of RG(x). We note
that the rigid body motions can be produced by the nullspace
of the rigidity matrix of other graph topologies as well (except
for the complete one). Nevertheless, as explained above, the
complete graph topology draws motivation from the physics of
the cooperative manipulation system, where all agents indeed
influence the object as well as each other via their exerted forces.

After giving the rigidity constraints in the cooperative manip-
ulation system, we are now ready to derive the expressions for
the internal forces, hint, in terms of the aforementioned rigidity
matrix. We follow the same methodology as in [9]. Since we
are concerned with the internal forces, consider, without loss of
generality, that hO = hm = 0 ⇔ h = hint, i.e., the agents pro-
duce only internal forces, without inducing object acceleration.
Then, the agent dynamics are

M(x)v̇ + C(x, ẋ)v + g(x) = u− hint. (19)

We use Gauss’ principle [10], [11] (see Lemma 1) to derive a
closed form expression for hint. Let the unconstrained system
of the robotic agents beM(x)α(x, ẋ) := u− C(x, ẋ)v − g(x),
where α is the unconstrained acceleration, i.e., the acceleration
the system would have if the agents did not grasp the object.
According to Gauss’s principle [10], the actual acceleration v̇ of
the system is the closest one to α, while satisfying the rigidity
constraints. More rigorously, and as stated in Lemma 1, v̇ is the
solution of the constrained minimization problem

min [v̇ − α(x, ẋ)]� M(x) [v̇ − α(x, ẋ)]

s.t. RG(x)v̇ = −ṘG(x)v.

The solution to this problem is obtained by using the Karush–
Kuhn–Tucker conditions [34] and has a closed-form expression.
It can be shown that it satisfies

Mv̇ = Mα−R�
G
(RGM−1R�

G
)† (ṘGv +RGα

)
which is consistent with the one in [10],

Mv̇ = Mα−M
1
2

(
RGM− 1

2

)† (
ṘGv +RGα

)
since it holds that R�

G (RGM−1R�
G )

† = M
1
2 (RGM− 1

2 )†. In-
deed, according to property 1) of Section II, it holds that H† =
H�(HH�)†, for any H ∈ Rx×y. Then, the aforementioned
equality is obtained by setting H = RGM− 1

2 .

1Otherwise, the constraint RGv = 0 can be appended in (18).
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Therefore, the internal forces have the form

hint = R�
G
(RGM−1R�

G
)† (ṘGv +RGα

)
(20a)

= M
1
2

(
RGM− 1

2

)† (
ṘGv +RGα

)
(20b)

and one concludes that when the unconstrained motion of
the system does not satisfy the constraints (i.e., when ṘGv �=
−RGα), then the actual accelerations of the system are mod-
ified in a manner directly proportional to the extent to which
these constraints are violated. Moreover, it is evident from the
aforementioned expression that the internal forces depend not
only on the relative distances pi − pj , but also on the closed-loop
dynamics and the inertia of the unconstrained system (see the
dependence on αint and B). Therefore, given a desired force hd

to be applied to the object, an internal force-free distribution to
agent forces hi,d at the grasping points cannot be independent
of the system dynamics. We stress that the derived expression
concerns the internal forces produced exclusively by the re-
dundancy of the multirobot system (excluding, for instance,
potential internal forces needed to keep the object from falling
due to gravity, which would also arise in a single manipulation
task). By following a similar procedure and including the object
in the multiagent graph, one can arrive to similar results for the
interaction forces h as well.

Note that, as dictated in Section IV, the rigidity matrix RG is
not unique, since different choices of γG that encode the rigidity
constraints can be made. Hence, one might think that different
expressions of RG will result in different rigidity constraints
of the form (18) and hence different internal forces—which is
unreasonable. Therefore, in order to show the consistency of
(20), we prove next in Proposition 3 that this is not the case, by
using the fact that all different expressions of the rigidity matrix
RG have the same nullspace (the coordinated translations and
rotations of the framework).

Proposition 3: Let RG,1 and RG,2 such that null (RG,1) =
null (RG,2) and let

hint,i :=M
1
2

(
RG,iM− 1

2

)† (
ṘG,iv +RG,iαint

)
, ∀i ∈ {1, 2}.

Then, hint,1 = hint,2.
Proof: The poses and velocities in the terms ṘG,iv are the

actual ones resulting from the coupled system dynamics and
hence they respect the rigidity constraints imposed by RG,iv̇ =

−ṘG,iv, for i ∈ {1, 2}. Therefore, exploiting the positive def-
initeness of M , we need to prove that (RG,1M− 1

2 )†RG,1 =

(RG,2M− 1
2 )†RG,2. According to property 4) of Section II, since

RG,1 and RG,2 have the same nullspace, they are left equivalent
matrices and there exists an invertible matrixP such thatRG,1 =
PRG,2. Hence, by further using property 2) of Section II, it holds
that(
RG,2M− 1

2

)†
RG,2−

(
RG,1M− 1

2

)†
RG,1

=
[
(RG,2M− 1

2 )†RG,2M− 1
2 −(PRG,2M− 1

2 )†PRG,2M− 1
2

]
M

1
2

which is equal to 0. �

Additionally, by following its proof, one can conclude that
Proposition 3 can be extended to account for different graphs G
and G′ satisfying (18).

Next, we note that (20) leads to the following Lemma.
Lemma 2: The cooperative manipulation system is free of

internal forces, i.e., hint = 06N , if and only if

ṘGv +RGM−1 (u− Cv̇ − g) ∈ null
(R�

G
)
.

Proof: In view of (20), ṘGv +RGαint = ṘGv +RGM−1

(u− Cv̇ − g)must belong to null

(
M

1
2

(
RGM− 1

2

)†)
in order

to avoid internal forces. The latter, however, is identical
to null

(R�
G
)
, since it holds that null

(RGM−1/2
)†

=

null
(
M− 1

2R�
G
)

and M is positive definite. �
As mentioned before, the most energy-efficient way of trans-

porting an object in a cooperative manipulation scheme is by
minimizing the arising internal forces. In the next section, we
derive a new relation between the interaction and internal forces
as well as novel sufficient and necessary conditions on the agent
force distribution for the provable regulation of the internal
forces to zero, according to (20). We further show its applica-
tion in a standard inverse-dynamics control law that guarantees
trajectory tracking by the object’s center of mass.

B. Cooperative Manipulation Via Internal Force
Regulation

In this section, we use the results of Section V-A to derive
a new relation between the interaction and internal forces h
and hint, respectively. Moreover, we derive novel sufficient and
necessary conditions on the agent force distribution for the
provable regulation of the internal forces to zero, according to
(20), and we show its application in a standard inverse-dynamics
control law that guarantees trajectory tracking of the object’s
center of mass. This is based on the following main theorem,
which links the complete agent graph rigidity matrix RG to the
grasp matrix G.

Theorem 1: Let N robotic agents, with configuration x =
(p,R) ∈ SE(3)N , rigidly grasping an object and associated with
a grasp matrix G(x), as in (5). Let also the agents be modeled
by a framework on the complete graph (KN , pKN

, RKN
) =

(KN , p, R) in SE(3), which is associated with a rigid-
ity matrix RKN

. Let also x be such that rank(RKN
(x)) =

maxy∈SE(3)N {rank(RKN
(y))}. Then,

null(G(x)) = range
(RKN

(x)�
)
. (21)

Proof: Since RKN
corresponds to the complete graph and

rank(RKN
(x)) = maxy∈SE(3)N {rank(RKN

(y))}, the frame-
work (KN , p, R) is infinitesimally rigid. Hence, the nullspace
of RKN

consists only of the infinitesimal motions of the frame-
work, i.e., coordinated translations and rotations, as defined
in Proposition 1. In particular, in view of (17), Proposition 2,
and (14), one concludes that null(RKN

) is the linear span of

1N ⊗
[

I3

03×3

]
and the vector space [χ�

1 , . . . , χ
�
N ]� ∈ SE(3)N ,
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with χi := [χ�
i,p, χ

�
i,R]

� ∈ SE(3), satisfying

χi,p − χj,p = − S(pi − pj)χi,R (22a)

χi,R = χj,R (22b)

where pi := pKN
(i), pj := pKN

(j) ∀i, j ∈ N , with i �= j. In
view of (6), one obtains v = G(x)�vO. Note that the first three

columns of G� form the space 1N ⊗
[

I3

03×3

]
, whereas its last

three columns span the aforementioned rotation vector space.
Indeed, for any ṗO, ωO ∈ R6, the range of these columns is[

−ṗ�OS(p1O)
�, ω�

O , . . . ,−ṗ�OS(pNO)
�, ω�

O

]�
for which it is straightforward to verify that (22) holds. Hence,
null(RKN

) = range(G�), which implies (21). �
We note that, in degenerate cases (i.e., when RG loses

rank, as explained in Section IV), null(RG) contains more
motions than the trivial coordinated translations and rotations,
i.e., range(G�) ⊂ null(RG). Therefore, (21) is replaced by
range(R�

G ) ⊂ null(G).
Since the internal forces belong to null(G), one concludes that

they are composed of all the vectors z for which there exists a y
such that z = R�

G y. This can also be verified by inspecting (20b);

one can prove that range(M
1
2 (RGM− 1

2 )†) = range(R�
G ). The

aforementioned result provides significant insight regarding the
control of the motion of the coupled cooperative manipulation
system. In particular, by using (20b) and Theorem 1, we provide
next new conditions on the agent force distribution for provable
avoidance of internal forces. We first derive a novel relation
between the agent forces h and the internal forces hint.

In many related works, h is decomposed as

h = G∗Gh+ (I −G∗G)h (23)

where G∗ is a right inverse of G. The term G∗Gh is a projection
of h on the range space of G�, whereas the term (I −G∗G)h is
a projection of h on the null space of G. A common choice is the
Moore–Penrose inverseG∗ = G† = G�(GG�)−1. This specific
choice yields the vector G∗Gh = G†Gh ∈ range(G�) that is
closest to h, i.e., ‖h−G†Gh‖ ≤ ‖h− y‖, ∀y ∈ range(G�).
However, as the next theorem states, if the second term of
(23) must equal hint, as defined in (20), G∗ must equal
MG�(GMG�)−1.

Theorem 2: Consider N robotic agents rigidly grasping an
object with coupled dynamics (8). Let h ∈ R6N be the stacked
vector of agent forces exerted at the grasping points. Then, the
agent forces h and the internal forces hint are related as

hint =
(
I6N −MG�(GMG�)−1G

)
h.

In order to prove Theorem 2, we first need the following result.
Proposition 4: Consider the grasp and rigidity matrices G,

RG , of (5), (12), respectively. Then, it holds that

MG� (
GMG�)−1

G+M
1
2

(
RGM− 1

2

)†
RGM−1 = I.

(24)

Proof: LetA := RGM− 1
2 andB := GM

1
2 . Then, range(A�)

= null(B). Indeed, according to Theorem 1, it holds that if
z = R�

G y, for some y ∈ R6, then Gz = 06. By multiplying by

M− 1
2 , we obtain M− 1

2 z = M− 1
2R�

G y, which implies that ẑ :=

M− 1
2 z ∈ range((RGM

1
2 )�). It also holds thatBẑ = GM

1
2 ẑ =

Gz = 06, and hence ẑ ∈ null(B). Therefore, by using properties
1) and 3) of Section II and the fact that GMG� is invertible, we
conclude that(
GM

1
2

)†
GM

1
2 +

(
RGM− 1

2

)†
RGM− 1

2 = I

⇔ M
1
2G� (

GMG�)† GM
1
2 +

(
RGM− 1

2

)†
RGM− 1

2 = I

and by left and right multiplication by M
1
2 and M− 1

2 , respec-
tively, the result follows. �

Moreover, for the proof of Theorem 2, we need the following
expression, which is derived from (6), (1), (2), and (7).

h =
(
M−1 +G�M−1

O G
)−1

[
M−1(u− g − Cv)− Ġ�vO

+G�M−1
O (COvO + gO)

]
. (25)

Proof of Theorem 2: We first show that[
I −MG� (

GMG�)−1
G
] (

M−1 +G�M−1
O G

)−1

= M
1
2

(
RGM− 1

2

)†
RG .

Indeed, since (M−1 +G�M−1
O G)−1 has full rank, it suffices to

show that

I −MG� (
GMG�)−1

G

= M
1
2

(
RGM− 1

2

)†
RG

(
M−1 +G�M−1

O G
)

which can be concluded from the fact that RGG� = 0 (due to
Theorem 1) and Proposition 4. Therefore, in view of (25), it
holds that(
I −MG� (

GMG�)−1
G
)
h

=
[
I−MG�(GMG�)−1

G
](
M−1+G�M−1

O G
)−1

[
− Ġ�vO

+M−1 (u− g − Cv) +G�M−1
O (COvO + gO)

]
=M

1
2

(
RGM− 1

2

)†
RG

[
M−1(u− g − Cv)

+G�M−1
O (COvO + gO)− Ġ�vO

]
which, in view of the facts that RGG� = 0, and hence
−RGĠ� = ṘGG�, as well as G�vO = v, becomes

M
1
2 (RGM− 1

2 )†[ṘGv +RGM−1(u− g − Cv)] = hint.

�
Based on Theorem 2, we provide next new results on the

internal force-free (optimal) distribution of a force to the agents.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 10:01:54 UTC from IEEE Xplore.  Restrictions apply. 



1230 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2023

Theorem 3: Consider N robotic agents rigidly grasping an
object with coupled dynamics (8). Let a desired force to be
applied to the object hO,d ∈ R6, which is distributed to the
agents’ desired forces as hd = G∗hO,d, and where G∗ is a right
inverse of G, i.e., GG∗ = I6. Then, it holds that

hint = 0 ⇔ G∗ = MG�(GMG�)−1.

Proof: First, it is easily verified that G∗ is a pseudo-inverse
of G [29]. Next, according to Theorem 2, the derivation of hd

that yields zero internal forces can be formulated as a quadratic
minimization problem

QP : min
hd

‖hint‖2 = h�
d Hhd s.t. Ghd = hO,d (26)

where H := (I6N − MG�(GMG�)−1G)�(I6N − MG�

(GMG�)−1G). Note that the choice G∗ = MG�

(GMG�)−1hO,d is a minimizer of QP, since GG∗ = I6,
and HG∗hO,d = 06N , and therefore sufficiency is proved.

In order to prove necessity, we prove next that G∗ is a strict
minimizer, i.e., there is no other right inverse of G that is a
solution to of QP. Note first that G ∈ R6×6N has full row rank,
which implies that the dimension of its nullspace is 6N − 6.
Let Z := [z1, . . . , z6N−6] ∈ R6N×(6N−6) be the matrix formed
by the vectors z1, . . . , z6N−6 ∈ R6N that span the nullspace of
G. It follows that rank(Z) = 6N − 6 and GZ = 06×6N−6. Let
now the matrixH ′ := Z�HZ ∈ R(6N−6)×(6N−6). SinceGZ =
06×(6N−6) ⇒ Z�G� = 0(6N−6)×6, it follows that H ′ = Z�Z.
Hence, rank(H ′) = rank(Z) = 6N − 6, which implies that H ′

is positive definite. Therefore, according to [35, Th. 1.1], QP has
a strong minimizer. �

The aforementioned theorem provides novel necessary and
sufficient conditions for provable minimization of internal forces
in a cooperative manipulation scheme. As discussed before, this
is crucial for achieving energy-optimal cooperative manipula-
tion, where the agents do not have to “waste” control input
and hence energy resources that do not contribute to object
motion. Related works that focus on deriving internal force-free
distributions G∗, e.g., [9], [12], [23]–[25], are solely based on
the interagent distances, neglecting the actual dynamics of the
agents and the object. The expressions (20), however, give new
insight on the topic and suggest that the dynamic terms of the
system play a significant role in the arising internal forces, as also
indicated by Corollary 2. This is further exploited by Theorem 3
to derive a right-inverse that depends on the inertia of the system.
Note also that, as mentioned before and explained in [9], the
internal forces depend on the acceleration of the robotic agents
and hence the incorporation of M in G∗ is something to be
expected.

The forces h, however, are not the actual control input of
the robotic agents, and hence we cannot simply set h = hd =
MG�(GMG�)−1GhO,d for a given hO,d. Therefore, we design
next a standard inverse-dynamics control algorithm controller
that guarantees tracking of a desired trajectory by the object
center of mass while provably achieving regulation of the inter-
nal forces to zero. Provable force regulation is also done in [8],
requiring however the constraints matrix (RG in our case) to
have positive singular values.

C. Control Design

Let a desired position trajectory for the object center of mass
be pd : R≥0 → R3, and ep := pO − pd. Let also a desired object
orientation be expressed in terms of a desired rotation matrix
Rd : R≥0 → SO(3), with Ṙd = S(ωd)Rd, where ωd : R≥0 →
R3 is the desired angular velocity. Then, an orientation error
metric is [36] eO := 1

2 tr(I3 −R�
d RO) ∈ [0, 2], which, after dif-

ferentiation and by using (2a) and properties of skew-symmetric
matrices, becomes [36]

ėO =
1

2
e�RR

�
O (ωO − ωd) (27)

where eR := S−1(R�
d RO −R�

ORd) ∈ R3. The equilibrium
eR = 0 corresponds to eO = 0, implying tr(R�

d RO) = 3 and
RO = Rd, as well as to eO = 2, implying tr(R�

d RO) = −1
and RO �= Rd [36]. The second case represents an undesired
equilibrium, where the desired and the actual orientation differ
by 180 degrees. This issue is caused by topological obstructions
on SO(3) and it has been proven that no continuous controller
can achieve global stabilization [37]. We design next a control
protocol that guarantees internal force-free convergence of ep,
eO, while guaranteeing that eO(t) < 2, ∀t ∈ R≥0, provided that
the right inverse G∗ = MG�(GMG�)−1 is used.

Corollary 2: Consider N robotic agents rigidly grasping
an object, as described in Section III, with coupled dynamics
(8). Let a desired trajectory be defined by pd : R≥0 → R3,
Rd : R≥0 → SO(3), ṗd, ωd ∈ R3, and assume that eO(0) < 2.
Consider the control law

u = g +
(
CG� +MĠ�

)
vO +G∗

(
gO + COvO

)
+
(
MG� +G∗MO

)(
v̇d −Kdev −Kpex

)
(28)

where ev :=vO−vd,vd :=[ṗ�d , ω
�
d ]

�∈R6, ex :=[e�p ,
1

2(2−eO)2 e
�
R

R�
O]

�, Kp := diag{Kp1 , kp2I3}, where Kp1 ∈ R3×3,Kd ∈
R6×6 are positive definite matrices, and kp2 ∈ R>0 is a positive
constant. Then, the solution of the closed-loop coupled system
satisfies the following:

1) eO(t) < 2, ∀t ∈ R≥0.
2) limt→∞(pO(t)− pd(t)) = 03, limt→∞ Rd(t)

�RO(t) =
I3.

3) It holds that hint(t) = 0 ⇔ G∗ = MG�(GMG�)−1.
Proof: 1) By substituting (28) in (8) and using GG∗ = I we

obtain, in view of (8) and the positive definiteness of M̃ that
M̃(x̄)(ėv +Kdev +Kpex) = 0, implying

ėv = −Kdev −Kpex. (29)

Consider now the function V := 1
2e

�
pKp1ep +

kp2
2−eO + 1

2e
�
v ev,

for which it holds V (0) < ∞, since eO(0) < 2. By differentiat-
ing V , and using (27) and (29), one obtains V̇ = −e�vKdev ≤ 0.
Hence, it holds that V (t) ≤ V (0) < ∞, which implies that
kp2

2−eO(t) is bounded and consequently eO(t) < 2.
2) Since V (t) ≤ V (0) < ∞, the errors ep, ev are bounded,

which, given the boundedness of the desired trajectories pd, Rd

and their derivatives, implies the boundedness of the control
law u. Hence, it can be proved that V̈ is bounded which implies

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 10:01:54 UTC from IEEE Xplore.  Restrictions apply. 



VERGINIS et al.: COOPERATIVE MANIPULATION VIA INTERNAL FORCE REGULATION 1231

the uniform continuity of V̇ . Therefore, according to Barbalat’s
lemma ([38], Lemma 8.2), we deduce that limt→∞ V̇ (t) = 0 ⇒
limt→∞ ev(t) = 06. Since ex(t) is also bounded, it can be proved
by using the same arguments that limt→∞ ėv(t) = 06 and hence
(29) implies that limt→∞ ex(t) = 06.

3) Let the desired object force be

hO,d = COvO + gO +MOαd (30)

where αd := v̇d −Kdev −Kpex. In view of Theorem 3, it suf-
fices to prove h = hd = G∗hO,d. By substituting (28) in (25) and
canceling terms, we obtain

h =
(
M−1 +G�M−1

O G
)−1[

M−1G∗hO,d +G�αd

+G�M−1
O

(
COvO + gO

)]
.

Next, we add and subtract the term G�M−1
O GG∗hO,d as

h =
(
M−1 +G�M−1

O G
)−1(

M−1 +G�M−1
O G

)
G∗hO,d

+
(
M−1 +G�M−1

O G
)−1 [

G�M−1
O

(
MOαd + COvO

+gO −G�MOhO,d

)]
which, in view of (30), becomes h = G∗hO,d. Completion of the
proof follows by invoking Theorem 3. �

In case it is required to achieve a desired internal force hint,d,
one can add in (28) a term of the form described next.

Corollary 3: Let hint,d ∈ null(G) be a desired internal force
to be achieved. Then, adding the extra term uint,d = (I6N −
MG�(GMG�)−1G)hint,d in (28) achieves hint = hint,d.

Proof of Corollary 3: Since hint,d ∈ null(G) = range(R�
G ), it

holds that M− 1
2hint,d ∈ range(M− 1

2R�
G ) = range(RGM− 1

2 )†.
Therefore, it holds that(

RGM− 1
2

)†
RGM−1hint,d

=
(
RGM− 1

2

)†
RGM− 1

2

(
M− 1

2hint,d

)
= M− 1

2hint,d. (31)

Hence, (20b) yields the resulting internal forces

hint=M
1
2

(
RGM− 1

2

)†
RGM−1

×
(
I −MG� (

GMG�)−1
G
)
hint,d

=M
1
2

(
RGM− 1

2

)†
RGM−1hint,d

= M
1
2M− 1

2hint,d = hint,d

where we have used (31) and the fact that RGG� = 0. �

VI. DISCUSSION

We briefly comment now on some of the features of the
aforementioned analysis.

First, we note that the aforementioned results, spanning from
Theorem 1 to Corollary 3, still hold if the rigidity matrix RG

is replaced by any constraint matrix A satisfying Av = 0 and
(18), not necessarily related to rigidity theory (see, e.g., (10)
of [28]). However, the connection between cooperative manip-
ulation and rigidity theory could, through the insight provided
by Theorem 1, pave the way for drawing novel links that could
help solve problems in the two fields. For instance, one could
use rigidity-theory results toward the localization of robotic
agents [5], or object-agent contact maintenance via means of
rigidity maintenance for non-rigid grasping contacts. Reversely,
the association of cooperative manipulation and rigidity theory
could help use cooperative-manipulation tools to tackle issues
in formations of rigid graphs. For instance, the results on coop-
erative manipulation free from internal forces could be used to
prevent local minima in decentralized formation control of rigid
graphs through Theorem 1.

Second, note that G� = MG�(GMG�)−1 induces an im-
plicit and natural load-sharing scheme via the incorpora-
tion of M . More specifically, note that the force distribu-
tion to the robotic agents via G∗hO,d yields for each agent
MiJOi

(
∑
i∈N J�

Oi
MiJOi

)−1, ∀i ∈ N . Hence, larger values of
Mi will produce larger inputs for agent i, implying that agents
with larger inertia characteristics will take on a larger share of
the object load. Note that this is also a desired load-sharing
scheme, since larger dynamic values usually imply more power-
ful robotic agents. Previous works (e.g., [17]) used load-sharing
coefficients, without relating the resulting force distribution with
the arising internal forces.

Third, note that the employed controller requires knowledge
of the agent and object dynamics. In case of dynamic parameter
uncertainty, standard adaptive control schemes that attempt to
estimate potential uncertainties in the model (e.g., [19], [22])
would intrinsically create internal forces, since the dynamics
of the system would not be accurately compensated. The same
holds for schemes that employ force/torque sensors that provide
the respective measurements at the grasp points (e.g., [17], [18])
in periodic time instants. Since the interaction forces depend
explicitly on the control input, such measurements will unavoid-
ably correspond to the interaction forces of the previous time in-
stants due to causality reasons, creating thus small disturbances
in the dynamic model.

Finally, note that the aforementioned results do not hold
in degenerate cases where the rigidity matrix loses rank (see
Section IV). In such cases, null(RG) contains more motions
than the trivial ones (coordinated translations and rotations), and
hence the constraints (18) are not consistent with the motion of
the cooperative manipulation system, leading to an inaccurate
expression in (20). In these cases, one can employ the con-
straints’ matrix used in [28] [see (10)], whose nullspace always
coincides with range(G�).

VII. SIMULATION RESULTS

This section provides simulation results using four identical
UR5 robotic manipulators in the realistic dynamic environment
V-REP [39]. The agents are rigidly grasping an object of 40 kg,
as shown in Fig. 2. In order to verify the findings of the previous
sections, we apply the controller (28) to achieve tracking of a
desired trajectory by the object’s center of mass. We simulate
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Fig. 2. Four UR5 robotic arms rigidly grasping an object. The red
counterpart represents a desired object pose at t = 0.

Fig. 3. Error metrics ep(t), eO(t), ev(t), respectively, top to bottom, for
the two choices G∗

1 and G∗
2 and t ∈ [0, 15] s.

Fig. 4. Norms of the resulting control inputs, ‖τi(t)‖ for G∗
1 (with blue)

and G∗
2 (with red), ∀i ∈ {1, . . . , 4}, and t ∈ [0, 15] s.

the closed-loop system for two cases of G∗, namely the pro-
posed oneG∗

1 = MG�(GMG�)−1 as well as the more standard
choiceG∗

2 = G�(GG�)−1, showing the validity of Corollaries 2
and 3.

The initial pose of the object is set as pO(0)=[−0.225,
−0.612, 0.161]�, ηO(0) = [0, 0, 0]� and the desired trajectory
as pd(t) = pO(0) + [0.2 sin(wpdt+ ϕd), 0.2 cos (wpt+ ϕd),
0.09 + 0.1 sin(wpt+ ϕd)]

�, ηd(t)=[0.15 sin(wφt+ ϕd), 0.15
sin (wθt+ ϕd), 0.15 sin (wψt + ϕd)]

� (in meters and rad, re-
spectively), whereϕd = π

6 ,wp = wφ = wψ = 1,wθ = 0.5, and
ηd(t) is transformed to the respective Rd(t). The gains are set as
Kp1 = 15, kp2 = 75, and Kd = 40I6.

The results are given in Figs. 3 and 4 for 15 s. Fig. 3 depicts
the pose and velocity errors ep(t), eO(t), ev(t), which converge
to zero for both choices of G∗, as expected. The norms of the
control inputs τi(t) of the agents are shown in Fig. 4. Moreover,
the norm of the internal forces, ‖hint(t)‖, computed via (20a),

Fig. 5. Left: The signal ‖hint(t)‖ [as computed via (20a)] for the two
cases of G∗ and t ∈ [0, 15] s. Right: The signal ‖eint(t)‖, when using G∗

1
and for t ∈ [0, 15] s.

is shown in Fig. 5 (left). It is clear that G∗
2 yields significantly

larger internal forces, whereasG∗
1 keeps them very close to zero,

as proven in the theoretical analysis. The larger internal forces
in the case of G∗

2 are associated with the larger control inputs τi.
This can be also concluded from Fig. 4; it is clear that inputs of
larger magnitude occur in the case of G∗

2, which creates internal
forces.

Finally, we set a random force vector hint,d in the nullspace
of G and we simulate the control law (28) with the extra com-
ponent uint,d = hint,d (see Corollary 3). Fig. 5 (right) illustrates
the error norm ‖eint(t)‖ := ‖hint,d(t)− hint(t)‖, which evolves
close to zero. The minor observed deviations can be attributed
to model uncertainties and hence the imperfect cancelation of
the respective dynamics via (28).

VIII. CONCLUSION

In this article, we introduce the notion of distance and bearing
rigidity in SE(3) and we use the associated rigidity matrix
to express the internal forces that emerge in a cooperative
manipulation scheme. Based on these results, we connect the
rigidity and grasp matrices via a nullspace-range relation and
we provide novel results on internal-force-based cooperative
manipulation control and on the relation between the interaction
and internal forces. Future efforts will be directed toward using
rigidity theory for object pose estimation and robust control
design that minimizes the arising internal forces.
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