
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 1, MARCH 2020 189

Convergence Analysis of Signed
Nonlinear Networks

Hao Chen , Daniel Zelazo , Senior Member, IEEE, Xiangke Wang, Senior Member, IEEE,
and Lincheng Shen

Abstract—This paper analyzes the convergence proper-
ties of signed networks with nonlinear edge functions. We
consider diffusively coupled networks comprised of max-
imal equilibrium-independent passive (MEIP) dynamics on
the nodes, and a general class of nonlinear coupling func-
tions on the edges. The first contribution of this paper is
to generalize the classical notion of signed networks for
graphs with scalar weights to graphs with nonlinear edge
functions using notions from the passivity theory. We show
that the output of the network can finally form one or sev-
eral steady-state clusters if all edges are positive and, in
particular, all nodes can reach an output agreement if there
is a connected subnetwork spanning all nodes and strictly
positive edges. When there are nonpositive edges added to
the network, we show that the tension of the network still
converges to the equilibria of the edge functions if the rela-
tive outputs of the nodes connected by nonpositive edges
converge to their equilibria. Furthermore, we establish the
equivalent circuit models for signed nonlinear networks,
and define the concept of equivalent edge functions, which
is a generalization of the notion of the effective resistance.
We finally characterize the relationship between the con-
vergence property and the equivalent edge function, when
a nonpositive edge is added to a strictly positive network
comprised of nonlinear integrators. We show that the con-
vergence of the network is always guaranteed, if the sum of
the equivalent edge function of the previous network and
the new edge function is passive.

Index Terms—Nonlinear circuits, nonlinear networks,
passivity, signed networks.

I. INTRODUCTION

ACOMMON theme in many works on the multiagent sys-
tem is that the interaction between agents is cooperative.
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That is, the weights in the interaction protocol are positive. There
has been recent interest in protocols where the interactions may
be either cooperative or antagonistic, with antagonistic inter-
actions modeled by negative weights in the protocol. Networks
modeled by graphs with both positive and negative edge weights
are termed signed networks [1], [2]. Signed networks have been
studied in social network analysis [3], [4] and multirobot co-
ordination [5], to name a few. As shown in [6], in a signed
network, agents may reach agreement on a common value (i.e.,
consensus), form clusters, or even diverge.

The definiteness of the signed Laplacian matrix is a powerful
tool for the convergence analysis of such signed networks [6].
In particular, Bronski and De Ville [7] provided the bounds on
the number of positive and negative eigenvalues of the signed
Laplacian matrix. Pan et al. [8] related the number of negative
eigenvalues of the signed Laplacian matrix to the number of
negative edges in the network. In [9], a necessary and sufficient
condition was given for the signed Laplacian matrix becoming
indefinite when one edge weight is negative. It was shown that
the absolute value of the negative edge weight must be larger
than the inverse of the effective resistance between the two
nodes connected by the edge. The same result was rederived
in [10], where two alternative proofs were provided based on
geometrical and passivity-based approaches. The definiteness
of the signed Laplacian matrix for the signed directed networks
has been studied in [11] and [12]. The analyses in [6] and [12]
are both developed based on the edge agreement framework
to investigate the convergence of the network by analyzing the
relative outputs of the nodes.

Currently, most of the aforementioned literature above on the
convergence analysis of signed networks is restricted to linear
systems, that is, the edge weights are all scalars and the input–
output (I/O) relationship on each edge is a linear function of
the entire state of the network. In many applications, nonlin-
ear protocols are designed to achieve the desired behavior of
the network. For example, the celebrated Kuramoto model is
often used to analyze the synchronization of coupled phase os-
cillators [13], and it has been shown that nonlinear functions
including the Kuramoto model are well suited into the edge
agreement framework formulated in [14] by passivity analysis.
In [15], another typical nonlinear consensus protocol was pro-
posed to achieve finite-time consensus. However, discussions on
the consensus of signed nonlinear networks have not received
much attention yet. There are some discussions of the nonlin-
ear consensus protocols of signed networks in [2] and [16], but
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these protocols do not operate on the relative outputs of the node
dynamics, which is the subject of this paper.

For the analysis of nonlinear networked systems, the passiv-
ity theory plays an important role [17]–[20]. One variation of
passivity, equilibrium independent passivity (EIP) was proposed
in [21], which requires a system to be passive independent of its
equilibrium, and the equilibrium I/O map is a single-valued
function. An extension of the EIP is maximal equilibrium-
independent passivity (MEIP) proposed in [18], which relaxes
the equilibrium I/O map to be relations, instead of functions.
Motivated by the literature, in this paper, we will investigate the
convergence properties of a signed nonlinear network of MEIP
nodes. By using notions from the passivity theory, we general-
ize the consensus results of single integrators in a signed linear
network discussed in [6] to the case of MEIP nodes in a signed
nonlinear network. The main contributions of this paper can be
summarized as follows.

1) We generalize the definition of signed linear networks to
graphs with nonlinear functions on the edges.

2) We show that for a positive network of MEIP nodes,
convergence is always guaranteed and the outputs form
one or several clusters. In particular, all nodes can
reach an output agreement if there is a connected
spanning subnetwork of all nodes and strictly positive
edges.

3) For networks comprised of nonlinear integrators, we
show a connection to notions from the electrical circuit
theory and the equivalent circuit model to derive con-
vergence results for networks with non-positive edges.
We also propose an algorithm for constructing equivalent
edge functions.

The rest of this paper is organized as follows. In Section II,
we establish our network model, and generalize the classical
definition of the signed networks to the nonlinear case based
on passivity. The convergence analysis of positive networks and
signed networks are provided in Section III. In Section IV, we
establish a connection between the circuit theory and the signed
networks. The simulation results of a signed network of single
integrators are offered in Section V, and the concluding remarks
are given in Section VI.

Preliminaries: We use an undirected graph G = (V, E) to
model a network of agents, where V and E denote the set of
nodes and edges, respectively. If there is an edge connecting
nodes i and j, we say that node i is a neighbor of node j, denoted
as i ∈ Nj . In an undirected network, if i ∈ Nj , then j ∈ Ni . By
assigning an arbitrary orientation to each edge, we define the
incidence matrix E ∈ R|V|×|E| as follows: [E]ik = 1, if edge k
is coming from the node i; [E]ik = −1, if edge k is ending
at node i; and [E]ik = 0 otherwise. For connected graphs, it
follows that the null space of ET , denoted as N (ET ) = β1,
where β ∈ R [22]. A directed path from the node i to node j
in G is a subgraph of G, where a sequence of edges connects
a sequence of nodes, and the edges are oriented in the same
direction from node i to node j [23]. Denote Pi,j as the set of
all paths from node i to node j. When we say an edge k ∈ G is
in a path Pi,j ∈ Pi,j , we do not require the orientation of k to
be consistent with the direction of Pi,j .

Fig. 1. Network model of a collection of agents coupled with edge
functions.

We follow the convention by using italic letters for dynamic
variables, for example, y(t), and using normal font letters to
denote constant signals, for example, y.

II. SIGNED NONLINEAR NETWORKS

In this section, we formulate our network model, and general-
ize the concept of signed networks with nonlinear edge functions
based on notions from the passivity theory.

A. Network Model

We present here the general model for our system and review
an important extension of the passivity theory for the analysis of
these systems. Consider a diffusively coupled network of agents
interacting over the graph G = (V, E), with each agent modeled
as a single-input–single-output system represented by

Σi : ẋi(t) = fi(xi(t), ui(t)), yi(t) = hi(xi(t), ui(t)). (1)

We use the bold symbol to represent the stacked vectors, for
example, u(t) = [u1(t), . . . , u|V|(t)]T . Here, xi ∈ Xi ⊆ Rpi is
the system state, ui ∈ Ui ⊆ R is the control input, and yi ∈
Yi ⊆ R is the system output.

Coordination among the agents is achieved by each agent in-
teracting with its neighbors. From the feedback control point of
view, this can be modeled as a network of agents coordinated
through the interactions on the edges. Each edge function uti-
lizes the relative outputs between two adjacent nodes to generate
the control signals, and the control signals are then added to both
nodes to influence the nodes’ internal states and outputs. The
block diagram of this network model is shown in Fig. 1, and
the relative outputs of the nodes are defined with the incidence
matrix as

ζ(t) = ET y(t). (2)

In many scenarios, we aim to let all nodes’ outputs converge to
the same value, that is, y(t) → β1, β ∈ R as t→ ∞, such that
ζ(t) → 0. This is the so-called consensus problem.

On each edge k ∈ E , there is a function taking the relative
output ζk (t) as input, and with the following form:

Πk : μk (t) = ψk (ζk (t)). (3)

Similarly, we use the stacked vector form μ(t) for the outputs of
the edge functions. The stacked version of (3) can be represented
as μ(t) = Ψ(ζ(t)) = [ψ1(ζ1(t)), . . . , ψ|E|(ζ|E|(t))]T . Denote Ik
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as the set of equilibria of the edgek. That is,ψk (ζk (t)) = 0 if and
only if ζk (t) ∈ Ik . We use I = I1 × I2 × · · · × I|E| to denote
the equilibria of all edge functions. For each edge function
ψk (·), we require ψk (0) = 0, such that I contains the origin,
and μ(t) → 0 when ζ(t) → 0. The edge output μk is added to
the inputs of the two nodes that are connected by edge k. Thus,
the relation between the stacked vector u(t) and μ(t) can be
represented as

u(t) = −Eμ(t). (4)

Following (2) and (4), we have u(t)T y(t) = −μ(t)T ET y(t) =
−μ(t)T ζ(t).

Remark 1: In [18], the nodes’ outputs y(t) are named the
potential, the relative outputs of the nodes ζ(t) the tension, μ(t)
is called the flow, and the nodes’ inputs u(t) as the divergence.
Equation (2) is called Kirchhoff’s voltage law (KVL), and (4)
is called Kirchhoff’s current law (KCL). These concepts are
borrowed from the electrical circuit theory, which we discuss in
Section IV.

Equations (1)–(4) formulate a general framework of diffu-
sively coupled systems, denoted by the triple (G,Σ,Π). Ac-
cording to (1)–(4), u(t) = −EΨ(ET y(t)), Ψ(·) can be taken
in accordance with the edge orientation, such that u is indepen-
dent of the edge orientation.

Remark 2: When the node dynamics (1) are single inte-
grators and the edge functions are linear (scalar) weights, this
network model captures the celebrated consensus, or Laplacian,
dynamics over graphs [24].

For nonlinear systems, the passivity theory has emerged as a
powerful tool for the convergence analysis of diffusively cou-
pled networks [17]–[19]. In this paper, we employ the notion of
the in [18], which is an extension to results on EIP, originally
proposed in [21]. The key concept in both MEIP and EIP is
to require that a passivity inequality holds between any system
trajectory and forced equilibrium points. The system theoretic
machinery needed to apply these passivity notions is the char-
acterization of equilibrium input-output maps. In this direction,
we assume that there exists a nonempty set Ūi ⊆ Ui such that for
every constant ui ∈ Ūi , there exists a constant yi ∈ Yi . Define
σi as the I/O map, which contains the set of all the steady-state
I/O pairs (ui , yi). For MEIP systems, the I/O maps σi are set-
valued maps (or curves in R2), that is,σi = {(ui , yi) : ui ∈ Ūi},
and we denote yi ∈ σi(ui) if (ui , yi) ∈ σi . The relation σi is
said to be maximally monotone if (u′

i , y
′
i), (u

′′
i , y

′′
i ) ∈ σi , then

either (u′
i ≤ u′′

i and y′
i ≤ y′′

i ), or (u′
i ≥ u′′

i and y′
i ≥ y′′

i ), and σi
is not contained in any larger monotone relation [25]. With the
notion of maximal monotone, we now define MEIP.

Definition 1 ([18]): System Σi represented by (1) is said
to be maximal equilibrium-independent passive, if there exists
a maximal monotone relation σi such that for all equilibrium
I/O relations (ui , yi) ∈ σi , there exists a positive semidefinite
storage function Si(xi(t)) satisfying

Ṡi ≤ (ui(t) − ui)(yi(t) − yi). (5)

We use u, y, and σ(·) for the stacked equilibrium inputs, out-
puts, and I/O relations of all the nodes, that is, y = σ(u) means

yi ∈ σi(ui) for any i ∈ V . For more discussion and examples
of MEIP systems, the reader is referred to [18].

In this paper, we assume all the nodes are MEIP systems. With
the aforementioned formulation, when y(t) is in an agreement
state (i.e., y(t) = β1) , the inputs to the nodes are u(t) = 0.
To guarantee the existence of feasible equilibrium solutions
corresponding to the agreement state, there should exist ỹ ∈
σ(0) ∩N (ET ), such that the agreement space is an invariant
set for y(t). We put it into an assumption as follows.

Assumption 1: Each node represented by (1) is MEIP, with
the equilibrium I/O relations satisfying σ(0) ∩N (ET ) 
= ∅.

Observe that if limt→∞ζ(t) = ζ̃ ∈ I , then limt→∞μ(t) =
0 and limt→∞u(t) = 0. If in addition Assumption 1 holds,
then limt→∞y(t) = ỹ exists, meaning the nodes have steady
outputs as t→ ∞. If ỹ = β1, β ∈ R, then the nodes’ outputs
are finally in agreement; otherwise, the nodes’ outputs form
multiple clusters, which is the so-called clustering phenomenon.

B. Signed Nonlinear Edges

The study of signed networks has its origins in the graph
theory [1]. In the study of dynamic systems over graphs, such
as the model considered here, the notion of signed networks
relates to the sign of a scalar edge weight in a linear interaction
protocol, defined as follows.

Definition 2 ([8]): Consider the edge function of the form

Πk : μk (t) = wkζk (t), wk ∈ R. (6)

Then, edge k is positive if wk > 0, and is negative if wk < 0.
Practically, the positive edge represents the cooperative, trust-

ful or attractive relationship, while the negative edge corre-
sponds to the antagonistic, distrustful, or repulsive interactions.
However, Definition 2 only deals with networks with scalar edge
weights. In many applications, the relationship can be much
more complicated. In this paper, we generalize the concept of
signed edges to the nonlinear edge functions based on notions
from the passivity theory. In this direction, we first review the
standard definition of a passive system.

Definition 3 ([27]): A system η = π(t, ξ), where ξ and η are
the system input vector and system output vector, respectively,
is

1) passive if ξT η ≥ 0 ∀(t, ξ);
2) input strictly passive if ξT η ≥ εξT ξ, where ε > 0 ∀(t, ξ).

The linear edge function (6) withwk > 0 is input strictly pas-
sive, and one can choose ε = wk/2 to arrive at that conclusion.
To account for general negative nonlinear edges, following Def-
inition 3, we introduce the notion of active and input strictly
active systems.

Definition 4: A system η = φ(t, ξ), where ξ and η are sys-
tem input vector and output vector, respectively, is

1) active if ξT η ≤ 0 ∀(t, ξ);
2) input strictly active if ξT η ≤ −εξT ξ, where ε > 0∀(t, ξ).

With Definitions 3 and 4 in place, we are now able to define
a notion of signed nonlinear networks.

Definition 5: Suppose the edge function (3) is a map from
R to R, with ψk (0) = 0. Then, edge k is termed

1) (strictly) positive if (3) is (input strictly) passive;
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Fig. 2. Some real elements with nonlinear characteristics [26]. (a)
Current–voltage characteristic of a tunnel diode. (b) Flux–charge char-
acteristic of a memristor. (c) Current–flux characteristic of a Josephson
junction.

2) (strictly) negative if (3) is (input strictly) active.
The traditional definition of signed edges with scalar weights

also fall under these categories. An edge described by the func-
tion (6) is strictly positive if wk > 0, and is strictly negative if
wk < 0. The positive edges and negative edges in Definition 5
are broader in scope. Such edge functions can have more than
one equilibria besides the origin.

Many real elements have such kind of nonlinear characteris-
tics [26]. Fig. 2(a) shows the current–voltage function of a tunnel
diode, whose curve has only one intersection with the voltage
axis (at the origin), and the edges with such a function are strictly
positive. Fig. 2(b) shows the flux–charge function of a memris-
tor, whose curve can also represent sensors with dead zones,
and the edges with such a function are positive, but not strictly
positive. If there is a negative gain multiplying the functions in
Fig. 2(a) and (b), then the edges with the resulting functions are
strictly negative and negative, respectively. Fig. 2(c) shows the
current–flux function of a Josephson junction, which is neither
positive nor negative.

In this paper, we use E≥, E> , E≤, and E< to denote the set
of edges that are positive, strictly positive, negative, and strictly
negative, respectively. Note that in general, E> ⊆ E≥ and E< ⊆
E≤. We also use the notion of nonpositive (nonnegative) edges
defined to be the complement in E of E≥ (E≤). Similarly, the
set of nonstrictly positive edges is the complement of the set of
strictly positive edges. Therefore, the set of nonpositive edges is
a subset of the set made up of nonstrictly positive edges. With the
aforementioned definition for signed edges, we now generalize
the definition of signed networks to the nonlinear cases.

Definition 6 (Signed Nonlinear Networks): A networked
system (G,Σ,Π) is a

1) positive network if all edges are positive (i.e., E = E≥);
2) strictly positive network if all edges are strictly positive

(i.e., E = E> );
3) signed network if not all edges are positive (i.e., E \ E≥


= ∅).

III. CONVERGENCE OF SIGNED NONLINEAR NETWORKS

We begin by analyzing positive networks, and then, move
forward to the cases of general signed nonlinear networks.

A. Positive Networks

We first show that convergence is always guaranteed in a
positive network of MEIP nodes.

Theorem 1: Consider a positive network system (G,Σ,Π)
with the connected graph G = (V, E≥) represented by (1)–(4)
and suppose Assumption 1 holds. Then, limt→∞ζ(t) = ζ̃ ∈ I .

Proof: Consider the Lyapunov function V (x(t)) =
∑|V|

i=1
Si(xi(t)), where Si(xi(t)) is the storage function of node i.
According to (5), we have

V̇ =
|V|∑

i=1

Ṡi ≤ (u(t) − 0)T (y(t) − ỹ) = −ζ(t)T μ(t).

Since the network is positive, according to Definitions 3 and 5,
−ζ(t)T μ(t) ≤ 0, with the equality holds if and only if μ(t) = 0
and ζ(t) ∈ I . According to the LaSalle’s invariance principle
[27], the network will converge to the largest invariant set satis-
fying ζ(t)T μ(t) = 0, meaning limt→∞μ(t) = 0, and limt→∞
ζ(t) ∈ I . Therefore, limt→∞u(t) = 0, and limt→∞y(t) = ỹ ∈
σ(0), and thus, limt→∞ζ(t) = ζ̃ = ET ỹ exists. �

Theorem 1 means that for a positive network of MEIP nodes,
the steady states of the outputs can form one or several clusters.
If there is only one cluster, then it is exactly the consensus case.
In fact, if the network is strictly positive, then I is the origin.
As ζ(t) → 0, y(t) will converge to the agreement space. This
is formulated as the following corollary.

Corollary 1: Consider a strictly positive network system
(G,Σ,Π) with the connected graph G = (V, E> ) represented
by (1)–(4) and suppose Assumption 1 holds. Then, limt→∞
ζ(t) = 0, and limt→∞y(t) = β1, β ∈ R.

In fact, we do not need all edges to be strictly positive in order
to reach agreement, as shown in the following corollary.

Corollary 2: . Consider a positive network system (G,Σ,Π)
with the connected graph G = (V, E≥) represented by (1)–(4)
and suppose Assumption 1 holds. If there exists a connected
subgraph G> = (V, E> ) spanning all nodes and strictly positive
edges, then limt→∞ζ(t) = 0, and limt→∞y(t) = β1, β ∈ R.

Proof: According to Definitions 3 and 5, Ik = 0 ∀ k ∈ E> .
With Theorem 1, we get limt→∞ζk (t) = 0 ∀ k ∈ E> , mean-
ing limt→∞yi(t) − yj (t) = 0, where i, j ∈ V are the two nodes
connected by the edge k. Since G> = (V, E> ) is connected,
therefore, limt→∞yi(t) − yj (t) = 0 ∀ i, j ∈ V . As a result,
limt→∞ζ(t) = limt→∞ET y(t) = 0, and limt→∞y(t) = ỹ,
where ỹ∈σ(0)∩N (ET ), that is, limt→∞y(t)=β1, β∈R. �

In the clustering scenario of positive networks, we are also
able to provide bounds on the distance between these clusters.
Suppose the equilibria of the edge k is contained in a closed in-
terval [ILk , I

R
k ], with ILk ≤ 0, and IRk ≥ 0, that is, Ik ⊂ [ILk , I

R
k ].

The following corollary indicate the bounds of the distances be-
tween the steady outputs of any pair of nodes.

Corollary 3: Consider a positive network system (G,Σ,Π)
with the connected graph G = (V, E≥) represented by (1)–(4)
and suppose Assumption 1 holds. Then, limt→∞yi(t) − yj (t) ∈
[zmin , zmax], where

zmin = max
Pi , j

∑

k∈Pi , j
(−1)pk ILk , zmax = min

Pi , j

∑

k∈Pi , j
(−1)pk IRk

and Pi,j ∈ Pi,j is a directed path from the node i to node j,
pk = 0, if the orientation of the edge k is consistent with the
direction of the path Pi,j , and pk = 1 otherwise.

Proof: Denote Pα as the path such that zmax =
∑

k∈Pα
(−1)pk IRk . Without loss of generality, suppose the sequencing
edges from i to j on path Pα are labeled as 1, . . . , q + 1, where
q ≥ 0, and the sequencing nodes are labeled as i0 , i1 , . . . , iq ,
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Fig. 3. Trajectories of a six-node positive network in Example 1. (a)
Underlying graph of the original network, all the nodes and edges
ek (k = 1, . . . , 5) form a spanning tree. (b) Consensus case when edges
ek (k = 1, . . . , 5) are strictly positive. (c) Clustering case when only
edges ek (k = 2, . . . , 5) are strictly positive.

iq+1 , where node i corresponds to i0 , and node j corresponds
to iq+1 . By Theorem 1, we have

lim
t→∞ yi(t) − yi1 (t) ≤ (−1)p1 IR1

lim
t→∞ yi1 (t) − yi2 (t) ≤ (−1)p2 IR2

...

lim
t→∞ yj (t) − yiq (t) ≤ (−1)pq + 1 IRq+1 .

Therefore, limt→∞yi(t) − yj (t) ≤
∑

k∈Pα (−1)pk IRk = zmax .
The other side of the inequality can be concluded in the same
way. �

Example 1: Consider the network G = (V, E≥) shown in
Fig. 3(a), where V = {v1 , . . . , v6}, and E = {e1 , . . . , e9}. The
node dynamics are all single integrators, and therefore, As-
sumption 1 holds. If we choose the edge functions for ek (k =
1, . . . , 5) as

μk (t) = ζk (t) (7)

and the edge functions for ek (k = 6, . . . , 9) as [see Fig. 2(b)]

μk (t) = sign(ζk (t)) · max{|ζk (t)| − 1, 0} (8)

where sign(·) is the signum function. Then, we have a con-
nected subnetwork spanning all the nodes and strictly positive
edges, that is, ek (k = 1, . . . , 5). Fig. 3(b) shows the trajec-
tory of each node with the initial states of the nodes set as
[3, 1,−3,−1, 0,−2]T . We can see the outputs of the nodes reach
agreement finally, verifying Corollary 2.

Now we change the edge function of e1 from (7) to (8).
Let G> = (V, E> ) span all nodes and strictly positive edges
of G, then G> is made up of two connected components, one
containing nodes v1 and v6 , and one containing nodes v2 , v3 ,
v4 , and v5 . Under the same initial condition, the trajectory of
each node is depicted in Fig. 3(c). We can see the outputs form
two steady clusters finally, and each cluster corresponds to one
connected component in G> . The distance between the outputs
of the two clusters is 0.48, belonging to the interval of equilibria
[−1, 1], which can be derived from Corollary 3.

Now we have shown that the convergence is always guaran-
teed for a positive network. Specifically, if there is a connected
subnetwork made up of all nodes and strictly positive edges, then
the nodes’ outputs will finally reach agreement. We have also
indicated the bounds of the distances between the steady-state
outputs of any pair of nodes.

B. Signed Networks

The convergence properties for the signed network of general
MEIP systems are quite complicated. In fact, it is possible that
relative outputs ζ(t) do not converge to a point in I even when
all the nodes are in their steady states with the equilibrium
input u(t) = 0. Some typical examples are given in [6] and [9],
where the networks of single integrators with edge functions
represented by (6) form steady clusters, while ζ(t) does not
converge to the equilibria of the corresponding edge functions.
Now, we provide a necessary and sufficient condition indicating
when the relative outputs ζ(t) converge to a point in I under
the condition that limt→∞u(t) = 0.

Proposition 1: Consider a signed network system (G,Σ,Π)
with the connected graph G = (V, E) represented by (1)–(4).
Suppose Assumption 1 holds and limt→∞u(t) = 0. Then,
limt→∞ζ(t) = ζ̃ ∈ I , if and only if for any k /∈ E≥, limt→∞
ζk (t) = ζ̃k ∈ Ik .

Proof: (Sufficiency). With the precondition limt→∞u(t) =
0, we have limt→∞y(t) = ỹ ∈ σ(0); therefore, limt→∞ζ(t) =
ζ̃ = ET ỹ exists. Assume limt→∞ζ(t) /∈ I , then there must ex-
ist a set Ẽ ⊂ E≥ such that limt→∞ζk (t) /∈ Ik if k ∈ Ẽ . Denote
Ṽ ⊂ V as the set of nodes that are incident to at least one edge
in Ẽ . Suppose node p has the maximum equilibrium output
among all the nodes in Ṽ . Note that ∀ k /∈ Ẽ , limt→∞μk (t) = 0.
As a result, limt→∞up(t) < 0, which contradicts the precon-
dition that limt→∞u(t) = 0. Thus, Ẽ does not exist, that is,
limt→∞ζk (t) ∈ Ik∀ k ∈ E≥. Therefore, limt→∞ζ(t) = ζ̃ ∈ I .

(Necessity) This is straightforward and omitted. �
By using the same technique as in the proof of Proposition 1,

we can conclude the following corollary for the consensus case,
that is, limt→∞ζ(t) = 0.

Corollary 4: Consider a signed network system (G,Σ,Π)
with the connected graph G = (V, E) represented by (1)–(4).
Suppose Assumption 1 holds and limt→∞u(t) = 0. Then,
limt→∞ζ(t) = 0, if and only if for any k /∈ E> , limt→∞ζk = 0.

Proposition 1 and Corollary 4 show that, when there are
nonpositive (nonstrictly positive) edges added to the positive
(strictly positive) network, ζ(t) can still converge to the equilib-
ria of the corresponding edge functions, if relative outputs of the
nodes connected by the nonpositive (nonstrictly positive) edges
converge to their equilibria. However, one may note that with
Proposition 1 and Corollary 4, before executing the interaction
protocol, we still cannot decide whether limt→∞u(t) = 0, nor
decide whether those nonpositive (nonstrictly positive) edges
can converge to their equilibria. We will further discuss these
conditions in Section IV. Before we proceed, we discuss an im-
portant property of the nodes only incident to strictly positive
edges.

Proposition 2: Consider a signed network system (G,Σ,Π)
with the connected graph G = (V, E) represented by (1)–(4).
Suppose Assumption 1 holds and limt→∞u(t) = 0. Then, the
following inequality holds:

min
i∈Np

lim
t→∞ yi(t) ≤ lim

t→∞ yp(t) ≤ max
i∈Np

lim
t→∞ yi(t) (9)

where p is any node only incident to strictly positive edges.
Equalities in (9) hold at the same time, that is, mini∈Np limt→∞
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Fig. 4. Circuit interpretation of a network of single integrators. (a) Un-
derlying graph of a four-node network. (b) Corresponding circuit.

yi(t) = limt→∞yp(t) if and only if limt→∞yp(t) = maxi∈Np
limt→∞yi(t).

Proof: Suppose when t→ ∞, yp(t) > maxi∈Np yi(t),
where node p is only incident to strictly positive edges, then
limt→∞up(t) < 0, which contradicts limt→∞u(t) = 0. There-
fore, limt→∞yp(t) ≤ maxi∈Np limt→∞yi(t). In the same way,
we conclude limt→∞yp(t) ≥ mini∈Np limt→∞yi(t).

Now if limt→∞yp(t) = mini∈Np limt→∞yi(t), in order to
make limt→∞up(t) = 0, it requires that limt→∞yi(t) = limt→∞
yp(t)∀ i ∈ Np , as a result, limt→∞yp(t) = maxi∈Np limt→∞
yi(t). We can conclude in the other way around with the same
method. �

Proposition 2 shows that, when limt→∞u(t) = 0, the nodes
only incident to strictly positive edges, cannot be the only one
with the maximum or minimum steady output.

IV. EQUIVALENT CIRCUIT MODELS AND SIGNED

NONLINEAR NETWORKS

In this section, we further investigate the convergence prop-
erties of signed nonlinear networks by exploring connections
with the circuit theory. In particular, we examine the role of
equivalent circuits in the analysis of these networks when the
node dynamics are represented by nonlinear integrators.

A. Circuit Interpretations

As we have mentioned in Remark 1, the network model for-
mulated in Section II-A has a circuit interpretation. For example,
the network system comprised of single integrators can be in-
terpreted as a resistor–capacitor (RC) circuit. Fig. 4(a) shows
the underlying graph of a four-node network, and Fig. 4(b)
shows the corresponding circuit interpretation. In Fig. 4(b), the
capacitance of each capacitor is 1 F. As we have mentioned
in Remark 1, y(t) represents the potentials of the nodes, that
is, yi(t) stands for the potential of node vi with respect to the
ground, i = 1, . . . , 4. The edge ek in Fig. 4(a) corresponds to
the voltage-controlled resistor rk , k = 1, . . . , 4. The potential
difference between two ends of an edge is called a tension,
which is the voltage drop on the resistor, and its stacked form
corresponds to ζ(t) in our network model. The tension will re-
sult in flow, that is, the current on the resistor in the circuit,
corresponding to μ(t). The flow μk (t) on edge k is generated
according to the tension ζk (t) as well as the edge functions de-
fined in (4). In the circuit theory, such edge functions are exactly
the current–voltage functions of the voltage-controlled resistors.

According to Definition 5, if edge k is positive, then the inner
product μk (t)ζk (t) ≥ 0, meaning the corresponding resistor rk ,
is generally energy consuming, and it does not consume energy
(nor produce energy) if and only if μk (t) = 0. On the contrary,

a negative edge means its corresponding “resistor” can produce
energy when μk (t)ζk (t) < 0. Practically, this can only be real-
ized if it contains sources.

Still, from the energy perspective, (ui(t) − ui)(yi(t) − yi) is
the energy that flows into the node i compared with the steady-
state equilibrium I/O pair (ui , yi), while Si(xi(t)) is the energy
stored in the node i. For the MEIP plant, since Ṡi(xi(t)) ≤
(ui(t) − ui)(yi(t) − yi), the increased energy storage is no
more than the energy that flows into it. In terms of the sin-
gle integrator, Si(xi(t)) := 1

2 (xi(t) − yi)2 , and Ṡi(xi(t)) =
(ui(t) − ui)(yi(t) − yi), meaning the increased energy storage
is exactly the energy that flows into it.

B. Equivalent Edge Functions

Effective resistance is often used as a distance metric on
networks [28]. If all the edge functions in the network are
in the form of (6), we obtain u = −EWET y, where W =
diag{w1 , . . . , w|E|} is the diagonal edge weight matrix. In the
graph theory, L(G) := EWET is the weighted Laplacian ma-
trix. The effective resistance between nodes p and q, denoted as
r̄pq , can be calculated as [28]

r̄pq = (ep − eq )T L(G)†(ep − eq )

whereL(G)† is the Moore–Penrose pseudoinverse ofL(G), ei ∈
R|V|, with [ei ]j = 1 if j = i, and [ei ]j = 0 otherwise.

Effective resistance has a clear circuit interpretation. When
u = 0, it means all the nodes are in their steady states and
the network corresponds to a resistive circuit.1 If all the edge
functions are in the form of (6), then each corresponding resistor
in the circuit is with constant resistance rk = 1

wk
. Take nodes

p, q ∈ V as two terminals of interest. When we add a voltage
source with the voltage value ζpq outside the two terminals, the
current flow into the two-terminal network is ζpq /r̄pq , where
r̄pq is exactly the effective resistance of the original network. In
this case, the resistors of the resistive circuit between terminals
p and q can be replaced by a single resistor whose resistance
equals to r̄pq .

Now, we generalize the concept of the effective resistance
for nonlinear networks, and introduce the notion of equivalent
edge functions. As with effective resistance, we first identify
two nodes p, q ∈ V to represent the terminals of interest in the
network. Consider now the addition of a virtual edge k̄ connect-
ing nodes p and q, and define an augmented graph Ḡ = (V, Ē),
where Ē = E ∪ {k̄}, with its incidence matrix denoted as Ē. The
stacked tension and flow of the augmented network are denoted
as ζ̄ and μ̄, respectively. The corresponding network equations
for the augmented graph are

ĒT y = ζ̄, μ = Ψ(ζ), Ēμ̄ = 0. (10)

Equivalent edge functions are now determined by the solutions
of these equations, which we formalize later.

1In the circuit theory, a resistive circuit is a circuit containing only resistors
and sources, without dynamic elements such as inductors or capacitors [29]. In
our cases, though there are capacitors in the corresponding circuit in Fig. 4(b),
since u = 0, the nodes’ states will not change, making the property of the
circuit similar to that of a resistive circuit.
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Fig. 5. Equivalent resistor of a two-terminal circuit network, with a volt-
age source connecting the two terminals. (a) Original circuit. (b) Equiv-
alent resistor of the two-terminal circuit.

Definition 7: Consider the augmented network system
(Ḡ,Σ,Π) with virtual edge k̄ = (p, q). For each given ζk̄ , if
there exists a unique (ζ̄, μ̄) and some y ∈ R|V| to the network
(10), then the flow μk̄ on the virtual edge k̄ can be represented as
a function of ζk̄ , which we denote as μk̄ = −ψ̄pq (ζk̄ ). We term
ψ̄pq (·) : R → R the equivalent edge function between nodes p
and q in the original network system (G,Σ,Π).

Remark 3: Note that for the augmented network, u =
−Ēμ̄ = 0. Thus, the augmented network corresponds to a re-
sistive circuit.

The concept of equivalent edge functions is well suited for
the circuit interpretation of the effective resistance. We use the
following example to detail it.

Example 2: As shown in Fig. 5, consider a voltage drop
ζ1,4 from v1 to v4 caused by a voltage source. If for each value
of ζ1,4 , there is a unique current flowing from v1 to v4 in the
two-terminal circuit system, then the four resistors in Fig. 5(a)
can be simplified as one equivalent resistor r̄1,4 , as shown in
Fig. 5(b). In this case, the voltage source can be regarded as the
newly added virtual edge k̄, and the resistance of the equivalent
resistor r̄1,4 may not be a constant, but its equivalent current–
voltage function corresponds to the equivalent edge function
between v1 and v4 in the original network system.

Remark 4: Although the equivalent edge function ψ̄pq (·)
takes a similar form as in (3), they have different meanings. The
equivalent edge function corresponds to the equivalent current–
voltage function of the equivalent resistor, while the edge func-
tion in the form of (3) corresponds to the current–voltage func-
tion of an actual resistor in the circuit. Stated in another way, the
edge function shown in (3) models a real interaction between
neighboring agents, while the equivalent edge function is meant
to replace the entire network interaction between two nodes by
a single, virtual, edge function.

Now, we discuss the existence of the equivalent edge func-
tions. We need the following lemma from the circuit theory.

Lemma 1 ([29]): Consider a circuit containing only resistors
and independent voltage sources. If the current-voltage function
of each resistor is strictly monotonically increasing with the
current tending to ±∞ as the voltage tends to ±∞, and if the
circuit contains no cycles of voltage sources, then for each pair
of the voltage source values, the current and voltage drop on
each resistor, as well as the current on each source, are unique.

With Lemma 1, we get the following proposition.

Algorithm 1: Computation of Equivalent Edge Functions.
1: Obtain the corresponding resistive circuit, and add a

voltage source between p and q.
2: Obtain a finite set {ζpq} by sampling the interval

[−N,N ];
3: for all ζpq do
4: Set ζpq as the value of voltage source.
5: Calculate the flow on the voltage source μ̄pq while

satisfying the KVL and KCL;
6: end for
7: Approximate the equivalent edge function by

interpolation based on {(ζpq , μ̄pq )}.

Proposition 3: Consider a strictly positive network system
(G,Σ,Π) with the connected graph G = (V, E> ) represented
by (1)–(4). Identify two nodes p, q ∈ V as the terminals of inter-
est. If for each k ∈ E> , its edge function μk (t) = ψk (ζk (t)) is
strictly monotonically increasing, and μk (t) → ±∞ as ζk (t) →
±∞, then the equivalent edge function of the two-terminal net-
work between nodes p and q exists.

Proof: We add a virtual edge k̄ that connects nodes p and
q. When the value of ζk̄ (t) is given, its corresponding circuit
is equivalent to adding a voltage source outside of the two-
terminal circuit system, and the voltage value is ζk̄ (t), as shown
in Fig. 5(a). Since there is only one voltage source, according to
Lemma 1, when u(t) = 0, the flow μk̄ on the virtual edge k̄ is
unique. By varying the value of ζk̄ (t) from −∞ to +∞, we can
obtain the equivalent edge function of the two-terminal network
between nodes p and q. �

Remark 5: When all the edge functions are in the form (6)
with positive scalar weights, the equivalent edge function be-
tween any two nodes p, q ∈ V always exists, and is μ̄pq (t) =
ζpq (t)/r̄pq , where r̄pq is the effective resistance between p and
q, verifying Proposition 3.

Generally, it is difficult to obtain an analytical characterization
of the equivalent edge function when the edge functions in
the network are nonlinear. Here, we present an algorithm to
obtain an approximate result, as shown in Algorithm 1. First, we
obtain the resistive circuit corresponding to the network system
(G,Σ,Π), and add a voltage source between terminals p and q
(in Line 1). We obtain a finite set of potential differences {ζpq}
for the two terminals by sampling in the interval [−N,N ], where
N is an arbitrary large positive number (in Line 2). The interval
defines the set of interest, and the approximated equivalent edge
function’s accuracy depends on its resolution. Then, for each
ζpq in the interval, we set it as the value of the voltage source (in
Line 4), and calculate the flow into the two-terminal network,2

while satisfying the KVL and KCL, that is, (2) and (4) (in
Line 5). The equivalent edge function is finally approximated
by using interpolation techniques in Line 7.

C. Cocontent Function

Another important concept that we borrow from the circuit
theory is the cocontent function [30]. The cocontent function of

2In the circuit theory, this process is the calculation of the operating point.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:55:46 UTC from IEEE Xplore.  Restrictions apply. 



196 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 1, MARCH 2020

Fig. 6. Cocontent function and its relationship with the edge function.

an edge k when its tension ζk is specified, is defined as

Gk |ζk =
∫ ζk

0
ψk (τ) · dτ.

The relationship between the edge function μk = ψk (ζk ) and its
cocontent function can be represented in the (ζk , μk ) plane as
shown in Fig. 6. It is easy to verify that the cocontent of a strictly
positive edge is no less than zero, and it becomes zero if and
only if ζk = 0. Correspondingly, we can define the cocontent of
a two-terminal network as the sum of the cocontent of all edges,
that is, G =

∑|E|
k=1 Gk |ζk .

For a strictly positive network system (G,Σ,Π) whose edge
functions are all monotonically increasing, we define an aug-
mented network by adding a virtual edge k̄ connecting two
nodes of interest. The stacked tension and flow of the aug-
mented network are denoted as ζ̄ and μ̄, respectively, and the
incidence matrix denoted as Ē. Lemma 2 shows that the cocon-
tent

∑|E|
k=1 Gk |ζk reaches the minimum when Ēμ̄ = 0.

Lemma 2: Consider a strictly positive network system
(G,Σ,Π) with the connected graph G = (V, E> ) represented
by (1)–(4), and the augmented graph Ḡ = (V, Ē) obtained by
adding the virtual edge k̄ (with Ē = E> ∪ {k̄}). Suppose for
each k ∈ E> , its edge function μk = ψk (ζk ) is monotonically
increasing. For any fixed ζk̄ , if there exists ζ̄

0
, μ̄0 ,y0 , such

that ĒT y0 = ζ̄
0
, μ0 = Ψ(ζ0) and Ēμ̄0 = 0, then

∑|E|
k=1 Gk |ζk

reaches its minimum at (ζ̄0
, μ̄0 ,y0).

Proof: We take ζ̄
0 := (ζ0

1 , . . . , ζ
0
|E|, ζ

0
k̄
)T and μ̄0 := (μ0

1 ,

. . . , μ0
|E|, μ

0
k̄
)T , corresponding to the case when ζk̄ = ζ0

k̄
. Since

all the edge functions are monotonically increasing, it follows

(μk − μ0
k )(ζk − ζ0

k ) ≥ 0 (11)

holds. Choose ζk = ζ0
k + dτ , μk = ψk (ζk ), then (11) becomes

[ψk (ζk ) − μ0
k ] (ζk − ζ0

k )︸ ︷︷ ︸
dτ

≥ 0.

Now integrate with respect to the tension, taking ζ0
k as the lower

limit and a generic ζk as the upper limit to obtain
∫ ζk

ζ 0
k

[ψk (τ) − μ0
k ]dτ ≥ 0

⇒
∫ ζk

ζ 0
k

ψk (τ)dτ

︸ ︷︷ ︸
Gk |ζ k −Gk |ζ 0

k

≥
∫ ζk

ζ 0
k

μ0
kdτ = (ζk − ζ0

k ) · μ0
k

Fig. 7. Graph for Example 3.

that is

Gk |ζk −Gk |ζ 0
k
≥ (ζk − ζ0

k ) · μ0
k .

By adding all the |E| inequalities term by term, we get

|E|∑

k=1

Gk |ζk −
|E|∑

k=1

Gk |ζ 0
k
≥

|E|∑

k=1

(ζk − ζ0
k ) · μ0

k . (12)

Consider another tension vector ζ̄ := (ζ1 , . . . , ζ|E|, ζ0
k̄
)T . In

order for ζ̄ to be valid, there should exist some y ∈ R|V| such
that ζ̄ = ĒT y. Since

|E|∑

k=1

(ζk − ζ0
k ) · μ0

k = (ζ̄ − ζ̄
0)T μ̄0 = (y − y0)T Ēμ̄0 = 0.

(13)
Combine (12) with (13), and we conclude

|E|∑

k=1

Gk |ζk −
|E|∑

k=1

Gk |ζ 0
k
≥ 0. (14)

Inequality (14) shows that the cocontent of the network system
(G,Σ,Π) reaches its minimum at (ζ̄0

, μ̄0 ,y0). �
Remark 6: The result in (13) is known as Tellegen’s theorem

in the circuit theory [30], which states that if there exist ζ,μ,y
such that ET y = ζ and Eμ = 0, then μT ζ = 0. Lemma 2 is
a special case of the variational result on the minimum of the
cocontent function; see [30] for more general results.

Example 3: Consider the graph G = (V, E) shown in Fig. 7,
whereV = {v1 , v2 , v3} and E = {e1 , e2}. We add a virtual edge
e3 connecting nodes v1 and v3 . The three edges are oriented as
the follows: from v1 to v2 , from v2 to v3 , and from v1 to v3 . The
edge functions for e1 and e2 are μ1 = 1

2 ζ1 , μ2 = ζ2 .
Suppose the value of the potential difference between v1 and

v3 is ζ3 = 3. Lemma 2 states that the cocontent of the network
arrives at its minimum when Ēμ̄ = 0, that is, μ1 = μ2 . To make
ĒT y = ζ̄, μ = Ψ(ζ), and Ēμ̄ = 0, we get ζ1 = 2, ζ2 = 1,
μ1 = μ2 = 1, and the cocontent of the network is 1

2 ζ1μ1 +
1
2 ζ2μ2 = 1.5. However, if we let ζ1 = 1, ζ2 = 2, μ1 = 0.5, and
μ2 = 2, such that we can still find valid ζ̄, μ̄, and y, satisfying
ĒT y = ζ̄, μ = Ψ(ζ), and ζ3 = 3, but μ1 
= μ2 , thus, Ēμ̄ 
= 0.
In this case, the cocontent of the network is 2.25, greater than
the case when μ1 = μ2 .

Recall Definition 7 of the equivalent edge function, Lemma 2
implies that in a strictly positive network if the equivalent edge
function exists and the edge functions are all monotonically
increasing, the minimum value of the cocontent of the network
is exactly the cocontent of the equivalent edge function. This
result is summarized as follows.

Proposition 4: Consider a strictly positive network system
(G,Σ,Π) with the connected graph G = (V, E> ) represented
by (1)–(4), and all edge functions are monotonically increasing.
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Identify two nodes p, q ∈ V as the terminals of interest, and
the tension between nodes p and q is specified as ζpq . If the
equivalent edge function between nodes p and q exists, then
the minimum cocontent of the network system (G,Σ,Π) is the
cocontent of the equivalent edge function between nodes p and
q, denoted as minG|ζp q = Gpq |ζp q .

D. Convergence Analysis

With the aforementioned formulation, we are now prepared
to analyze the signed nonlinear network of nonlinear integrators
represented by

Σi : ẋi(t) = γi(ui(t)), yi(t) = xi(t), i ∈ V (15)

where function γi(·) satisfies ui · γi(ui) ≥ 0, and the equality
holds if and only if ui = 0. It is easy to verify that Assumption 1
holds for nodes with dynamics (15), and the equilibrium I/O
pairs are σi = {(0,R)}. Specifically, if γi(ui) = ui , then Σi is
a single integrator.

Now suppose initially we have a strictly positive network of
nodes represented by (15). According to Corollary 1, the nodes’
outputs will finally reach agreement. Now, consider a scenario
where an attacker is able to add a new negative edge between
any two nodes in the original network, or make any existing
edge negative. This can be seen as the attacker adding some
disbelief among the group members. In circuits, the negative
edge corresponds to an ideal Chua’s diode [31], whose current–
voltage characteristic is globally active.3 We have the following
theorem for the convergence property of the network.

Theorem 2: Consider a signed network system (G,Σ,Π)
with the connected graph G = (V, E) represented by (2)–(4)
and (15). Suppose there is only one nonstrictly positive edge k̂
inE , (i.e.,∀ k 
= k̂ ⇒ k ∈ E> ), with its edge function denoted by
μk̂ (t) = ψk̂ (ζk̂ (t)), satisfying ψk̂ (0) = 0. Furthermore, assume
∀ k ∈ E> , ψk (·) is monotonically increasing. Identify nodes p
and q, which are connected by edge k̂, as the two terminals
of the strictly positive subnetwork system (G> ,Σ, Π̄) with the
subgraph G> = (V, E> ), and Π̄ = Π \ {Πk̂}. If the equivalent
edge function between nodes p and q in (G> ,Σ, Π̄) exists, which
we denote as μ̄pq (t) = ψ̄pq (ζk̂ (t)), and

(μk̂ (t) + μ̄pq (t)) · ζk̂ (t) ≥ 0

holds for any ζk̂ (t) ∈ R, then limt→∞u(t) = 0 and limt→∞
μk̂ (t) + μ̄pq (t) = 0.

Proof: Let V (t) be the cocontent of the network system
(G,Σ,Π). Then, V (t) = Gk̂ |ζk̂ (t) + G> |ζk̂ (t) , where Gk̂ |ζk̂ (t)

is the cocontent of the edge k̂, and G> |ζk̂ (t) is the cocontent of
the subnetwork system (G> ,Σ, Π̄) for a fixed value of ζk̂ (t).

We first show that V (t) ≥ 0. Since ∀ k 
= k̂, k ∈ E , ψk (·) is
monotonically increasing, according to Proposition 4, G> |ζk̂ (t)
≥ Gpq |ζk̂ (t) , where Gpq |ζk̂ (t) is the concontent of the equiv-
alent edge function of the strictly positive subnetwork sys-
tem (G> ,Σ, Π̄) when ζk̂ (t) is specified. If (μk̂ (t) + μ̄pq (t)) ·

3A physically realizable Chua’s diode is only locally active. However, the
ideal Chua’s diode model is widely used in numerical simulations to investigate
the chaotic dynamics [32].

ζk̂ (t) ≥ 0 holds for any ζk̂ (t) ∈ R, recalling the relationship
between the edge function and the cocontent function shown in
Fig. 6, we obtain Gk̂ |ζk̂ (t) +Gpq |ζk̂ (t) ≥ 0. Therefore, V (t) =
Gk̂ |ζk̂ (t) + G> |ζk̂ (t) ≥ 0.

As Ġk |ζ (t)(t) = μk (t)ζ̇k (t)∀ k ∈ E , then

V̇ (t) = μ(t)T ζ̇(t) = μ(t)T ET ẏ(t) = −u(t)T ẏ(t)

= −
|V|∑

i=1

ui(t) · γi(ui(t)) ≤ 0.

From the LaSalle’s invariance principle [27], the system will
converge to the largest invariant set satisfying limt→∞u(t) = 0.
In that case, in order to satisfy (4), the flow into the two-terminal
subnetwork system (G> ,Σ, Π̄) should equal the negative of the
flow on the edge k̂, that is, limt→∞μk̂ (t) + μ̄pq (t) = 0 holds.�

Theorem 2 shows that the signed nonlinear network forms
one or several steady clusters, if the sum of the equivalent edge
function of the strictly positive network and the nonpositive edge
function is passive. Under such a condition, ζk̂ will converge to a
point satisfying limt→∞μk̂ (t) + μ̄pq (t) = 0. Since all the other
edges except k̂ are strictly positive, it follows from Proposition 2
that the nodes incident to only strictly positive edges cannot
be the only node with the maximum or minimum steady out-
put. Thus, we conclude limt→∞|ζk (t)| ≤ limt→∞|ζk̂ (t)| ∀ k 
=
k̂. The following corollary is a direct result of Theorem 2,
which provides a sufficient condition for the network reaching
agreement.

Corollary 5: Consider a signed network system (G,Σ,Π)
with the connected graph G = (V, E) represented by (2)–(4)
and (15). Suppose there is only one nonstrictly positive edge k̂
inE , (i.e.,∀ k 
= k̂ ⇒ k ∈ E> ), with its edge function denoted by
μk̂ (t) = ψk̂ (ζk̂ (t)), satisfying ψk̂ (0) = 0. Furthermore, assume
∀ k ∈ E> , ψk (·) is monotonically increasing. Identify nodes p
and q, which are connected by the edge k̂, as the two terminals
of the strictly positive subnetwork system (G> ,Σ, Π̄) with sub-
graph G> = (V, E> ), and Π̄ = Π \ {Πk̂}. If the equivalent edge
function between nodes p and q in (G> ,Σ, Π̄) exists, which we
denote as μ̄pq (t) = ψ̄pq (ζk̂ (t)), and

(μk̂ (t) + μ̄pq (t)) · ζk̂ (t) ≥ 0

holds for any ζk̂ (t) ∈ R, and (μk̂ (t) + μ̄pq (t)) · ζk̂ (t) = 0
only if ζk̂ (t) = 0, then limt→∞ζ(t) = 0, and limt→∞y(t) =
β1, β ∈ R.

Remark 7: Theorem 2 is a generalization of [9, Th. III.3] for
signed linear networks of single integrators with scalar weights
to the nonlinear case. If all edge functions are in the form of (6),
the network can reach agreement as long as the scalar weight
wk̂ for the only one negative edge k̂ satisfies |wk̂ | < 1

r̄p q
, where

p and q are the nodes connected by k̂, and r̄pq is the effective re-
sistance of the two-terminal network without edge k̂. In this sce-
nario, the equivalent edge function of the two-terminal network
is μ̄pq (t) = ζk̂ (t)/r̄pq , and (μk̂ (t) + μ̄pq (t)) · ζk̂ (t) ≥ 0 holds
for any ζk̂ (t) ∈ R, with the equality holds only if ζk̂ (t) = 0.
Therefore, limt→∞ζ(t) = 0, meaning the all nodes finally reach
agreement. On the other hand, if the negative edge weight
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wk̂ = − 1
r̄p q

, then (μk̂ (t) + μ̄pq (t)) · ζk̂ (t) = 0 holds for any

ζk̂ (t) ∈ R. In this case, we can still guarantee the convergence
of the network, however, ζ(t) does not necessarily converge to
0, meaning we can get clustering result.

As a generalization of [9, Th. III.4], we are able to extend
the convergence criteria to the nonlinear case where any two
nonstrictly positive edges are not contained in the same cycle.
Note that according to the definition of the equivalent edge
function, it is required to satisfy Ēμ̄ = 0. Since the null space
of Ē is spanned by all the linearly independent signed path
vectors corresponding to the cycles [22], only the edges that are
contained in the same cycle with k̂ can influence the equivalent
edge function ψ̄pq , where p and q are the nodes connected by k̂.
Thus, we have the following corollary.

Corollary 6: Consider a signed network system (G,Σ,Π)
with the connected graph G = (V, E) represented by (2)–(4)
and (15). Denote the set of nonstrictly positive edges as Ê (i.e.,
E = Ê ∪ E> ), and suppose any two edges in Ê are not contained
in the same cycle. For any k̂ ∈ Ê , its edge function is denoted by
μk̂ (t) = ψk̂ (ζk̂ (t)), satisfying ψk̂ (0) = 0. Furthermore, assume
∀ k ∈ E> , ψk (·) is monotonically increasing. For all k̂ ∈ Ê ,
identify nodes pk̂ and qk̂ , which are connected by edge k̂, as
a pair of the two terminals for the strictly positive subnetwork
system (G> ,Σ,Π \ {Πk̂ : k̂ ∈ Ê}) with the subgraph G> =
(V, E> ). If the following two conditions hold for all k̂ ∈ Ê :

1) the equivalent edge function between nodes pk̂ and qk̂ in
(G> ,Σ,Π \ {Πk̂ : k̂ ∈ Ê}) exists, which we denote as
μ̄pk̂ qk̂ (t) = ψ̄pk̂ qk̂ (ζk̂ (t));

2) (μk̂ (t) + μ̄pk̂ qk̂ (t)) · ζk̂ (t) ≥ 0 holds for any ζk̂ (t) ∈ R;
then limt→∞u(t) = 0, and limt→∞μk̂ (t) + μ̄pk̂ qk̂ (t) =
0∀ k̂ ∈ Ê .

E. Clustering Analysis

Now, we generalize the specific clustering scenario of signed
linear networks discussed in [9, Prop. IV.1], where there is only
one single cycle and one single nonstrictly positive edge in the
network, and all edge functions are in the form of (6). The
result showed that, if the edge weight of the nonstrictly positive
edge equals the negative inverse of the effective resistance of the
remaining two-terminal network, then the number of the clusters
equals the number of nodes on the cycle. We also show that the
result even holds with more cycles in the network, as long as
there is only one cycle containing the nonstrictly positive edge.
We first provide the following proposition.

Proposition 5: Consider a signed network system (G,Σ,Π)
with the connected graph G = (V, E) represented by (1)–(4)
and suppose Assumption 1 holds. Suppose there is only one
nonstrictly positive edge k̂ in E (i.e., ∀ k 
= k̂ ⇒ k ∈ E> ). As-
sume there is only one cycle in G containing edge k̂. If
limt→∞u(t) = 0, and limt→∞ζ(t) 
= 0, then the number of
clusters formed by the nodes’ outputs equals the number of
nodes in the cycle containing edge k̂.

Proof: Since only one cycle (denoted as C) contains edge k̂,
if we remove all the edges in C, then the number of connected

Fig. 8. Network of 11 nodes and 14 edges. Edge e14 is introduced by
an attacker. The other 13 edges are strictly positive, while e14 is strictly
negative.

components equals the number of nodes in C, and each compo-
nent contains exactly one node of C. In each component, since
there is at most one node not only incident to strictly positive
edges, from Proposition 2, we conclude that nodes’ outputs in
each component will reach agreement.

Now we show that if there are more than one clusters formed,
then the nodes in C have different output values. Denote the
two nodes connected by k̂ are nodes p and q. According to
Corollary 4, if limt→∞yp(t) − yq (t) = 0, then limt→∞ζ(t) =
0. Now suppose limt→∞yp(t) − yq (t) > 0. Since there is
only one nonstrictly positive edge in G, it can be con-
cluded from Proposition 2 that limt→∞yp(t) ≥ limt→∞yi(t) ≥
limt→∞yq (t)∀ i 
= p, q, i ∈ V . Consider node p′ in the cycle C,
who is a neighbor of node p, then limt→∞yp ′(t) − yp(t) ≤ 0.
However, if limt→∞yp ′(t) − yp(t) = 0, with Proposition 2,
proceeding forward, we get limt→∞yp(t) = limt→∞yp ′(t) =
. . . = limt→∞yq (t), which contradicts limt→∞yp(t) − yq (t) >
0. Therefore, limt→∞yp ′(t) − yp(t) < 0, proceeding forward,
we get limt→∞yp(t) > limt→∞yp ′(t) > . . . > limt→∞yq (t),
meaning the outputs of the nodes in C differ from each other.

Therefore, we can conclude that the number of clusters equals
the length of cycle C, and the outputs of the nodes in C form a
decreasing or an increasing sequence along the path consisting
of only strictly positive edges in C. �

By combining Theorem 2 and Proposition 5, we can general-
ize [9, Proposition IV.1] as the following corollary.

Corollary 7: Consider a signed network system (G,Σ,Π)
with the connected graph G = (V, E) represented by (2)–(4)
and (15). Suppose there is only one nonstrictly positive edge k̂
inE , (i.e.,∀ k 
= k̂ ⇒ k ∈ E> ), with its edge function denoted by
μk̂ (t) = ψk̂ (ζk̂ (t)), satisfying ψk̂ (0) = 0. Furthermore, assume
∀ k ∈ E> , ψk (·) is monotonically increasing. Identify nodes p
and q, which are connected by the edge k̂, as the two terminals of
the strictly positive subnetwork system (G> ,Σ, Π̄) with the sub-
graph G> = (V, E> ), and Π̄ = Π \ {Πk̂}. If the equivalent edge
function between nodes p and q in (G> ,Σ, Π̄) exists, which we
denote as μ̄pq (t) = ψ̄pq (ζk̂ (t)), and (μk̂ (t) + μ̄pq (t)) · ζk̂ (t) ≥
0 holds for any ζk̂ (t) ∈ R, and there is only one cycle in G
containing the edge k̂, then

1) limt→∞u(t) = 0;
2) limt→∞μk̂ (t) + μ̄pq (t) = 0;
3) the number of clusters formed by the nodes’ outputs is

either one, or length of the cycle containing edge k̂.
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Fig. 9. Simulation results of the network in Fig. 8, when different edge functions are chosen for e14 . (a) Equivalent edge function (Fe ) of the original
two-terminal network between v1 and v4 , and the opposite of the three candidate edge functions for e14 (the three candidate edge functions are
denoted as F1 , F2 , and F3 .). (b) Agreement result when the edge function for e14 is chosen as F1 . (c) Divergence result when the edge function for
e14 is chosen as F2 . (d) Clustering result when the edge function for e14 is chosen as F3 .

V. SIMULATION RESULTS

We present a numerical simulation to illustrate the main re-
sults of this paper. Consider a network of single integrators
shown in Fig. 8. The original network consists of 11 nodes and
13 edges (the edges of the original network are represented by
solid lines in Fig. 8). All the 13 edges are strictly positive, and
their edge functions are described by (16), which is used in [15]
to achieve finite-time consensus of integrators,

μk (t) = wk · sign(ζk (t)) · |ζk (t)|αk (16)

where wk > 0, 0 < αk < 1. We use w and α to represent
the stacked vector of wk and αk , respectively, and we set the
parameters as w = (3, 2, 4, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2)T and α =
(0.4, 0.5, 0.2, 0.8, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.8, 0.2, 0.5)T .

Now, we add a strictly negative edge between nodes v1 and
v4 , which is labeled as e14 , and shown by dashed line in Fig. 8.
One can easily translate the network shown in Fig. 8 into its
corresponding circuit model similar to Fig. 4(b), where each
node corresponds to a capacitor connected to the ground with the
capacitance being 1 F, and each edge corresponds to a resistor,
i.e., the edges in the form of (16) represent general passive
resistors, while the negative edge e14 represents an ideal Chua’s
diode. Only one cycle contains e14 in the network, that is, the
cycle consisting of nodes v1 , v2 , v3 , and v4 , and edges e1 , e2 ,
e3 , and e14 .

We use Algorithm 1 to approximate the equivalent edge func-
tion of the original two-terminal network between nodes v1 and
v4 . We obtain {ζ14} by sampling in [−100, 100], and the algo-
rithm proposed in [33] is used to calculate the operating point
of the corresponding circuit (Line 5 in Algorithm 1).

Since all the edge functions of the original network are mono-
tonically increasing, and μk (t) → ±∞ as ζk (t) → ±∞, ac-
cording to Proposition 3, the equivalent edge function of the
two terminal network exists. The calculated equivalent edge
function, Fe of the two-terminal network between nodes v1 and
v4 is shown in Fig. 9(a).

We now consider three strictly negative candidate functions
for edge e14 , i.e., F1 , F2 , and F3 , and we show their oppo-
sites, i.e., −F1 , −F2 , and −F3 in Fig. 9(a). The initial states
under three different conditions are set as the same, which are
x(0) = [20, 4,−14,−22, 3, 8, 15, 13, 6, 1,−12]T . We execute

the interaction protocols, respectively, and show the simulation
results in Fig. 9(b)–(d).

In Fig. 9(a), it can be seen that Fe + F1 is still input strictly
passive, as a result, when the negative edge function is F1 ,
all nodes will still converge to the agreement space, as shown
in Fig. 9(b), demonstrating Corollary 5. In the second case,
Fe + F2 is active, and the outputs of the integrators will diverge,
as shown in Fig. 9(c). In the third case, Fe + F3 is passive, but
not input strictly passive, and its equilibria is [−9, 9]. We see
the outputs of the integrators form clusters in this case. Besides,
in the clustering scenario, there are exactly four clusters. The
steady outputs of cluster with nodes v1 , v5 , v6 , and v7 are the
maximum at around 6.55, and the steady outputs of cluster with
nodes v4 and v11 are the minimum at around −2.45, the distance
between these two steady clusters is around 9, which is the
boundary of the equilibria of Fe + F3 , and thus, demonstrating
Corollary 7.

VI. CONCLUDING REMARKS

This paper explored a nonlinear extension to the notion of
signed networks. For a broad class of network systems, we pro-
vided results on the agreement and clustering phenomena that
may be observed. We note that to reach agreement, we require a
spanning subgraph of strictly positive edges. For the case of in-
tegrator agents, we also proposed a nonlinear interpretation for
the effective resistance of a network, and used that to provide
sufficient conditions for the convergence of these networks with
negative edges.

We believe this paper to be an important first step toward a
more general theory of nonlinear signed networks. Open ques-
tions that remain include expanding our convergence analysis to
include edge functions that are dynamic. Along these lines, we
must also develop equivalent functions for such edges, and for
networks comprised of general MEIP nodes. These are subjects
of our future works.
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