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Consensus of Higher Order Agents: Robustness
and Heterogeneity

Dwaipayan Mukherjee and Daniel Zelazo

Abstract—This paper explores the use of Kharitonov’s
Theorem on a class of linear multiagent systems. First, we
study a network of the mth order (m ≥ 2) linear uncertain
interval plants and provide conditions for achieving full-
state consensus, which relate the stability margins of each
agent to the spectrum of the graph Laplacian. Then, a ro-
bustness analysis for such systems is presented when an
edge weight in the underlying graph is perturbed. The same
Kharitonov-based analysis proves useful in a related prob-
lem, where heterogeneous higher order linear models of
agents are considered in a setup similar to pinning control,
and conditions for consensus among the follower agents
are derived. Numerous simulation examples validate the re-
sults.

Index Terms—Higher order consensus, Kharitonov’s the-
orem, Laplacian spectra, robust consensus.

I. INTRODUCTION

MULTIAGENT systems have found applications in sev-
eral problem domains ranging from distributed com-

puting [1], power systems [2], and robotic applications [3] to
modeling of social networks [4]. In analyzing the performance
of multiagent systems, it is important to ascertain the system’s
capability in achieving certain basic goals such as consensus or
synchronization [5]. This is because several applications, such as
formation control of vehicles [6], co-ordinated movements [7],
coverage of a certain area [8], etc., can often be addressed using
variants of consensus seeking control laws. Hence, the ability
of a multiagent system to achieve consensus is at the core of
its functionality. It is thus imperative to understand whether a
multiagent system can achieve consensus when there are uncer-
tainties in the models of the agents, or in the interaction topology,
or both. The uncertainties may result from imprecise mathemat-
ical models [9], while perturbations present themselves in the
form of external attacks aiming to disrupt the network [10] or
antagonistic interactions among agents [11].
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Along this avenue, there have been studies related to ro-
bustness of consensus over weighted undirected and directed
graphs [12]–[14] where edge weight perturbations were consid-
ered. While the properties of the Laplacian matrix, from a graph
theoretic perspective, are pivotal to such studies, the effect of
edge weight perturbations on the Laplacian spectra, that may
lead to phenomenon such as clustering in multiagent systems
[15], has also been investigated. However, single, double (see
[16], [17] and the references therein), or higher order integra-
tor models for the agents are ubiquitous in such studies, [18],
[19] and these higher order integrators have been shown to be
adequate to model vehicles [20]. Few works have considered
higher order linear models of the individual agents [21], [22],
and carried out robustness studies of such systems under ad-
ditive uncertainties in the agent models. Some others [9] have
considered robustness of linear parameter varying agent models.
In general, multiagent systems are susceptible to uncertainties
or perturbations, both in the agent models, and in the network
parameters.

As another direction of work, heterogeneous higher order
linear [23]–[25] or nonlinear [26] models of agents have been
considered. In these works, and several others [5], [27], [28],
there is a local controller for each agent to ensure that the indi-
vidual agents conform to an exosystem. The overall controller
comprises a local model/observer-based dynamic controller that
makes the agent-local controller dynamics embed an internal
model of the same virtual exosystem.

In this paper, we study the robustness properties of consensus-
seeking networks where uncertainties exist in the dynamics
of the individual agents, and perturbations arise in the edge
weights. Thus, we consider a network of systems modeled as
linear interval plants connected over a weighted graph with per-
turbations in the edge weights. First, we will try to answer the
following question: Suppose a network with a specific structure
is designed for a system of identical agents to achieve con-
sensus. Can the edge weights of the network be tuned to still
achieve consensus if the physical parameters of the agent mod-
els are altered from their nominal values? In this part, we do not
consider perturbations on edge weights, rather these weights
are design parameters. Subsequently, we determine how much
these weights can be perturbed and yet consensus be maintained.
Our primary approach to these problems is the application of
Kharitonov’s theorem on the stability of interval polynomials
[29]. We also show that this framework can be applied to con-
sensus problems for networks with higher order linear and het-
erogeneous dynamic agents.
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Our first contribution thus considers a network of uncertain,
yet homogeneous, higher order linear dynamical systems. Each
agent is described by an interval plant, and the agents are as-
sumed to interact over a connected and static network. The main
contributions are stated below:

1) We characterize the bound on the ratio between the lower
and upper gain margins of interval plants in terms of
network parameters.

2) For a consensus-seeking network comprised of interval
plants, we obtain bounds on an edge weight perturbation.

We also consider consensus among n heterogeneous agents.
Unlike much of the literature dealing with synchronization of
such agents, we do not use local dynamic controllers. Our con-
tribution in this direction may be summarized as follows:

3) For a network of heterogeneous linear agents, we propose
a pinning control-based strategy involving a choice of
network parameters and a dynamical leader model to
ensure full-state consensus in the followers.

Although this problem is different from the robustness ques-
tion we first address, by appropriate modeling it can also be
approached using Kharitonov’s Theorem.

The paper is organized in the following manner. Section II
reviews some basics from interval plants, and Kharitonov’s the-
orem. The two problems pertaining to homogeneous agent dy-
namics are defined and solved in Section III. Consensus of
heterogeneous higher order agents is addressed in Section IV.
Simulations are provided in Section V to demonstrate the re-
sults. Finally, Section VI offers some concluding remarks.

Preliminaries: We employ standard notions from algebraic
graph theory [30]. We consider weighted, undirected graphs,
denoted by the triple G = (V, E ,W ), where V is the node set,
E the edge set, and W ∈ R|E|×|E| the diagonal weight matrix.
We make extensive use of the incidence matrix of G, denoted
E(G), and defined such that [E(G)]ij = 1 if node i is the initial
node of edge ek , [E(G)]ij = −1 if node i is the terminal node
of ek , and [E(G)]ij = 0 otherwise. The graph Laplacian of G is
defined as L = E(G)WE(G)T [30], and the edge Laplacian as
Le = E(G)T E(G)W [16]. We denote by L̂ and L̂e the graph
and edge Laplacian matrices with unit weights (i.e., W = I),
respectively.

We now describe some special factorizations of the Laplacian
matrices, using the notions of spanning trees. Using [12, Propo-
sition II.1] for a connected graph G, it follows that the weighted
graph Laplacian matrix L is similar to[

E(Gτ )T E(Gτ )RWRT 0

0T 0

]

where E(Gτ ) is the incidence matrix for a spanning treeGτ ⊆ G,
the matrix R is given by

E(G) = [E(Gτ )E(Gc)] = E(Gτ )[In−1 Tτ ] = E(Gτ )R (1)

with Tτ = (E(Gτ )T E(Gτ ))−1E(Gτ )T E(Gc), [16]. Here, Gc ⊂
G is the cotree of Gτ . Thus, nonzero eigenvalues of L are iden-
tical to those of E(Gτ )T E(Gτ )RWRT .

Fig. 1. Value sets at a fixed ω∗ for Ī(s) and Ī(s, ε).

II. INTERVAL PLANTS

One approach to modeling uncertain linear dynamical sys-
tems assumes that the parameters of the system may vary
within a known interval. Equivalently, the coefficients of the
characteristic polynomial of the system have unknown co-
efficients that lie in a specified interval; such polynomials
are called interval polynomials and are of the form δ(s) =
δ0 + δ1s + δ2s

2 + · · · + δnsm , where the coefficients lie in the
interval δi ∈ (δi, δ̄i) ⊂ R, i = 1, 2, . . . , m. These interval poly-
nomials give rise to interval plants, whose transfer functions
are the ratios of two such interval polynomials [29]. An im-
portant result concerning the stability of interval polynomials is
Kharitonov’s Theorem.

Theorem 1 ([29]): Let I(s) be the set of real polynomials
of degree m given by δ(s) = δ0 + δ1s + δ2s

2 + · · · + δm sm ,
where the coefficients lie in the interval δi ∈ (δi, δ̄i) ⊂ R, i =
1, 2, . . . ,m. Every polynomial in I(s) is Hurwitz if and only if
the following four extreme polynomials are Hurwitz:

K1(s) = δ0 + δ1s + δ̄2s
2 + δ̄3s

3 + δ4s
4 + δ5s

5 + δ̄6s
6 + · · ·

K2(s) = δ0 + δ̄1s + δ̄2s
2 + δ3s

3 + δ4s
4 + δ̄5s

5 + δ̄6s
6 + · · ·

K3(s) = δ̄0 + δ̄1s + δ2s
2 + δ3s

3 + δ̄4s
4 + δ̄5s

5 + δ6s
6 + · · ·

K4(s) = δ̄0 + δ1s + δ2s
2 + δ̄3s

3 + δ̄4s
4 + δ5s

5 + δ6s
6 +· · · .

For a fixed s = jω∗, the set of values assumed by the polyno-
mials in I(jω∗) form a rectangle in the complex plane, with ver-
tices at {Ki(jω∗)}i=1,...,4 . This rectangle is also known as the
value set. Similarly, we define families of monic interval polyno-
mials, denoted by Ī(s, ε), for ε ≥ 0, whose value sets are shown
in Fig. 1. This set contains polynomials given by δε(s) := [δ0 −
ε, δ̄0 + ε] + · · · + [δm−1 − ε, δ̄m−1 + ε]sm−1 + sm . For nota-
tional simplicity, we denote Ī(s, 0) ≡ Ī(s).

Remark 1: If every polynomial in Ī(s, ε) is Hurwitz, for
some ε > 0, then there exists a polynomial pε(s) = ε + · · · +
εsm−1 , such that for any δ(s) ∈ Ī(s), δ(s) ± pε(s) is Hurwitz.

III. CONSENSUS AMONG HOMOGENEOUS LINEAR AGENTS

We are interested in reaching full-state consensus among a
network of linear dynamical systems of order m that interact
over an information exchange network modeled by a weighted
and undirected graph, G. For every pair of agents i, j,

lim
t→∞

‖x(k)
i (t) − x

(k)
j (t)‖ = 0, k = 0, . . . ,m − 1
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is required, where x
(k)
i (t) is the kth time derivative of the state

xi(t) of agent i. We assume a feedback of the form

ui =
m−1∑
�=0

β�

∑
j∈Ni

wij (x
(�)
j − x

(�)
i ). (2)

The coefficients β� and the edge weights wij must be designed
to ensure that full-state consensus is achieved.

We consider all the agents to have identical, but unknown
dynamics and model the agents as a family of interval plants,

x
(m )
i + αm−1x

(m−1)
i + · · · + α0xi = ui (3)

where the coefficients, αj , j = 0, 1, . . . ,m − 1, belong to a real
interval, αj ∈ [αj , ᾱj ]∀j. Such plants are used in mechanical
systems, such as robotic manipulators, and controllers for such
systems have been designed using Kharitonov’s Theorem [31].

Remark 2: A linear, controllable SISO system has a state
space representation that is equivalent to the the model in
(3). Even if the state space representation is not in the con-
troller/controllable canonical forms, we can always find a suit-
able similarity transformation to transform the system to the
canonical form due to controllability. Consensus in the origi-
nal states of the agents, say x

(k)
i , is equivalent to that in the

transformed states. An example of such a system is the cart and
double inverted pendulum in [32, Problem 10.52].

We will consider agents having linear, uncertain dynamics
of order m ≥ 2 and obtain conditions for consensus. Later, we
study the effect of perturbing nominal edge weights.

A. Uncertain Higher Order Agents: Consensus Design

In studying the uncertainty in agent dynamics vis-à-vis and
the properties of the underlying network, we make the following
assumption to ensure that the states are bounded at consensus
as in [21]. If boundedness is not required, this assumption may
be removed.

Assumption 1: There exists an ε > 0 such that the family
of monic interval polynomials Ī(s, ε) is Hurwitz.

Remark 3: If the exact models of the dynamic systems
are not precisely known, it is not too restrictive to assume that
their dynamics are nevertheless stable. The ε-refinement adds
a certain margin of stability for the entire uncertain family as
illustrated by the value set for a given frequency ω∗ in Fig. 1.

The problem we first study is stated below.
Problem 1: Consider a set of n identical, but uncertain,

dynamical systems modeled by the interval plant (3) that in-
teract over an undirected and weighted graph G. Design the
edge weights of the graph such that the agents achieve full-state
consensus.

The problem of designing edge weights occurs commonly in
the context of the consensus problem, such as in [33] and [34].
The choice of parameters {β�}�=0,...,m−1 in (2) may also be a
part of the design in Problem 1, which we discuss later.

Similar to [21], we want all the agents to converge to the con-
sensus state ξ(t), which evolves according to the dynamics ξ(m )

+ αm−1ξ
(m−1) + · · · + α0ξ = 0 with coefficients αj ∈ [αj ,

ᾱj ]∀j as in (3). The consensus dynamics may thus be stable
or unstable depending on the stability of the agents’ dynamics.

Fig. 2. Polynomial πi (s) equivalently represented as the characteristic
polynomial of a closed-loop feedback system.

If Assumption 1 holds, then the desired consensus dynamics is
stable with bounded states.

We stack all the agents’ states into the vector x = [(x(0))T

(x(1))T · · · (x(m−1))T ]T , where x(k) = [x(k)
1 · · · x

(k)
n ]T . Plug-

ging in the control law in (2), the system is described as

ẋ = Āx, Ā =

⎡
⎢⎢⎢⎣

0 In · · · 0
...

...
. . .

...
0 0 · · · In

Λ0 Λ1 · · · Λm−1

⎤
⎥⎥⎥⎦ (4)

where Λj = −αjIn − βjL and L is the weighted graph Lapla-
cian of the undirected graph G. The characteristic equation for
the system in (4) is given by

P (s) = det

⎡
⎣sm In +

m−1∑
j=0

(αjIn + βjL)sj

⎤
⎦ = 0. (5)

From [21, Lemma 4], it follows that the characteristic polyno-
mial P (s) in (5) can be expressed as

P (s) =
n∏

i=1

⎡
⎣sm +

m−1∑
j=0

(αj + βjλi(L))sj

⎤
⎦ (6)

where λi(L) is the ith eigenvalue of the graph Laplacian L. For
full-state consensus, the polynomial P̄ (s) is given by

P̄ (s) =
n∏

i=2

⎡
⎣sm +

m−1∑
j=0

(αj + βjλi(L))sj

⎤
⎦ =

n∏
i=2

πi(s)

needs to be Hurwitz [21].
Each of the polynomials πi(s), corresponding to an eigen-

value λi(L), can be interpreted as the characteristic polynomial
of a closed-loop proportional-gain feedback system, as in Fig. 2.
The interval plant G(s) can be given by

G(s) =
βm−1s

m−1 + βm−2s
m−2 + · · · + β0

sm + αm−1sm−1 + · · · + α0
(7)

and the proportional gain is then the corresponding eigenvalue
of the Laplacian λi(L). Thus, each of the nonzero Laplacian
eigenvalues can be viewed as a feedback gain that must stabi-
lize G(s) to ensure consensus. This is tantamount to meeting
n − 1 design conditions, derived from n − 1 linear systems. The
denominator of (7) is an interval polynomial, while the numer-
ator is a polynomial with constant coefficients. In some cases,
the choice of {β�}�=0,...,m−1 may also be a part of the design
problem.

Suppose Assumption 1 does not hold. Since the open-
loop zeros of G(s) cannot be placed arbitrarily by choosing
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{β�}�=0,...,m−1 , G(s) may have both open-loop poles and ze-
ros in the right-half plane (rhp). If such a plant G(s) is stabi-
lizable by some proportional gain k > 0, then we must have
k ∈ (k, k̄) ⊂ R+ . Hence, P̄ (s) is Hurwitz when each λi(L)
(serving as k for some πi(s)) belongs to (k, k̄).

Remark 4: If Assumption 1 is lifted but {β�}�=0,...,m−1 is
such (by designer’s choice or as part of the problem set-up)
that G(s) has all its open-loop zeros in the left-half plane (lhp),
then 0 < k and k̄ → ∞. Similarly, if Assumption 1 holds and
{β�}�=0,...,m−1 results in G(s) having open-loop zeros in the
right-half plane, then k̄ < ∞ and k = 0.

If the most stringent requirements hold, where G(s) has some
of its poles and zeros in the rhp, there may exist a finite interval,
(k, k̄) ⊂ R+ , such that if all the nonzero eigenvalues ofL belong
to this interval, P̄ (s) is Hurwitz. The problem of designing a
suitable network becomes equivalent to one of ensuring that the
n − 1 nonzero eigenvalues of L are confined to a finite interval
on R+ . Since αi vary independently, the required interval for the
Laplacian eigenvalues can be obtained by applying Kharitonov’s
Theorem on K(s), given by

K(s) = sm + χm−1s
m−1 + · · · + χ1s + χ0 , (8)

where χi ∈ [αi + kβi, ᾱi + kβi ], for i = 0, 1, . . . ,m − 1.
Thus, we reduce the problem of computing n − 1 eigenvalues

to verify the stability of four polynomials, using Theorem 1. If
Kharitonov’s Theorem on (8) specifies a range of real values,
(k, k̄), for λi(L)i=2,...,n , then the closed loop system in Fig. 2
is robustly stable. This leads to the following lemma.

Lemma 1: Suppose the interval plant G(s) in (7) with fixed
{β�}�=0,...,m−1 is robustly stabilized by a proportional gain
k ∈ (k, k̄). If all nonzero eigenvalues of the Laplacian L belong
to the interval (k, k̄), then the multiagent system in (3) under
control law (2) achieves consensus in its states.

Proof: See Appendix. �
The following example elucidates the preceding discussion.

Example 1: Consider the uncertain dynamics of n identi-
cal agents described by the equation x(4) + α3x

(3) + α2x
(2) +

α1x
(1) + α0x = u, where α0 ∈ [0.90, 1.10], α1 ∈ [3.28, 3.60],

α2 ∈ [4.20, 4.68], and α3 ∈ [3.0, 3.28]. Further, suppose the
set {βl}l=0,...,3 is given by {−0.02525, 25.249, 0.999, 1}. In
order to obtain the allowable range of k, we use the Routh
tabulation on the four polynomials given by Theorem 1.
This leads to the corresponding ranges for k as
(0, 0.46) ∪ (17.6, 43.56), (0, 0.68) ∪ (16.6, 35.64), (0, 0.55) ∪
(17.22, 43.56), and (0, 0.57) ∪ (16.99, 35.64), respectively.
Upon taking the intersection over these four ranges, we may
ascertain that for k ∈ (0, 0.46) ∪ (17.6, 35.64), the entire inter-
val family is stabilized.

We now discuss how the designer may choose the set
{β�}�=0,...,m−1 to ensure consensus. If Assumption 1 holds,
there always exists a choice {β�}�=0,...,m−1 such that the
closed loop system in Fig. 2 is stable for some λi(L) > 0
[and consequently for some finite range of λi(L)]. Even
for the given choice of {β�}�=0,...,m−1 in Example 1, if all
nonzero eigenvalues of the graph Laplacian lie in the inter-
val (0, 0.46), consensus will be achieved. This is also due to
Assumption 1 which ensures that the uncertain agent dynamics

are nevertheless stable. If we fix up the leading coefficient
βm−1 , and the zeros of G(s) at z1 , z2 , . . . , zm−1 so that
the four extremal systems corresponding to G(s) are closed-
loop stable for a desired range of gains, given by an in-
terval Ps (suppose the network is such that λi(L) ∈ Ps i =
2, . . . , n), then we can choose {β�}�=0,...,m−1 by equating co-
efficients of like terms in βm−1

∏m−1
i=1 (s − zi) = βm−1s

m−1 +
βm−2s

m−2 + · · · + β0 . When Assumption 1 holds, it suffices to
choose {β�}�=0,...,m−1 such that the zeros of G(s) are all in the
lhp. Conversely, for a well chosen set {β�}�=0,...,m−1 , it may
be ensured that for any positive proportional gain, k = λi(L),
G(s) will be stable in closed loop. However, even if Assumption
1 is relaxed, it may be possible to design a suitable network to
achieve consensus (although the states may not be bounded at
consensus) provided the plant G(s) is stabilizable with a pro-
portional gain.

Remark 5: In Example 1, we have considered the parame-
ters {β�}�=0,...,m−1 to be fixed by the problem setup. However,
in case the designer has freedom to choose these parameters, the
root locus technique may be applied in choosing them, to place
open-loop zeros suitably, corresponding to the poles of the four
extremal polynomials. If Assumption 1 does not hold, the choice
of parameters {β�}�=0,...,m−1 assumes even greater significance
because it must be chosen to place the open-loop zeros of G(s),
so that the allowable range of the stabilizing k (determined as
shown in Example 1) is not an empty set. Furthermore, an in-
crease in m will result in an increase in the number of branches
of the root locus for G(s). Thus, the determination of allowable
range of k may become more involved as the order of the agent
dynamics increases, more so if Assumption 1 is removed.

For a given set {β�}�=0,...,m−1 , the range of stabilizing pro-
portional gains for the interval plant G(s) may include the union
of several disjoint positive intervals. However, here we consider
any one such interval of stabilizing gains (k, k̄), though multi-
ple such disjoint intervals may exist. Thus, in Example 1, we
may either confine all Laplacian eigenvalues to (0, 0.46) or to
(17.6, 35.64) to achieve consensus. This leads to conservatism
and, thus, ensures only sufficiency.

Corollary 1: If there are multiple disjoint intervals Ps =
(ks, k̄s) (finite or infinite) such that the closed-loop interval
plant in Fig. 2 is stable for λi(L) ∈ Ps ∀i = 1, for consensus it
suffices that the nonzero eigenvalues of L belong to ∪sPs .

Proof: Suppose the nonzero eigenvalues ofL, λi(L)i=2,...,n

belong to ∪sPs . Then, every polynomial of the form sm +∑m−1
j=0 (αj + βjλi(L))sj , i = 2, . . . , n is Hurwitz. Thus, the

polynomial P̄ (s) in (6) is Hurwitz, leading to consensus. �
Corollary 2: If k < 0, and k̄ > 0, then for consensus it

suffices to choose positive edge weights that ensure λn (L) < k̄,
and such a choice of edge weights always exists.

Proof: If the range of stabilizing gain is given by k ∈ (k, k̄),
where k < 0 < k̄, then for i = 2, . . . , n, if 0 < λi(L) < k̄, P̄ (s)
will be Hurwitz, leading to consensus. Finally, observe that
choosing the weights W = μI for 0 < μ < k̄(λn (L̂))−1 guar-
antees that λn (L) < k̄. �

Theorem 2: Assume that the agents described by the in-
terval plant (3) can be robustly stabilized with any propor-
tional gain k ∈ (k, k̄) (k > 0). Then, using the consensus feed-
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back (2) can achieve full-state consensus for a given choice of
{β�}�=0,...,m−1 if

k

k̄
<

λmin(E(Gτ )T E(Gτ ))λmin(RRT )
λmax(L̂)

. (9)

Proof: Suppose the weight on each edge is μ > 0. De-
fine M = MT > 0 such that M 2 = E(Gτ )T E(Gτ ). Applying
the similarity transformation M−1(E(Gτ )T E(Gτ ))RWRT M ,
it follows that matrix E(Gτ )T E(Gτ )RWRT is similar
to (E(Gτ )T E(Gτ ))

1
2 RWRT (E(Gτ )T E(Gτ ))

1
2 . Consequently,

the nonzero eigenvalues ofL are greater than a positive real num-
ber k if and only if the linear matrix inequality MRWRT M −
kIn−1 > 0 holds. Similarly, E(G)WE(G)T − k̄In < 0 en-
sures that the largest eigenvalue of L is less than k̄. Also, since
MRWRT M > 0 is symmetric positive definite, its eigenval-
ues are identical to its singular values. Thus, the lower bound is
written as

μσmin(MRRT M) > k ⇒ μ > kσmax([MRRT M ]−1).

Since ‖L‖2 = σmax(L), using submultiplicativity of norms, we
may write

kσmax([MRRT M ]−1) = kσmax(M−1(RRT )−1M−1)

≤ kσ2
max(M

−1)σmax([RRT ]−1) =
k

σ2
min(M)σmin([RRT ])

.

Since, σ2
min(M) = σmin(M 2) due to symmetry of M , a conser-

vative sufficiency condition can be further obtained as

μ >
k

σmin(E(Gτ )T E(Gτ ))σmin(RRT )
.

Further, μσmax(E(G)E(G)T ) < k̄ needs to be satisfied. Hence,
if there exists some real μ such that

k

σmin(E(Gτ )T E(Gτ ))σmin(RRT )
< μ <

k̄

σmax(L̂)

then the consensus protocol (2) can be designed. This is possible
if condition (9) holds. �

From Theorem 2, it is evident that the feasibility and flexi-
bility of the design depend on the kind of tree that exists in the
graph G. Theorem 1 in [35] and the results in [36] imply that the
Fiedler eigenvalue of a connected graph on n vertices is at least
the same as that for the path graph Pn . Thus, Pn has the lowest
value of σmin(E(Gτ )T E(Gτ )) among all spanning trees on n
vertices. On the other hand, a star graph Sn has the maximum
value of Fiedler eigenvalue among all spanning trees (see [37,
Th. 5.9]). Another interesting class of graphs are the regular
graphs, which also includes the complete graph. The above ob-
servations motivate a closer inspection of Sn , Pn , cycle graph
Cn , and the complete graph Kn .

Corollary 3: Consider n homogeneous agents governed by
the uncertain dynamics (3) interacting over a spanning tree Tn ,
with the control law (2). Then, if

k

k̄
<

λmin(Tn )T E(Tn ))
λmax(Tn )T E(Tn ))

the system can achieve full-state consensus. Furthermore, for the
star graph Tn = Sn , the bound is 1

n , and for the path Tn = Pn ,
this bound is tan2(π/2n).

Proof: The proof follows from Theorem 2, and the ob-
servation for spanning trees, RRT = I . Noting that the spec-
trum of the star Sn contains one zero eigenvalue, a unit eigen-
value with algebraic multiplicity n − 2 and an eigenvalue of n
with algebraic multiplicity one [38], and that of Pn is given by
{4 sin2( πr

2n )}r=0,...,n−1 [38], the proof is completed. �
A graph may not necessarily be a spanning tree, but contain

certain spanning trees as subgraphs. Then, a direct evaluation
of its Laplacian spectra is not straightforward. However, based
on the structure of the spanning subgraph, certain bounds on the
ratio k/k̄ can be obtained using Theorem 2. If a graphG has a star
spanning tree and the total number of its edges is less than 2n − 2
(see Lemma 6), the right-hand side of the inequality (9) reduces
to λmax(L̂)−1 . The spectral radius of L̂(G) cannot be greater
than that of L̂(Sn ) because we know that the spectral radius
of the star Sn and the complete graph Kn (with unit weights
on all edges) are the same and no graph can have a greater
spectral radius than Kn . Thus, k/k̄ < λmax(L̂)−1 < 1/n is the
allowable ratio of the upper and lower gain margins. Thus, as
the number of agents n increases, the tolerance for gain margin
is tighter if k > 0. However, an increase in the number of edges
does not alter the spectral radius of L(G), as discussed above,
but if the increase in the number of edges (so that |E| > 2n − 2)
also increases σmin(RRT ) from unity, then the right-hand side
of inequality (9) increases, providing greater design flexibility.

For n > 3, the upper bound on k/k̄ in (9) is higher for the
star graph than a path graph, because tan2(π/2n) decays faster
than 1/n with an increase in n. Consider a graph G with a
spanning path Pn . Assume |E| < 2n − 2. Hence, the inequality
(9) reduces to

k

k̄
<

4 sin2 (π/2n)
λmax(L̂)

<
4 sin2 (π/2n)
4 cos2 (π/2n)

= tan2(π/2n).

As in case of Sn , with an increase in n the ratio of lower to upper
gain margins needs to be smaller for Pn , indicating a more
stringent stability margin requirement for the uncertain plant.
But increasing the number of edges (say, beyond 2n − 2) may
increase both the spectral radius λn (L̂) as well as λmin(RRT ).
Hence, a tradeoff is necessary to get more relaxed stability
margins. Next, we will consider two types of regular graphs,
the cycle Cn and the complete graph Kn .

Corollary 4: Consider n homogeneous agents governed by
the uncertain dynamics (3) interacting over a cycle graph Cn

with the control law (2). Then, if

k

k̄
<

λmin(E(Cn )T E(Cn ))
λmax(E(Cn )T E(Cn ))

=

{
sin2(π/n), for even n

4 sin2(π/2n), for odd n

the system can achieve full-state consensus.
Proof: Since, the spectra of the cycle graph is given by{

4 sin2 (πr/n)
}

r=0,...,n−1 , clearly, the spectral radius for Cn is

4 when n is even and 4 cos2 (π/2n) when n is odd. For an even
number of agents, the limit on k/k̄ is thus sin2(π/n) while for
an odd number of agents, it is 4 sin2 (π/2n). �
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Corollary 5: Consider n homogeneous agents governed by
the uncertain dynamics (3) interacting over a complete graph Kn

with the control law (2). Then, the system can always achieve
full-state consensus.

Proof: The spectra of Kn comprises a zero eigenvalue and
n − 1 eigenvalues each equal to n. Thus, the positive spectra of
Kn comprises only n with multiplicity n − 1. Hence, the upper
bound on k/k̄ is unity, which is always satisfied.

Again, we have used explicit knowledge of the Laplacian
spectra of Kn instead of Theorem 2. Now, Sn is a spanning
tree of Kn with highest algebraic connectivity, equal to unity
(follows from application of [37, Th. 5.9], and the Laplacian
spectrum for Sn given in [38]). Thus, a limit on the ratio in
(9) for Kn , by Theorem 2, is 1/n. This is because the matrix
Tτ T T

τ for a complete graph with a star spanning tree is singular.
Thus, vis-à-vis the limit in (9), there is no difference between Sn

with n − 1 edges and Kn with n(n − 1)/2 edges. But explicit
knowledge of the Laplacian spectra indicates otherwise; thus,
showing the conservatism of Theorem 2.

Remark 6: Theorem 2 gives a sufficient condition by re-
stricting the eigenvalues of L to a single interval, whereas,
as stated in Corollary 1, there may be multiple intervals Ps ,
where the gain k may lie to ensure closed-loop stability of the
system in Fig. 2. Moreover, the edge weights are identical in
the proof of Theorem 2. Thus, certain networks not satisfying
Theorem 2 may still achieve consensus due to heterogeneous
edge weights. The inequality kσmax(M−1(RRT )−1M−1) ≤
kσ2

max(M
−1)σmax([RRT ]−1) introduces more conservatism.

The following examples show that Theorem 2 and the subse-
quent corollaries state sufficient conditions only. Nevertheless,
a network that satisfies the condition of Theorem 2 guarantees
an easy choice of identical edge weights for consensus.

Example 2: Consider the agent models and parameters
{βl}l=0,...,3 as given in Example 1. Suppose the network cho-
sen is S40 . Note that for the interval (17.6, 35.64), the condition
in Corollary 3 is not satisfied. Thus, it would appear that con-
sensus cannot be achieved. However, note that if we were to
confine the nonzero eigenvalues of the Laplacian to the interval
(0, 0.46), consensus can be achieved. Now, choosing μ = 0.01
ensures that all nonzero eigenvalues of the Laplacian belong
to (0, 0.46). This will naturally lead to slow convergence rates.
Alternately, we may also choose μ = 0.45 and in this case there
are exactly 38 nonzero eigenvalues equal to 0.45 [which belong
to (0, 0.46)] and another eigenvalue at 18 [which belongs to
(17.6, 35.64)], which ensure consensus although the Laplacian
spectrum is not confined to any of the two intervals alone.

Example 3: So far only identical edge weights have been
considered. However, now consider the same setup as in Exam-
ple 1 over P6 . It is evident that we cannot allocate all the eigen-
values of the Laplacian in the interval (17.6, 35.64) using identi-
cal edge weights because the condition of Corollary 3 is not met
with k = 17.6 and k̄ = 35.64. However, if the edge weights are
chosen as [0.12 0.12 0.084 0.24 9.0], the nonzero eigenvalues of
the Laplacian are {0.033, 0.162, 0.359, 0.451, 18.12}, which
belong to (0, 0.46) ∪ (17.6, 35.64) thereby ensuring consensus.

Remark 7: Examples 2 and 3 show that by using k ∈ ∪sPs ,
as allowable gains for the plant G(s), and also by exploiting

heterogeneity in edge weights, the conservatism inherent in
Theorem 2 and the subsequent corollaries can be relaxed. How-
ever, analyzing the effect of individual edge weights on each
of the eigenvalues of the Laplacian is difficult and even in
Example 3, for P6 , choosing the edge weights so as to place the
eigenvalues in the set (0, 0.46) ∪ (17.6, 35.64) is not straight-
forward (we used trial and error). Thus, for more general and
complex networks, the sufficient condition in Theorem 2, wher-
ever satisfied, aids by assigning identical edge weights, in a
straightforward manner.

B. Robust Consensus: Edge Weight Perturbation

As a dual to the design problem, consider a multiagent
system given by (3) and control law (2) with fixed variables
{β�}�=0,...,m−1 and possibly heterogeneous edge weights in the
network to satisfy Lemma 1.

We now introduce the notion of perturbation in the network
through the edge weights. The perturbation of the weight on
edge {i, j} is modeled as an additive one to the nominal edge
weight, given by wij + δ, with δ ∈ (δ, δ̄) for some finite scalars,
δ, and δ̄. Here, we consider perturbations to a single edge. The
uncertainty set (capturing the perturbation) is thus

Δ = {δ ∈ R : δ ∈ (δ, δ̄)}. (10)

The perturbed edge weight matrix thus takes the form WΔ =
W + δPrP

T
r , where Pr is the rth standard basis vector in R|E|

and specifies the edge where the perturbation in weight occurs.
The robustness question may now be stated.

Problem 2: For a multiagent system given by (3) and (2),
subject to Assumption 1, and satisfying the condition in Lemma
1, obtain the robust stability margin of the consensus protocol
to a perturbation δ in edge weight wij .

The gain margin of the system in (3) or (7) is described by
an interval of the form (k, k̄). This interval could be infinite,
in which case, the constraint on the Laplacian eigenvalues is
less restrictive. However, for a finite interval (that is, k and k̄
are both finite), we require the nonzero eigenvalues of the graph
Laplacian to belong to the same interval. The required condition
for consensus may be stated as follows.

Lemma 2: If the two matrix inequalities given by

QWQT − kIn−1 > 0 (11)

E(G)WE(G)T − k̄In < 0 (12)

are satisfied, where Q = MR = (E(Gτ )T E(Gτ ))
1
2 R, and G(s)

in (7) can be stabilized with a proportional gain k ∈ (k, k̄) in
closed loop, then the agents described by the interval plant (3),
and driven by the control law (2) achieve consensus.

Proof: Proof follows from using Lemma 1 and the part
of the proof of Theorem 2 that establishes the similarity of ma-
trices E(Gτ )T E(Gτ )RWRT and (E(Gτ )T E(Gτ ))

1
2 RWRT (E

(Gτ )T E(Gτ ))
1
2 . �

Suppose the conditions (11) and (12) are satisfied by the sys-
tem with nominal edge weights. It is desired to obtain the limit
on the perturbation of a single edge weight so that any one of the
inequalities in Lemma 2 is violated. A positive perturbation may
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violate (12) while a negative perturbation may violate (11). We
now endeavor to obtain a limit on the edge weight perturbation
to maintain consensus. First, we shall consider agents modeled
by uncertain second-order dynamics where the conditions for
robust stability are expected to be simpler.

1) Second-Order Agents (m = 2): For second-order
agents with m = 2, the choice of variables β1 and β0 and the
edge weights are greatly simplified, since any positive real value
of β1 and β0 ensures consensus for a positive semidefinite Lapla-
cian. Thus, the requirement for consensus is tantamount to the
stability of the n − 1 polynomials given by

s2 + [α1 , ᾱ1 ]s + [α0 , ᾱ0 ] + λi(L)(β1s + β0) (13)

where λi(L) is the ith nonzero eigenvalue of L. Since a second-
order system has infinite upper gain margin, the constraint (12)
is redundant. Thus, only a negative perturbation can possibly
disrupt the consensus in this case.

Theorem 3: Consider a collection of n second-order sys-
tems with dynamics (3) (m = 2) implementing the consensus
control (2) such that (11) and (12) are satisfied. Then, the sys-
tem is robustly stable against any perturbation to a single edge
weight wij satisfying

δ > − 1
PT

r QT (QWQT + γIn−1)−1QPr
(14)

where Pr is the rth standard basis vector in R|E| corresponding
to the perturbed edge er , and γ = min(α0

β0
,

α1
β1

).
Proof: Since the second-order polynomial of the form in

(13) is stable if the coefficients are positive, it suffices to en-
sure that α1 + λi(L)β1 and α0 + λi(L)β0 are positive for all
λi(L) = 0. Since the agents dynamics are robustly stable by As-
sumption 1, α1 and α0 are positive. Also, the variables β1 , β0
are positive by choice. Thus, if λi(L) + γ > 0 for all i, con-
sensus will be achieved. Alternately, for a stable second-order
system, k = −γ and k̄ → ∞ in (11) and (12). This leads to the
bound in (14). �

2) Higher Order Agents (m > 2): For higher order agents,
merely ensuring the positivity of the coefficients of the charac-
teristic polynomial does not guarantee consensus. The amount
of perturbation an edge weight can tolerate is therefore related
to some bounds that are not necessarily expressed explicitly in
terms of the coefficients of the agents’ characteristic polynomial
or the members of the set {β�}�=0,...,m−1 . Thus, the analysis in
this case is nontrivial.

Theorem 4: The multiagent system in (2) and (3), that sat-
isfies (11) and (12), is robustly stable against perturbations on
an edge wij for all δ ∈ Δ = (δ, δ̄) with

δ = − 1
PT

r QT (QWQT − kIn−1)−1QPr

δ̄ =
1

PT
r E(G)T (k̄In − E(G)WE(G)T )−1E(G)Pr

where Pr is the rth standard basis vector in R|E|.
Proof: For the perturbed system to achieve consensus,

the requirement is QWΔQT − kIn−1 > 0, where WΔ =
W − Pr |δ|PT

r (δ < 0) was defined earlier. Equivalently, the

Algorithm 1: Perturbations On q Edges.

1: W = Wnominal +
∑q

1 δiPiP
T
i

2: i = 1, j = 0.
3: Initialize W = W − δiPiP

T
i . Evaluate δi and δ̄i with

Pr = Pi , using Theorem 4.
4: If δi ∈ (δi, δ̄i), j = 1, else j = 0.
5: W = W + δiPiP

T
i .

6: i = i + 1.
7: If i < q + 1 goto 3.
8: If j = 1, ‘Consensus’; else ‘Consensus not guaranteed’

condition reduces to the following LMI:

[QWQT − kIn−1 ] − QPr |δ|PT
r QT > 0.

Using the Schur Complement form, this may be written as[
|δ|−1 (QPr )T

QPr QWQT − kIn−1

]
> 0.

Again using the Schur Complement form, this may be rewritten
as |δ|−1 − (QPr )T (QWQT − kIn−1)−1QPr > 0. Applying a
similar argument for a positive edge weight perturbation, the
upper bound on δ follows. �

Unlike the case of single integrators, here we have to deal
with both an upper and a lower bound on the edge weight
perturbation, given by Theorem 4.

3) Multiple Edge Weight Perturbations: So far, we have
considered a single edge weight perturbation. But, when mul-
tiple edge weights are perturbed, Theorem 4 is still useful.
Broadly speaking, there can be two types of such attacks: those
of known magnitudes, and those of unknown magnitudes. While
the latter is beyond the scope of this paper, the former may
be tackled using Theorem 4. To determine whether attacks of
known magnitudes on a given set of q out of |E| edge weights
will disrupt consensus or not, it suffices to employ Theorem 4
as in Algorithm 1. This algorithm not only determines whether
the perturbed system achieves consensus (which can be deter-
mined by just one iteration of the algorithm), but also tells us
how fragile the system is to the perturbation on each of the per-
turbed edges. In other words, even if consensus is achieved by
the perturbed system, Algorithm 1 also determines how much
more perturbation would have been required on a particular edge
weight before consensus would have been disrupted.

Consider a labeling of the edges such that the perturbed edges
are labeled 1 through q, with δi, i = 1, · · · , q, being the pertur-
bation, Wnominal ∈ R|E|×|E| the diagonal matrix of nominal edge
weights, and Pi the ith standard basis in R|E|.

If it turns out upon computation that δi > δ̄i , the interval
(δi, δ̄i) is an empty set and consensus is not guaranteed.

IV. CONSENSUS AMONG HETEROGENEOUS AGENTS:
PINNING CONTROL APPROACH

So far, uncertainty in agent dynamics have been consid-
ered, but the dynamics of the agents were identical. In this
section, we consider a variation of the pinning control for the
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synchronization of dynamical systems [39]–[44]. Each agent in
the network is characterized by an mth order ODE,

x
(m )
i + αm−1,ix

(m−1)
i + · · · + α0,ixi = ui. (15)

Here, we assume that the coefficients for each agent are known
but are heterogeneous; that is, αs,i = αs,j , in general, for any
pair i, j and s = 0, . . . , m − 1. The pinning agent (the leader)
is modeled by a linear system of order m − 1.

Conditions for achieving consensus among such follower
agents, by designing a suitable leader dynamics, and connec-
tion topology among followers, are derived. The n followers
interact among themselves over an undirected graph G, while
a leader agent, labeled L, has a dynamics of order m − 1. The
overall graph is a union of the undirected graph G, and a directed
graph with n directed edges between each of the n agents and
the leader L. In principle, this is similar to a mixed broadcast
and communication environment as in [45] and may occur in
case of human swarm interactions.

Next, define αj = mini αj,i and ᾱj = maxi αj,i . Now,
we revert to the definition of family of interval polynomi-
als Ī(s, ε) containing polynomials αε(s) := [α0 − ε, ᾱ0 + ε] +
· · · + [αm−1 − ε, ᾱm−1 + ε]sm−1 + sm , where ε > 0 as de-
scribed in Assumption 1. Note that in the setup of Section III-A,
every agent’s characteristic polynomial corresponds to the same
point in the value set shown in Fig. 1, whereas in this section
the characteristic polynomials correspond to different points in
the value set. Although we use the interval family Ī(s, ε) in our
analysis throughout this paper, in this section the coefficients
are known precisely for each agent, and Ī(s, ε) is defined to
only aid the analysis and not for robustness studies, while in
Section III-A the interval family arises owing to the uncertainty
inherent in the agent models themselves. Assumption 1 will also
be used in this section, though it will be shown later that it may
also be replaced with a weaker assumption. The main problem
is now stated.

Problem 3: For the multiagent system (15), subject to
Assumption 1, determine if it is possible to choose a suitable
dynamics for the leader and edge weights on the network, con-
taining the leader and the follower agents, so that the bounded
full-state consensus among followers can be achieved. If so,
then under what condition is this achievable?

The following Lemma provides a condition that paves the
way toward the solution of Problem 3.

Lemma 3: For the multiagent system with dynamics given
in (15) and satisfying Assumption 1, there exists a Hurwitz sta-
ble plant with dynamics given by ξ(m ) + ηm−1ξ

(m−1) + · · · +
η0ξ = 0 if the following matching condition (M) is met, M:
There exist two sets of real numbers {k0 , k1 , . . . , km−1} and
{η0 , η1 , . . . , ηm−1}, such that

ηm−1 − αm−1,i

km−1
=

ηm−2 − αm−2,i

km−2
= · · · =

η0 − α0,i

k0

= ρi ∀i. (16)

Proof: See Appendix. �
In some works [5], [27], [28], consensus was achieved in

heterogeneous higher order agents using internal model princi-
ple or observers which use additional local controllers for each

agent. An identical internal model of an exosystem, contained
by each agent, generates the consensus trajectories. We do not
consider any local controllers and show that subject to a match-
ing condition, as in (16), and some robust stability requirements,
consensus can be achieved by the followers through informa-
tion exchange among each other and a pinning control action of
the leader. The matching condition in (16), though restrictive,
is thus the price paid for achieving consensus, without local
controllers, among heterogeneous agents.

Consider a leader of order m − 1 given by

x
(m−1)
L +

km−2

km−1
x

(m−2)
L + · · · + k0

km−1
xL = uL (17)

where the input uL may be chosen as 0. Suppose the control law
for agent i is given by

ui =
m−1∑
l=0

∑
j∈Ni

wij (x
(l)
j − x

(l)
i )

+ ρi

m−1∑
l=0

kl(x
(l)
L − x

(l)
i ) − km−1ρiuL . (18)

The following result describes the consensus dynamics.
Lemma 4: Using the control law in (18), the dynamics of

all the agents, given by (15), evolve along a common consensus
dynamics given by

x
(m )
i + ηm−1x

(m−1)
i + · · · + η0xi =

m−1∑
l=0

∑
j∈Ni

wij (x
(l)
j − x

(l)
i )

which is independent of the leader.
Proof: See Appendix. �
Remark 8: From [21, Lemma 4 and Th. 3], it follows

that the characteristic equation of the system described by (15)
and (18) is given by Πn

j=1pj (s), where pj (s) = sm + (ηm−1 +
λj )sm−1 + · · · + (η0 + λj ) and λj is the jth eigenvalue of the
Laplacian L. Consequently, the system achieves consensus in
all the states of the agents 1 to n if the polynomials pj (s) are
Hurwitz for all j = 2, . . . , n. Also, the consensus states evolves
along the dynamical system Ξ given by

ξ(m ) + ηm−1ξ
(m−1) + · · · + η0ξ = 0.

The following result ensures that consensus among the fol-
lowers is achieved with bounded states.

Lemma 5: The polynomials in the family sm +
∑m−1

l=0 (ηl +
[0, ε′])sl belong to the family Ī(s, ε) for some positive number
ε′ < ε and are thus Hurwitz.

Proof: See Appendix. �
Now, we state the main result about the consensus in the states

of n heterogeneous linear higher order agents.
Theorem 5: For the multiagent system given by (15), that

satisfies Assumption 1, there exist edge weights on the graph G,
and the directed edges connecting each agent to the leader, and
a reduced order model of the leader, as in (17), to ensure that
consensus is achieved in the states of the n followers.

Proof: Remark 8 indicates that for a leader given by (17) and
control law (18), the system dynamics depend only on the roots
of the equation Πn

j=1pj (s) = 0, where pj (s) = sm + (ηm−1 +
λj )sm−1 + · · · + (η0 + λj ) and λj is the jth eigenvalue of the
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Fig. 3. Consensus in states of 40 fourth-order agents.

Laplacian L. If all the roots are in the open lhp, consensus
follows. From Lemma 5 (see Appendix), it follows that there
exists a nonempty interval [0, ε′] such that every polynomial of
the form sm +

∑m−1
l=0 (ηl + [0, ε′])sl is Hurwitz. Note that there

always exists a choice of edge weights ensuring that ||L||2 < ε′.
Hence, pj (s) = sm + (ηm−1 + λj )sm−1 + · · · + (η0 + λj ) be-
longs to the family of polynomials sm +

∑m−1
l=0 (ηl + [0, ε′])sl ,

for a some choice of edge weights and is Hurwitz for all j =
1, 2, . . . , n. Thus, the polynomial Πn

j=1pj (s) is also Hurwitz.�
Remark 9: Note that the dynamics of the leader, given by

(17), does not affect the overall consensus dynamics of the
agents and thus the leader’s dynamics may even be unstable.

Remark 10: Suppose r out of the n agents have identical
dynamics described by the set of coefficients {ηi}i=0,...,m−1 .
Then, the matching condition in (16) needs to hold only for the
remaining n − r agents in order to achieve consensus. More-
over, Assumption 1 may also be relaxed if the dynamics of the r
identical agents are robustly stable and these r identical agents
do not need to be pinned to the leader.

Next, we show that a less stringent condition than Assumption
1 can ensure desired consensus in the followers’ states.

Theorem 6: For the multiagent system given by (15), that
satisfies (16), there exist edge weights on graph G, and the
directed edges connecting each agent to the leader, and a reduced
order model of the leader, as in (17), to ensure consensus in the
states of the n follower agents, if the characteristic polynomial
of at least one follower belongs to the interior of a family of
stable interval polynomials.

Proof: In (16), replace ηj with αj,p for all j, where agent
p has robustly stable dynamics. Thus, we may choose ρp = 0,
thereby choosing the dynamics of agent p as the consensus
dynamics. Now, the proof is similar to that of Theorem 5.

Remark 11: Theorem 6 implies that if Assumption 1 is
replaced by a weaker assumption, that at least one of the agents
has robustly stable dynamics, consensus with bounded states is
achievable.

V. SIMULATIONS

Consider Example 2 in Section III-A with 40 agents in S40
and μ = 0.45. Fig. 3 shows that all the states of the 40 agents

Fig. 4. Consensus in states of fifth-order agents through S4 .

Fig. 5. Consensus among the followers.

converge for the chosen edge weights and given values of
{β�}�=0,...,3 , even though the system does not satisfy the condi-
tion of (9). This follows from the discussion about the sufficiency
of Theorem 2.

Next, consider a system of inherently unstable identical
agents whose linear uncertain dynamics can be described by
the characteristic polynomial s5 + [16, 20]s4 + [90, 100]s3 +
[300, 310]s2 + [340, 350]s + [−40,−35] and and β� = 1∀�.
Here, Assumption 1 does not hold. Using Kharitonov’s The-
orem, k = 40 and k̄ = 192.67. Thus, the network parameters

must be so chosen that 0.2076 < λmin(E (Gτ )T E (Gτ ))λmin(RRT )
λmax(Lu ) .

Suppose the network is a star Sn . Now, for n > 4, the condition
(9) of Theorem 2 is violated for any choice of edge weight μ.
Fig. 4 shows the consensus in the first four states for four agents
with μ = 42. The states are, however, not bounded at consensus.

Finally, consider a system of four heterogeneous third-order
agents over C4 with dynamics given by

...
xi + α2i ẍ1 + α1i ẋi + α0ixi = ui, i = 1, 2, 3, 4

with (α21 , α22 , α23 , α24) = (8, 7, 5, 11), (α11 , α12 , α13 , α14)
= (10, 9, 7, 13), and (α01 , α02 , α03 , α04) = (3.5, 5, 8,−3). The
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matching condition in (16) is satisfied and with a leader given by
ẍL + ẋL − 1.5xL = uL , ρ1 = −1, ρ2 = 0, ρ3 = 2, ρ4 = −4,
consensus is achieved among the four agents, as seen in Fig. 5,
despite one of these agents having unstable open-loop dynam-
ics (violation of Assumption 1). The external input to the leader
is zero. Though the leader’s dynamics are unstable, consensus
among the pinned agents is unaffected.

VI. CONCLUSION

Using Kharitonov’s Theorem as a tool for both design and
analysis, this paper provided a relationship between the uncer-
tainty bounds characterized by gain margins and the parameters
of the network. Further, the amount of edge weight perturba-
tions tolerable by such an uncertain system of agents was also
obtained. Moreover, without using a separate local controller
for each higher order agent, a pinning control structure was
proposed for a system of heterogeneous agents to achieve con-
sensus, by designing the dynamics of the leader along with
suitable edge weights in the network.

In future, uncertain nonlinear systems may be considered in
a similar setup, to relate stability margins of agent models with
properties of the network. Also, extension of the present analysis
to directed networks will provide an interesting new direction
of investigation.

APPENDIX

Proof of Lemma 1

Proof: Comparing (6) and (7), it is apparent that if the gain
k in Fig. 2 is an eigenvalue of L, then the closed-loop poles
of (7) are zeros of the polynomial (6). Now, if all the nonzero
eigenvalues of L belong to the interval (k, k̄), then the zeros
of P (s) in (6), except the roots of the agent’s characteristic
equation (that is, all the zeros of P̄ (s)), will be in the lhp.
Application of [21, Th. 3] proves consensus. �

Proof of Lemma 3

Proof: For any agent i, choose ρi such that maxj |kjρi | < ε.
Subsequently, setting the ratio in (16) as ρi , one obtains the set
{η0 , η1 , . . . , ηm−1}. This choice of {η0 , η1 , . . . , ηm−1} satisfies
the condition (16) for any other agent p with a corresponding ρp .
Moreover, due to Assumption 1, the characteristic equation of
the system Ξ described by ξ(m ) + ηm−1ξ

(m−1) + · · · + η0ξ =
0 belongs to Ī(s, ε), since |ηj − αj,i | < ε∀j for some ε > 0,
and the characteristic polynomial of agent i belongs to Ī(s, 0).
Thus, the plant Ξ is Hurwitz. �

Proof of Lemma 4

Proof: Using the control law (18) in (15), the dynamics of
agent i transforms to

x
(m)
i + ηm−1x

(m−1)
i + · · · + η0xi =

m−1∑
l=0

∑
j∈Ni

wij (x
(l)
j − x

(l)
i ).

(19)

The coefficients ηj , j = 0, 1, . . . ,m − 1 are independent of i
and the dynamics of the leader do not appear in (19). The inter-
agent dynamics on the right-hand side of (19) can be described
by the Laplacian. Thus, the dynamics of the system (15), under
the control law (18), is given by

ẋ = Ax

A =

⎡
⎢⎢⎢⎢⎢⎣

0 In · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · In

−η0In − L −η1In − L · · · −ηm−1In − L

⎤
⎥⎥⎥⎥⎥⎦ . (20)

We note that (20) is independent of the leader’s dynamics.

Proof of Lemma 5

Proof: The coefficients of the monic polynomial sm +∑m−1
l=0 ηls

l satisfy αl − ε < ηl < ᾱl + ε ∀l (from the proof of
Lemma 3). It then follows that there exists some ε′ < ε such that
αl − ε < ηl + ε′ < ᾱl + ε ∀l. Moreover, for any 0 < δ < ε′,
the inequality αl − ε < ηl + δ < ᾱl + ε ∀l holds. This implies
that any polynomial in the family sm +

∑m−1
l=0 (ηl + [0, ε′])sl

also belongs to the family of interval polynomials, Ī(s, ε), for
some ε > ε′ > 0, and is thus Hurwitz. �

Lemma 6: For a connected undirected graph having n nodes
and less than 2n − 2 distinct edges, σmin(RRT ) = 1.

Proof: Since Tτ ∈ R(n−1)×(|E|−n+1) , if |E| < 2n − 2, we
have λmin(Tτ T T

τ ) = 0. Now, σmin(RRT )=λmin(In−1 +Tτ T T
τ )

= 1 + λmin(Tτ T T
τ ) = 1 + 0. �
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