
Graph Theory in Systems and Controls

Daniel Zelazo, Mehran Mesbahi, and Mohamed-Ali Belabbas

Abstract— This tutorial paper aims to explore the role of
graph theory for studying networked and multi-agent systems.
The session will cover basic concepts from graph theory along
with surveying its role in problems related to cooperative
control and distributed decision-making. Finally, we will also
introduce some advanced topics from graph theory in the hope
of encouraging further discussion and explore new research
opportunities in system and control theory.

I. INTRODUCTION AND MOTIVATION

The rapid pace of innovation in the areas of control
theory, computation, and communication is leading the way
for a new class of networked systems characterized by
their complex interconnections, diversity of components, and
interactions with the physical world. The potential benefit
of these networked systems from environmental, economic,
and social perspectives are simultaneously tempered by their
complexity. New tools are required to efficiently analyze the
performance and stability of these systems, simulate their
operation, and control their behavior.

Coupled with the optimistic vision of these systems are
the challenges associated with their design and operation. In
particular, understanding the role of the system interconnec-
tions in the overall behavior and performance of a networked
system is of paramount importance. Traditional approaches
for analysis and synthesis of monolithic dynamic systems
must be extended to this networked framework.

Motivated by these engineering goals and technical chal-
lenges, the mathematical theory of graphs has emerged as
the powerful tool to approach these challenges. Graphs are
useful abstractions for networked systems that facilitate ex-
amining the role of the underlying information-exchange and
interaction geometry on the behavior (e.g., noise attenuation,
tracking, robustness, synchronization patterns) that these
systems exhibit. In the meantime, graph theory is an elegant
branch of discrete mathematics with a rich history and a
number of sub-disciplines, such as algebraic graph theory,
random graphs, and extremal graph theory. When graphs are
embedded in linear control systems, the (linear) algebraic
framework for analyzing graphs becomes particularly useful.

The use of graphs to study the coordination and control of
multi-agent systems has seen rapid developments from within
the systems and controls community [1]–[3]. Fundamental

D. Zelazo is with the Faculty of Aerospace Engineering, Israel Institute of
Technology, Haifa, Israel dzelazo@technion.ac.il; M. Mesbahi
is with the Department of Aeronautics and Astronautics, University of
Washington, Seattle,WA 98195-2400 USA mesbahi@uw.edu; M.-A.
Belabbas is with the Electrical and Computer Engineering department
and the Coordinated Science Laboratory, University of Illinois, Urbana-
Champaign, IL 61801, USA belabbas@illinois.edu

problems for multi-agent systems (MAS), such as synchro-
nization, formation control, or assignment problems, have
matured owing to our collective improved understanding of
the critical role that graphs play. In many system models, the
graph itself becomes the focal point, even more-so than the
dynamics of the agents itself.

The importance that graph theory plays in studying multi-
agent systems provides the motivation and justification for
this tutorial paper. The paper takes the perspective that
the combinatorial structure of the underlying graph in a
networked system can reveal deep insights into its system
theoretic properties. This includes fundamental properties
such as stability, controllability, and performance. Graphs are
used to represent the structure of the dynamics as well as the
corresponding control system. The type of dynamics allowed
over this structure leads to the two major strands of research.
In the first, we consider the set of all (linear) dynamics that
are supported on the graph, in the sense that an edge of
the graph corresponds to a free parameter in the associated
state matrix. We make this relationship precise through the
introduction of zero-patterns. This point of view gives rise
to the study of structural properties of systems, which aims
to understand when a property is verified, regardless of
the particular entries of the system matrix. In the second
approach, one singles out a particular type of dynamics on
the graph. A prime example for this setting is the diffusion
dynamics on graphs, mirroring its infinite-dimensional twin,
yet characteristically combinatorial. Although diffusion dy-
namics has been a cornerstone of applied mathematics, e.g.,
modeling heat conduction in a medium, examining its finite-
dimensional realization on graphs is relatively recent, and
aims to highlight the role of graph-theoretic constructs in
what often amounts to distributed averaging.1 The resulting
distributed algorithms– simple in their form–lead to a rather
effective means of synthesizing a wide array of coordination
mechanisms on a network– they essentially provide means
of “agreeing” on the states needed for coordination via local
interactions.

The first part of this paper is meant to acquaint the
reader with the tools and terminology used to understand
this rich theory. We then follow with an overview of some
fundamental problems in the study of multi-agent and net-
worked systems and show how they can be better understood
through the lens of graph theory. The emphasis of this work
is on providing a general flavor of the results as opposed
to technical rigor or comprehensiveness. The hope is to

1However, allowing directed edges and inputs to these networks can
significantly broaden their “computational” power beyond averaging.

stimulate interest and provide an engaging overview of this
emerging field.

II. GRAPH THEORY

The origins of graph theory date back to the 18th cen-
tury with the works of Leonard Euler and the celebrated
Königsberg bridge problem. Euler laid the foundations of
the now formal discipline of mathematics. In this section,
we will provide an overview of the basic set-theoretic and
algebraic description of graphs, and highlight some special
topics that will play important roles in the study of networked
dynamical systems.

A. Graphs and their structures

A graph is a set-theoretic structure that describes how el-
ements in a particular set are related to each other. Formally,
we denote a graph by G, and it is specified by a vertex
set V = {1, 2, ..., n},2 and an edge set E ⊆ V × V , whose
elements characterize the incidence relation between distinct
pairs of V . Thus, a graph is completely defined by the pair,
G = (V, E). As graphs are set-theoretic objects, it is also
straight forward to define the notion of subgraphs, where
H = (VH, EH) ⊂ G means that VH ⊂ V and EH ⊂ E .
A subgraph containing edges incident to all nodes in V is
termed a spanning subgraph.

Two vertices i and j are called adjacent (or neighbors)
when {i, j} ∈ E ; we denote this by writing i ∼ j. An
orientation of an undirected graph G is the assignment of
directions to its edges, i.e., an edge ek is an ordered pair
(i, j) such that i and j are, respectively, the initial and the
terminal nodes of ek. A simple graph, which will be used
predominately in this note, can contain only a single edge
between incident nodes.3 We finally note that graphs are
typically drawn using circles to represent nodes, and lines
to represent edges.

There are many properties that one can derive from the
basic structure of a graph. The neighborhood of a vertex v ∈
V , denoted N (v), is the set of all nodes adjacent to it; that is,
N (v) = {u ∈ V | {v, u} ∈ E}. From the neighborhood, it is
possible to define the degree of a node as d(v) = |N (v)|.4 Of
particular interest to problems like the bridges of Königsberg,
is to characterize how one can traverse through a graph by
moving from one node to another using the edges in the
graph. A path in a graph is a sequence of distinct adjacent
vertices, while a walk, on the other hand, is a sequence of
nondistinct adjacent vertices. We say that an undirected graph
is connected if there is a path between every pair of nodes.
A closed walk is a sequence of adjacent vertices that start
and end with the same vertex, and a circuit is a closed walk
that uses distinct edges. Euler proved that a circuit in a graph
exists if and only if the degree of each node is even. Graphs
that poses this structure are said to have an Eulerian Circuit,
in Euler’s honor [4].

2We will use i and vi interchangeably to denote a vertex.
3Whereas a multi-graph may have many edges between a pair of nodes.
4For a finite set A, |A| denotes its cardinality.

Paths can also be defined for directed graphs. A directed
path of length 1 ≤ k ≤ n in G is a sequence of vertices
p = (v1, v2, . . . , vk), such that (vi, vi+1) ∈ E for 1 ≤ i < k.
For the graph depicted in Figure 3, (1, 2, 3) is a path, whereas
(1, 2, 3, 4) is not. We say that a node v belongs to p, and write
v ∈ p if v is in the sequence of nodes of p. Reciprocally,
we say that the path p visits v if v ∈ p. A path p is called
simple if it does not visit the same node more than once.

B. Trees, cycles, and decompositions

The notion of paths and closed walks also form the basis
of two fundamental sub-structures of a graph. A cycle is a
closed walk where no vertices or edges are repeated,5 and
a tree is a connected graph that contains no cycles. Figure
1 shows an example of a graph on four nodes, one possible
spanning tree, and a subgraph containing a cycle.

G T H ⊂ G

Fig. 1. A graph G, its spanning tree subgraph T , and a disconnected
subgraph H ⊂ G containing a cycle.

A directed cycle of length k in the directed graph G is a
directed path of the form (v1, . . . , vk, v1), and a cycle p =
(v1, . . . , vk, v1) is called simple if the path (v1, . . . , vk) is
simple, and (vk, v1) ∈ E . A loop or self-loop in G is an
edge (vi, vi) ∈ E , or a cycle of length 1.

An important property of any connected graph is that it
contains at least one subgraph with edges incident to all the
nodes. Let T = (V, ET) ⊂ G be a spanning tree of G and
consider an edge e = (v, u) ∈ E \ ET . Then ET ∪ e forms a
fundamental cycle, Ce, in G. Note that there is a path from
node u to v using only edges in T , and the edge e completes
the cycle by joining v back to u. The co-tree of the spanning
tree T is the graph C = (V, E \ ET), consisting of all the
edges forming fundamental cycles with the spanning tree T .

Beyond identifying the important subgraphs of a graph,
there are many other important characterizations of graph
structures. One such problem is that of graph decompositions,
which aims to partition the nodes or edges of a graph into
sets satisfying certain properties. One basic example of a
decomposition problem is to determine if there exists a
partition of the node set into two sets, V1 and V2, with
V1 ∪ V2 = V such that the edge set can be expressed as
E = {{u, v} |u ∈ V1, v ∈ V2}. These graphs are known as
the bipartite graphs, see Figure 2.

Bipartite graphs have important relations to other de-
compositions. For example, a coloring of a graph is the
assignment of unique colors to each vertex such that adjacent
vertices do not share the same color. Of interest is to

5Except, of course, the start and end vertex

find the smallest coloring (i.e., using the least number of
colors) of a graph–this is called the chromatic number of a
graph. Bipartite graphs thus admit a 2-coloring of the nodes,
shown in Figure 2. One may also look for the smallest edge
coloring, which is to assign a color to each edge such that
adjacent edges do not share the same color, also shown in
Figure 2. In bipartite graphs, the minimum edge coloring is
equal to the largest vertex degree in the graph, maxi d(i),
and is known as the chromatic index of a graph.

V1
V2

(a) (b)

Fig. 2. Examples of bipartite graphs. The graph in (b) shows the 2-coloring
of the nodes, and 3-coloring of the edges.

Edge coloring of a graph is also a special type of matching.
A matching is a collection of non-adjacent edges, and a
maximum matching is a matching that includes the largest
number of edges. A matching is called perfect if every node
in the graph is incident to an edge of the matching. Thus,
the edge coloring is a decomposition of a graph into disjoint
matchings. This problem can be cast as an optimization
problem with complexity O(|V||E|) [5]. A dual problem
to the maximum matching is the minimum vertex cover
problem, which aims to find a set of vertices such that each
edge of the graph is incident to at least one vertex of the
set. This problem can be cast as an integer linear program,
and for general graphs is classified as NP-hard. A fascinating
result related to bipartite graphs is König’s Theorem.

Theorem 1 ([6]). For bipartite graphs, the size of the
minimum vertex cover and maximum matching are equal.

This result implies a polynomial time algorithms for
solving either problem. Note that the graph in Figure 2 has
a minimum vertex cover of 4, which is also equal to the
maximum matching.

Another type of graph decompositions aims to find special
paths in the graph. We say that a set of directed paths
p1, . . . , pj covers the graph G if every node of G is visited by
at least one path pi, 1 ≤ i ≤ j. Given two paths p1, p2 ∈ G,
we say that they are disjoint if the set of nodes they visit
are distinct. For the graph of Figure 3, the cycles (3, 6, 5, 3)
and (1, 2, 1) are disjoint, but (1, 2, 1) and (2, 3, 2) are not.
We call p1, . . . , pj a disjoint cover if it is a cover by disjoint
paths, and a disjoint cycle cover if it is a cover by disjoint
cycles.

We now introduce the type of graph decompositions that
appear in the study of stability of decentalized systems.

1

2 3

6 5

4

Fig. 3. A directed graph with 6 vertices. The red edges illustrate the
disjoint cycle cover of the graph (12)(356)(4). Other disjoint cycle covers
are (12356)(4) and (23)(56)(1)(4). A 4-decomposition of the graph is
given by (23)(56), or (1)(635).

We call a k-cycle (disjoint) decomposition of G, or k-
decomposition in short, a set of disjoint simple cycles
in G whose union visits exactly k vertices. Hence a n-
decomposition is a disjoint cycle cover of G, a 1 < k < n-
decomposition is a disjoint cycle cover of a subgraph of G of
cardinality k, and a 1-decomposition is a node with a loop.

We relate below simple cycle in a graph with n ver-
tices with elements of the so-called permutation group Sn,
and we adopt here a notation that makes this connection
more transparent: we denote the cycle (v1, . . . , vk, v1) by
(v1v2 · · · vk), and we denote a cycle decomposition as a
product of cycles. For example (12)(3) refers to the 3-
decomposition containing the cycle (1, 2, 1) and the loop
(3, 3). We illustrate some of these notions in Figure 3.

We now relate cycles in digraphs to matchings in bipartite
graphs as they were introduced in Sec. II-A. To this end, we
first exhibit a natural bipartite graph associated to a digraph.
Given a digraph G = (V, E), we define the bipartite graph
G2 = (V2, E2) with V 2 and E2 defined as follows: if V =
{v1, v2, . . . , vn}, we set

V2 = {v1, v2, . . . , vn, v1′ , v2′ , . . . , vn′} (1)

and
E2 = {(i, j′) for (i, j) ∈ E}. (2)

It is clear from its definition that the graph G2 is a bipartite
graph, with edges going from V = {v1, . . . , vn} to V ′ =
{v1′ , . . . , vn′}. We have the following correspondence:

Lemma 1. Disjoint cycle covers of G = (V, E) are in one-
to-one correspondence with perfect bipartite matchings of
G2.

We illustrate the definition of G2 and the correspondence
of Lemma 1 in Figure 4.

1

2 3

4

1

2

3

4

1’

2’

3’

4’

Fig. 4. The bipartite graph to the right has two nodes for each node i of the
graph on the left, labeled i and i′. A directed edge (k, l) of G corresponds
to an edge (k, l′) in G2. The “plain” edges show a 4-decomposition of G
and the corresponding perfect matching of G2.

This very short overview of some notions from graph
theory is meant to illustrate the richness of the field, and
is by no means comprehensive.

C. Graphs and their algebraic representations

The subject of algebraic graph theory aims to explore
how properties of graphs can be related, or revealed, by the
algebraic properties of certain matrices that can be associated
to graphs. In this section, we will highlight some of the
important matrix representations of graphs along with their
interpretations.

Observe that any square matrix can be identified with a
graph by associating each column/row with a vertex, and
defining an edge between vertices whenever the correspond-
ing matrix entry is non-zero.6 We denote the graph of a
matrix M as G(M). Similarly, a graph can therefore be
directly associated to an appropriately defined matrix. This
leads to a natural representation of a graph, and is most
clearly demonstrated with what is termed the adjacency
matrix of a graph, denoted A(G). The adjacency matrix is
defined such that

[A(G)]ij =

{
1, (i, j) ∈ E
0, otherwise. (3)

Note that for undirected graphs, the adjacency matrix is
symmetric.

One of the profound results relating properties of a graph
to that of the corresponding matrix is the Perron-Frobenius
Theorem.7

Theorem 2 ([7]). A square matrix M is irreducible if and
only if the graph of the matrix, G(M), is strongly connected.

We recall that a matrix is irreducible if it can not be
placed to an upper block-triangular form using simultaneous
row/column permutations. Furthermore, this result pertains
generally to directed graphs, of which undirected graphs are
a special case. For directed graphs, strong connectedness
means there exists a directed path between every pair of
vertices.

The adjacency matrix can also be used to recover the
degree information of the graph. Let 1 be the vector of all
ones, then [A(G)1]i = d(i) is the degree of node i. That is,
the row sum of the adjacency matrix is precisely the degree
of each node. Another useful matrix related to the node
degree is the degree matrix, denoted as ∆(G) and defined
as [∆(G)]ii = d(i). Thus, ∆(G) contains the degree of each
node on the diagonal. It further follows that ∆(G)1 = A(G)1
and 1>∆(G)1 = 2|E|.

The adjacency matrix and degree matrix can be used to
define one of the most celebrated algebraic representations of
a graph - the graph Laplacian matrix, L(G). The Laplacian
is defined as

L(G) = ∆(G)−A(G).

Our discussion here focuses on undirected graphs, but the
Laplacian can also be defined for directed graphs using the
adjacency matrix and the in- or out-degree matrices.

6Note that in this case we can obtain a graph with a self-loop - an edge
connecting a vertex to itself. This corresponds to a non-zero entry on the
diagonal of the matrix.

7The theorem presented here represents only a partial statement of the
complete result.

We can observe some immediate properties of the graph
Laplacian. First, it is a symmetric matrix and therefore has
real eigenvalues. From the properties of ∆(G) and A(G),
it also immediately follows that L(G)1 = 0. That is, 0 is
an eigenvalue associated with the eigenvector 1. We also
observe that the quadratic form of the Laplacian can be
expressed as

x>L(G)x = x>(∆(G)−A(G))x

=

|V|∑

i=1

d(i)x2i −

∑

{i,j}∈E

xixj

 =

∑

{i,j}∈E

(xi − xj)2.

Thus, the Laplacian is a positive semi-definite matrix. With
this observation, we denote the eigenvalues of L(G) as λi(G),
and have 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λ|V|(G). This leads
to an important result relating the eigenvalues of L(G) to the
connectedness of G.

Theorem 3 ([8]). An undirected graph G is connected if
and only if λ2(G) > 0.

The spectrum of the Laplacian is also related to other com-
binatorial properties of the underlying graph. For example,
given a connected graph G, one may be interested in enumer-
ating the number of spanning trees, t(G), it contains. This
number can certainly be found by counting, and Cayley’s
formula provides the counting result for the complete graph
on n nodes as t(G) = nn−2, which is exponential. On the
other hand, for an arbitrary (connected) graph G, the number
of spanning trees can be expressed as

t(G) =
1

n

n∏

i=2

λi(G);

this is known as Kirchoff’s Matrix-Tree Theorem [9]. This
result is remarkable considering that t(G) must be an integer
value, while the eigenvalues of L(G) may be irrational.

We now turn our attention to perhaps the most descriptive
algebraic representation of a graph - the graph incidence
matrix. The incidence matrix, denoted here by E(G), is
indexed by the vertices of G for the rows, and the edges
of G for the columns - so E(G) ∈ R|V|×|E|. To define the
incidence matrix, we first assign an arbitrary orientation to
the edges, leading to a directed graph. We label the edges
as E = {e1, . . . , e|E|}. Then, [E(G)]ij = +1 if node i is
the initial node of edge ej , [E(G)]ij = −1 if node i is the
terminal node of ej , and [E(G)]ij = 0 otherwise.

From the structure of the incidence matrix, it is immedi-
ately apparent that 1>E(G) = 0. Moreover, the transpose
of the incidence matrix can therefore be interpreted as a
difference operator over a graph. This interpretation leads to
the following result relating the rank of the incidence matrix
and the number of connected components in the graph.

Theorem 4 ([4]). Let G be a graph on |V| = n nodes with
c connected components. Then rk[E(G)] = n− c.

In fact, there is an intimate connection between the
fundamental subspaces of the incidence matrix E(G) and

the combinatorial structure of the underlying graph. In this
direction, we examine the graph-theoretic interpretation of
the kernel of E(G), known as the cycle space (or flow space).
The cycle space of G, can be expressed as

Ker[E(G)] = {x ∈ R|E| |E(G)x = 0}.
One may now consider a vector x ∈ Ker[E(G)] describing a
commodity flowing through each edge from its initial node
to its terminal node. This commodity should be conserved,
meaning the flow entering each node must equal the flow
leaving the node. For example, a conserved flow on a span-
ning tree can only be the “zero flow,” meaning E(T)x = 0
if and only if x = 0. More generally, a conserved flow in G
corresponds to flows around fundamental cycles to be zero -
this is also referred to as Kirchoff’s Current Law. As a result,
one can always construct a conserved flow by examining the
flows around the fundamental cycles in the graph.

Theorem 5 ([4]). The cycle space of G is spanned by
fundamental cycles of G.

This result can be seen algebraically by partitioning the
columns of E(G) into those corresponding to the edges of
a spanning tree, T , and the remaining edges that complete
the fundamental cycles (the co-tree C). By an appropriate
labelling of the edges, we can then write

E(G) =
[
E(T) E(C)

]
.

Since E(T) is a matrix with full column rank, we can
express the incidence matrix of the co-tree as a linear
combination of E(T). Thus,

E(C) = E(T)R. (4)

The matrix R, in some communities referred to as the Tucker
representation of a graph [5], describes which edges in T are
needed to form the fundamental cycle with edges in C. This
description leads to the following characterization of E(G),

E(G) = E(T)
[
I R

]
.

This is illustrated in Figure 5.

1

2

3

5

4

E(T) =

1 0 0 −1
−1 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 1

R =

1 1
1 1
0 1
1 1

Fig. 5. A graph with an arbitrary orientation. A spanning tree is indicated
by the black edges, and the co-tree by the blue edges.

A basis for the flow space can therefore be expressed in
terms of the rows of the matrix

[
−R> I

]
,

Ker[E(G)] = Im
[
−R
I

]
.

Finally, we mention a relationship between the incidence
matrix and the Laplacian matrix of G. Indeed, it can be
verified that

L(G) = E(G)E(G)>

holds. While L(G) is defined for undirected graphs, we
note the orientation of edges used to define E(G) can be
arbitrary. This representation also motivates an alternative
matrix representation of a graph, mapping “edges to edges.”
This matrix, termed the edge Laplacian, can be expressed as
[10],

Le(G) = E(G)E(G)>.

A useful result relating the graph and edge Laplacian matri-
ces is stated below.

Proposition 1 ([10]). For a connected graph G with
spanning tree T and co-tree C, the graph Laplacian L(G) is
similar to the matrix

[
Le(T)(I +RR>) 0

0> 0

]
,

where Le(T) is the edge Laplacian associated with T , and
R is defined in (4).

The matrix Le(T)(I+RR>) is referred to as the essential
edge Laplacian, and we denote it as Less(G) [11].

III. GRAPHS AND STRUCTURAL STABILITY OF SYSTEMS

In the spirit of results such as Theorem 2 that highlight
the combinatorial aspects of matrix theory, in this section
we explore how dynamic systems can be represented by
graphs, and how that graph structure can be used to assess
the stability properties of the system.

A. Graphs and system’s structure: zero-patterns

We start by defining precisely how a graph describes the
structure of a system, as mentioned in the Introduction.
Let n > 0 be a positive integer, we call a sparse matrix
space (SMS) or zero pattern a vector space of matrices in
Rn×n with entries either free or zero. Precisely, we have the
following definition:

Definition 1 (Zero pattern). Let α be a set of pairs of integers
between 1 and n, that is α ⊂ {1, . . . , n} × {1, . . . , n} and
denote by Eij the n×n matrix with zero entries except for the
ijth entry, which is one. We define the zero pattern Σα to be
the vector space of matrices of the form A =

∑
(i,j)∈α aijEij

for aij ∈ R.

A zero-pattern associated to the actuator matrix B
of a linear system can similarly be defined via β ⊆
{1, . . . , n} × {1, . . . ,m}. For example, if n = 3,m =
2 and α = {(1, 2), (1, 3), (2, 1), (2, 2), (3, 2)}, β =
{(1, 1), (1, 2), (2, 3)}, then A ∈ Σα and B ∈ Σβ are given
in Figure 6, where ∗ are arbitrary real values. We call the
elements referred to in α as free variables or free entries,
and the other elements are zero variables or zero entries.

Building on Sec. II-C, we associate a digraph G = (V, E)
to a zero-pattern Σα uniquely as follows: the vertex set V =

{1, 2, . . . , n} and edge set E = α. Note that this is similar
to considering the matrix A in (III-A) to be the adjacency
matrix (see Eq. (3), where ∗ are to be interpreted as 1). If
there is an actuation vector B ∈ Σβ , we modify the above
graph as follows: to each column of B is associated a so-
called “input-node,” and there is a directed edge from an
input node i to node j if the entry (i, j) ∈ β. Hence the
graphical representation of the zero patterns above is given
by the graph in Figure 6.

1

2 3

i1

i2

A =

0 ∗ ∗
∗ ∗ 0
0 ∗ 0

 , B =

∗ 0
∗ 0
0 ∗

Fig. 6. A zero-pattern and its corresponding digraph.

We call a directed graph G = (V, E) symmetric if for all
(i, j) ∈ E ⇔ (j, i) ∈ E : every edge in the graph has its
reciprocal in the graph. We can represent these graphs as
undirected graphs with self-loops. We associate two zero-
patterns to undirected graphs as follows: first, from the
general correspondence between graphs and zero-patterns
introduced above, it is easy to see that to an undirected
graph corresponds a zero-pattern such that if entry i, j
is free, so is entry j, i. We call a zero-pattern with this
property weakly symmetric. Note that matrices in a weakly
symmetric zero-pattern are not necessarily symmetric. If a
zero-pattern contains only symmetric matrices, we call it
strongly symmetric. We summarize the above discussion in
the following definition:

Definition 2 (Symmetric and weakly symmetric zero-pat-
terns). A zero-pattern Σ defined by α ⊂ {1, . . . , n} ×
{1, . . . , n} is weakly symmetric or simply symmetric if
(i, j) ∈ α ⇔ (j, i) ∈ α. A strongly symmetric zero-pattern
is a symmetric zero-pattern which only contains symmetric
matrices, that is Σ =

∑
(i,j)∈α aijEij with aij = aji.

Symmetric and weakly symmetric zero-patterns can be
represented using undirected graphs, whereas general zero-
patterns are represented by digraphs.

B. Structural stability of linear Systems

We illustrate how graph theoretic notions enter in the study
of decentralizaed stabilization. Recall that a matrix is called
Hurwitz or stable if all of its eigenvalues have negative real
parts. We introduce the following definition:

Definition 3 (Stable graphs and stable zero-patterns). We say
that a zero pattern is stable if it contains Hurwitz matrices.
We refer to its associated graph as a stable graph.

Our goal is to obtain conditions to characterize stable zero-
patterns or graphs, and algorithm to create such stable graphs.
To this end, we call a sequence of k-decompositions for
1 ≤ k ≤ n nested if the i-decomposition covers all vertices
covered by the i − 1-decomposition plus one additional
vertex. Observe that the edges used in each decompositions

need not be the same. For example, the decompositions
(2), (12), (123) for the graph in Figure 6 (left) are nested.

1) The general case:

Theorem 6 ([12]). The following holds:
1) Necessary condition for stability: If a graph G is stable,

then it contains at least one k-decomposition for every
1 ≤ k ≤ n and every node of the graph is strongly
connected to at least one self-loop.

2) Sufficient condition for stability: If a graph G contains
a sequence of nested k-decompositions for 1 ≤ k ≤ n
then the associated zero-pattern is stable.

We illustrate the result on the following zero-pattern,

Σ =

∗ ∗ 0 0 0 ∗
∗ 0 ∗ 0 0 0
0 ∗ 0 0 ∗ 0
0 0 ∗ ∗ ∗ 0
0 0 0 0 ∗ ∗
∗ 0 ∗ 0 ∗ 0

 (5)

whose corresponding graph is in Figure 3. We first verify
that every node is strongly connected to a node with a self-
loop. Since 1, 4 and 5 have self-loops, it suffices to verify
the statement for nodes 2, 3 and 6. We see that these tree
nodes are strongly connected to 1. We now exhibit k-cycle
disjoint decompositions for 1 ≤ k ≤ 6: k = 1: (5); k = 2:
(56); k = 3: (16)(5); k = 4: (356)(1); k = 5: (23)(56)(1);
k = 6: (23)(56)(1)(4).

Hence, the above zero-pattern meets the necessary condi-
tion of Theorem 6. Now observe that the covers exhibited
above are in fact nested, since the nodes of a k-cover and
included in the nodes of a k+ 1 cover. Hence, the necessary
condition is also met and there thus exists an assignment of
the ∗ in (5) so that the resulting matrix is stable.

2) The symmetric case: We start with strongly symmetric
zero-patterns, that is vector spaces of symmetric sparse
matrices. This case is easily dealt with by the following
result:

Lemma 2. Let Σ be a strongly symmetric zero-pattern. Then
Σ is stable if and only if all its diagonal elements are free.

We now focus to the more general case of (Weakly)
symmetric zero patterns. We show that the necessary and
sufficient conditions for stability of Theorem 6 coincide in
this case, thus completely characterizing the weakly sym-
metric sparse matrix spaces:

Theorem 7 ([13]). Let G be a graph corresponding to a
(weakly) summetry zero-pattern Σ. Then Σ is stable if and
only if:

1) Every node in G is strongly connected to a self-loop.
2) The graph G contains a disjoint cycle cover.

We make two remarks. First, the notion of strong connect-
edness is redundant in the symmetric case–indeed, if there
exists a path from vertex u to vertex v in the graph, then
there exists a path going in the other direction by symmetry.
Second, notice that conditions in Theorem 7 are weaker
than the necessary conditions of Theorem 6—namely, we

do not require the existence of k-decompositions for every
1 ≤ k ≤ n. However, conditions of Theorem 7 imply the
sufficient conditions of Theorem 6, that is, we have the
following result:

Proposition 2 ([13]). If the symmetric graph G contains
a disjoint cycle cover, and if every node in G is connected
to a self-loop, then G admits nested k-decompositions for
1 ≤ k ≤ n.

It is clear that Theorem 7 is a direct consequence of
Proposition 2. We illustrate the result to the symmetric graphs
shown below.

1

2

3

6

5

4

1

2

3

6

5

4

Fig. 7. Even though both graphs are connected and contain self-loops, the
first one has a n-decomposition (1), (236), (45), whereas the second one
does not. Therefore only the graph on the left is stable.

The proof is entirely graph theoretic and relies on the fact
that a planar subgraph can be exhibited in the graph of the
zero-pattern. We provide a sketch here:

Proof of Proposition 2. First, it is a simple exercise to see
that we can assume that G is connected. By hypothesis,
G contains at least one n-decomposition. We pick one
arbitrarily and denote by H0, H1, ... , Hm its constituent
cycles. Let v0 be a vertex of G incident to a self-loop and
without loss of generality, assume that v0 ∈ H0. We now
show that we can discard edges of G to reduce it to a planar
graph P that still satisfies the conditions of the theorem.
This reduction to a planar graph allows us to construct the
desired nested k-decompositions and prove stability of G.
We construct P in three steps. Starting from a disconnected,
planar subgraph of G, we expand it by adding edges from G
without creating intersections.

1) The cycles H0, . . . ,Hm do not have any nodes or
edges in common by definition. We draw these cycles
in the plane without any intersecting edges. We call
the resulting graph P0. Note that P0 has m + 1
disconnected components, see Figure 8.

2) Add the smallest number of edges (of G) to P0 so that
all the nodes of P0 are connected to the node v0 ∈ H0.
We can do this by adding exactly m edges, as can be
observed in Figure 8.

3) Finally, we add all missing reciprocal edges to the ones
we have already chosen, to obtain a symmetric graph -
we clearly can do this without intersecting any edges.
We draw the newly added edges with dashed lines.
The resulting planar graph is P , and isomorphic to a
subgraph of G by construction, see Figure 9.

v0

v4

v3

v1

v2

Fig. 8. The cycles of a Hamiltonian decomposition of G can be plotted
in the plane without intersecting edges. The graph above is called P0.

We now show that the graph P contains nested k-
decompositions, and thus G does as well. We will exhibit
such k-decompositions explicitly by giving an ordering of
the nodes such that the subgraph of G induced by the first k
nodes in the order admits a k-decomposition.

We describe the order using an integer-valued function F
which assigns to each node its position in the ordering. We
set F (v0) = 1 and proceed with the ordering in a counter-
clockwise fashion. This defines a unique order once the
second node in the sequence is chosen. There is a canonical
way of choosing it described in [13]. Because P is connected
and because all of its nodes lie on the boundary, every one
of them will be visited in this fashion. We illustrate this in
Figure 9.

1

6 2

9

1011

26

15 16

171413

12

25

24

23

18

22192021

7

8

5 4

3

Fig. 9. Starting from node v0 at position 1, we follow a counter-clockwise
direction to assign an order to all nodes. The outside dotted arrows depict
the path followed to set the ordering. By construction, no node lies inside
of a cycle and thus every node will be given a position in the ordering.

Next, we verify that for each k, the set of vertices v for
which F (v) ≤ k—call it Vk—induces a k-decomposition
in P . To do this, let us first connect the vertex with label
k to v0 using a path only containing plain edges (i.e. no
dashed edges). We can do this in a unique way, moving
along the cycles clock-wise until we get to v0. If we write

w0, . . . , wk−1 for the nodes contained in this path (with
w0 = v0 and F (wk−1) = k) then Vk − {w0, . . . , wk−1}
contains exactly all the nodes of some cycles Hl. Indeed,
because we constrain the path to use plain edges, if some
vertex wi belongs to a cycle Hj , then all vertices from
Hj with labels smaller than i also belong to the path
w0, . . . wi−1.

Therefore if we show that the nodes belonging to the
path w0, . . . , wk−1 can be grouped in simple cycles with
edges from P , we would have exhibited a k-decomposition.
Consider two cases: 1: if the length of the path is 2l, then we
can just group the consecutive nodes in pairs, which yields
l disjoint 2-cycles. 2: If the length of the path is odd, then
we can do the same, but this time leaving the vertex v0 out.
However, v0 is incident to a self-loop, so this yields a k-
decomposition as well.

The connection to graph theory allows us to easily derive
bounds on the complexity of deciding stability of a weakly-
symmetric zero-pattern: recall the construction of Sec. II-B
assigning a bipartite graph G2 uniquely to a digraph G. From
Lemma 1, we know that n-decompositions of G correspond
to perfect matchings of G2. Furthermore, we also mentioned
in Sec.II-A the existence of polynomial-time algorithm to
find maximal matchings. We thus obtain the following result.

Corollary 1. There exists a polynomial-time algorithm to
verify whether a weakly-symmetric zero-pattern is stable.

IV. GRAPHS AND CONTROLLABILITY OF SYSTEMS

As mentioned earlier, graphs can be used to describe either
the stucture of an underlying system, or to describe a discrete
topology over which a dynamic process such as diffusion
takes place. In both cases, the study of controllability can
be done through graph theoretic techniques. We start with
the structural case followed by the controllability analysis of
diffusion dynamics.

A. Structural controllability of linear systems

The study of structural controllability of linear systems
was one of the first instances of the use of graph theoretic
notions in the study of control systems. The problem is the
following: given zero patterns Σα and Σβ , is there a pair
(A,B) ∈ Σα × Σβ so that the system ẋ = Ax + Bu is
controllable? The problem was studied by CT Lin [14] in the
single input case, and was generalized to the multi-input case
in, e.g., [15]. The first result was to show that the controllable
property is generic for a pair of zero-patterns, that is if there
exist one controllable pair (A0, B0) ∈ Σα×Σβ , then almost
all pairs (A,B) ∈ Σα × Σβ are controllable.

Before stating the result of Lin in graph theoretic terms, we
need to introduce a particular type of graph, called a cactus
graph. To this end, consider a pair Σα,Σβ where the number
of columns in Σβ is one. A stem is a graph associated to the
pair

A =

(0 ∗ ··· 0
...

. . .
...

0 ∗
x 0 ··· 0

)
, B =

(0
...
0
∗

)
(6)

i1 3

1

2

i1 3

1

2

Fig. 10. A stem graph (left) and a bud graph (right).

with ∗ in A only in entries immediately above the main
diagonal, with x = 0, and a bud is a graph associated to the
pair of Eq,(6) with x = ∗. We depict them in Figure 10. The
node i1 is called the origin of the stem/bud.

The graph G of the pair Σα,Σβ is a cactus if it can be
written as G = S∪B1∪· · ·∪Bp where S is a stem, the Bi’s
are buds and the origin ei of the bud Bi is also the origin of
an oriented edge in S∪B1 · · ·∪Bi−1 and ei is the only vertex
which belongs to both Bi and S∪B1 · · ·∪Bi−1. Intuitively,
one should think of the buds as being attached to the stem
(through their orgin node) to form a cactus. See [14] for
more details. The main result of Lin provides the following
characterization of controllable zero-patterns pairs Σα,Σβ .

Theorem 8 ([14]). There is a controllable pair (A,B) ∈
Σα × Σβ if and only if the associated graph is spanned by
a cactus.

Structural controllability of networks has recently been a
subject of renewed interest, as Theorem 8 lead to connections
with matching and rank optimization problems; see [?].

B. Network diffusion and its controllability

Linear time-invariant dynamics on graphs assume the
form,

ẋ = A(G)x+B1(G)u+B2(G)w, (7)

where x denotes the state, and the matrices A, B1, and B2,
represent the system matrix, input matrix, and disturbance
matrix, respectively. The dependency of these matrices on
the underlying graph is emphasized as this dependency is
exactly what distinguishes this line of investigation. An out-
put or observation equation with the corresponding system,
input, and disturbance matrices can also augment the state
dynamics as well, once again with the dependency of these
matrices on the graph G; see Figure 11. The correspondence

u1(t)

w(t)
z(t)

y(t)

u3(t)

u2(t)

Fig. 11. Systems with a graph backbone; z(t) and y(t) represent the
output and observation signals, respectively.

between systems and graph theoretic constructs is more
direct when the system matrices are in fact, one of the matrix
representations of the network presented in Section II-C; this

has proved to be a particularly fruitful line of investigation,
when the corresponding system accomplishes a useful task
and have implications in terms of its distributed nature and
information overhead. An iconic example that represents this
scenario, is the so-called consensus dynamics or distributed
averaging that assumes the form

ẋ = −L(G)x, (8)

encoding that the state of the nodes evolve according the
sum of the differences between the state of the node and its
neighbors. The study of the consensus dynamics highlights
the utility and importance of algebraic graph theory in the
analysis of the system. Indeed, for the initial conditions x0 =
x(0), the solution of (8) can be expressed as

x(t) = e−L(G)tx0 =
1

|V|11>x0 +

|V|∑

i=2

e−λi(G)tviv
>
i x0,

where vi satisfies the eigenvalue/eigenvector relation
L(G)vi = λi(G)vi. This leads to the following result.

Theorem 9 ([3]). Let G be a connected graph. Then the
consensus dynamics (8) converges to the agreement set, A =
{x |x = α1, α ∈ R} with a rate of convergence determined
by λ2(G).

Let us now turn our attention to controllability for diffu-
sion dynamics on graphs. The setting involves considering
a network system, such as the one shown in Figure 12,
and examine whether the network is controllable from the
input “a.” A moment reflection on this interaction model
provides our first glimpse into the potential role that network
symmetry plays in the context of controllability analysis. In
particular, it is intuitive to reason that if the network consists
of homogeneous group of nodes with a interaction pattern
with some notion of symmetry, and that furthermore, the
input node is invariant under this symmetry, then the network
might be uncontrollable from this input node. This intuition
stems from the observation that as far as the input node is
concerned, it would be impossible to steer a group of nodes
that are “mirror” reflections of each other under the action
of a symmetry.

δa

a

Gf

Fig. 12. A networked system with an input

In order to make this intuition precise, let us explore how
the notion of symmetry can be made more precise. Graph
isomorphisms provide the entry point to characterize symme-
tries in the graph, as they capture invariance properties under
relabeling of the nodes–see for example, Figure 13. Such
relabelings can be represented by a “similarity” transforma-
tion on the adjacency matrix of the graph as PTA(G)P ,
where P is a permutation matrix. Graph symmetries are

1 2 3

4 5 6

a b

c

de

f

θ =

(
1 2 3 4 5 6
a c e d f b

)

Fig. 13. An example of graph isomorphism; θ represents the node
relabeling between the two isomorphic graphs

now made more precise through isomorphisms between the
graph and itself. What that means, is that the node relabeling
has to preserve the graph incidence relation. As such, the
permutation matrix P characterizes the graph symmetry,
referred to as an automorphism, when PTA(G)P = A(G),
or equivalently, when

A(G)P = PA(G); (9)

in this case, we call the matrix P an automorphism.8

We are now ready to tie in the graph automorphism
with the controllability of the networked system. Consider
a class of networked systems with the system dynamics that
commute with the automorphism of the graph. Furthermore,
we say that the input is invariant under the action of the
automorphism when PB = B. Examples of such matrices
include the adjacency, Laplacian, as well as the so-called
grounded Laplacian. The key property for this setup is that
these combinatorial matrices be non-defective.

Theorem 10 ([16]). The pair (A(G), B(G)) is uncontrol-
lable if A(G) admits an automorphism for which B(G) is
invariant under its action.

The Popov-Belevich-Hautus test for controllability turns
out to be indispensible in the proof of the above statement.
The steps involve starting with an eigenvalue-eigenvector
pair for the system matrix v and showing that Pv is also
an eigenvector corresponding the same eigenvalue. Since P
is non-trivial and A(G) is non-defective, there has to be some
eigenvector of A(G) for which Pv 6= v and as such, v−Pv
is also an eigenvector of A(G). But that would then imply
that v − Pv is orthogonal to all columns of B(G).

V. GRAPHS AND PERFORMANCE OF NETWORK SYSTEMS

State-controllability is a rather strong notion for large-
scale networks as it is difficult to justify how (and why) the
state of every node in the network should be controlled in
order to influence the network. Another class of influence
measures can be quantified through the notion of system
norms. As we see shortly, system norms such as theH2 norm
of the networked system in the context of influenced consen-
sus, is closely related to various combinatorial structures of
the underlying graph, including the length of fundamental
cycles, and the so-called effective resistance of the graph.

8More precisely, P is a representation of the automorphism.

This, in turn, has been extensively studied in the context of
other types of dynamic processes on graph, namely random
walks.

In this direction, we consider the consensus protocol over
a connected graph G, introduced in (8), that is corrupted by
zero-mean Gaussian noise at the process. In this discussion,
we consider the performance variable of the network in terms
of the relative states of a given set of agents - this can most
generally be captured by the incidence matrix of some other
network, H, e.g., H ⊆ G or the complete graph Kn. The
corresponding controlled consensus model now has the form

{
ẋ = −L(G)x+ w
z = E(H)>x.

(10)

We first note that when the consensus protocol is corrupted
by noise, it will not converge to a constant steady state.
Rather, the presence of noise leads to a random walk of
the consensus value, where the covariance of the average
of the system state becomes unbounded as t → ∞ [17].
Thus, a useful performance metric for studying (10) is to
consider the steady-state variance of the system trajectories
orthogonal to the agreement set. This abstractly captures how
tightly around the moving agreement value the states remain.
Formally, this is exactly the interpretation given by the H2

system norm of (10) when restricted to the subspace 1⊥.
In this direction, we employ the similarity transformation

proposed in Proposition 1 to consider a transformation of
(10) to the “edge dynamics,” allowing to study the system
trajectories orthogonal to the agreement set. This transfor-
mation can be used to eliminate the “agreement” portion of
the dynamics, leading to a minimal realization of (10). Using
the transformation

x̃ =

[
xT

xavg

]
=

[
E(T)>

1
|V|1

>

]
x,

where T ⊂ G is a spanning tree in G, we obtain the edge
agreement protocol [11],

Σe(G) :

{
ẋT = −Less(G)xT + E(T)>w

z = E(H)>E(T)†
>
xT ,

(11)

where E(T)† = Le(T)−1E(T)> is the left-inverse of
E(T), and Less(G) is the essential edge Laplacian.

The edge agreement protocol has a clear interpretation
showing the dynamics of the system trajectories along the
edges of a given spanning tree T . We now recall that the
H2 performance of (11) can be computed as

‖Σe(G)‖22 = Tr[E(H)>E(T)†
>
XE(T)†E(H)], (12)

where X is the positive definite solution to the Lyapunov
equation

L(X) = −Less(G)X −XLess(G)> + Le(T) = 0.

The solution of the Lyapunov equation can be verified to be

X =
1

2

(
I +RR>

)−1
.

Therefore, theH2 performance of the edge agreement system
can be expressed directly using (12). What remains is to

determine what combinatorial properties of the underlying
graph, if any, influence this performance metric.

To begin, we first consider the scenario where H = Kn,
the complete graph. For this we take a brief detour to
introduce the notion of the effective resistance of a graph
[18]. It is well known that the weighted Laplacian of a graph
can be interpreted as a resistor network. Each edge in the
network can be thought of as a resistor with resistance equal
to the inverse of the edge weight. The resistance between
any two pairs of nodes u, v ∈ V , denoted Ruv(G), can be
computed using the Moore-Penrose pseudo-inverse of the
graph Laplacian, denoted L(G)†, as [18]

Ruv(G) = (eu − ev)
TL(G)†(eu − ev)

= [L(G)†]uu − 2[L(G)†]uv + [L(G)†]vv,

where eu ∈ Rn is the indicator vector for node u. Note,
therefore, that (eu − ev) can be thought of as the incidence
matrix for a graph on V with a single edge (u, v). This is
illustrated in Figure 14. The total effective resistance of a
graph is the sum over all pairs of nodes of Ruv(G),

Rtot(G) =
∑

{u,v}∈E

Ruv(G).

Fig. 14. Effective resistance interpretation of influence.

It turns out the effective resistance can also be calculated
using the matrix R defined in (4) [19].

Proposition 3. Consider a graph G with spanning tree T
and Tucker matrix R. Let Ruv satisfy (eu−ev) = E(T)Ruv .
Then the effective resistance between nodes u and v can be
computed as

Ruv(G) = R>uv(I +RR>)−1Ruv.

This result follows from Proposition 1. This can be ex-
tended to derive an expression for the total effective resis-
tance. Let RKn

satisfy E(Kn) = E(T)RKn
, representing

the Tucker matrix for all possible edges, then

Rtot(G) = Tr[R>Kn
(I +RR>)−1RKn].

It is now apparent that the H2 performance of the con-
sensus protocol, when considering H = Kn, is precisely the
total effective resistance of the graph,

‖Σe(G)‖22 =
1

2
Rtot(G).

We now consider the scenario where the performance is
measured along the edges of a spanning tree of G such that
H = T . In this case, we find that the performance reduces
to the expression

‖Σe(G)‖22 = Tr[(I +RR>)−1].

Here we recall a few properties of the matrix R. Each
column of R indicates which edges in T are used to form a
fundamental cycle. Thus, the sum of the square of the non-
zero entries in each column are in correspondence to the
length of each fundamental cycle. We also observe that the
matrix (I +RR>)−1 can be iteratively computed using the
Sherman-Morrison formula (the so-called “rank-1 update”)
[20]. Using these properties, we arrive at few results. First,
we conclude that the performance is minimized for the
complete graph and maximized for spanning trees. From this
we immediately conclude that there is a tradeoff between
the number of edges (i.e., the sparsity of the system) and its
performance. Viewed in another way, the addition of cycles
is the mechanism that improves the system performance.

With this characterization, one may consider a network
design problem that is tasked with adding a fixed number
of well-placed edges to obtain the largest improvement in
the H2 performance. The following result shows that when
adding a single edge to a spanning tree, the length of the
created cycle influences the resulting performance.

Theorem 11 ([11]). Consider the edge agreement problem
(11) with G = H = T and an edge e /∈ G. Then

‖Σe(T ∪ e)‖22 = ‖Σe(T)‖22 −
`(c)− 1

2`(c)
,

where `(c) is the length of the fundamental cycle created by
adding the edge e.

This result shows that long cycles are better for filtering
noises than short ones. It is also discussed in [11] that when
adding multiple new edges, there is a trade-off between the
length of the cycles and number of edges it shares with
other cycles in the performance improvement. This leads to
a combinatorial problem of trying to find long cycles that
are edge disjoint.

VI. OUTLOOKS

This tutorial provides a glimpse, albeit a biased one, into
the fruitful interactions between systems and control theory
on one hand and graph theory on the other.9 Some of these
interactions go back to the origins of control theory, for
example in the context of signal flow graphs that are natural
graphical representation of signal transformations through
cascade and feedback pathways. The structural approach to
patterned matrices and systems also has a rich history in
system theory with recent renewed interest in this approach
leading to new combinatorial and algebraic insights for
networked systems. In the meantime, we believe that the
interactions between graph theory and control theory will
continue to grow and deepen. Here we list a few represen-
tative areas in this direction:

1) Extremal graphs: Extremal graph theory, in the most
general sense, studies how global properties of a
graph influences the local substructure properties of

9We fully realize that some of our readers’ favorite graph-theoretic
constructs in system theory have been overlooked in our presentation.

the graph, and vice versa. One of the classic problems
in extremal graph theory is the so-called problem of
forbidden subgraphs. The problem asks what is the
maximum size of a graph with a given order10 such
that it does not contain a prescribed subgraph F?
One important version of this problem is the following
theorem by Turán,
Theorem 12 ([21]). Let G be any graph with n
vertices such that G is Kr+1-free. Then the number
of edges in G is at most r−1(r − 1)n

2

2 .

Turán’s theorem, therefore, provides a characterization
of the size of a graph (in this case, the number of
edges) in terms of the presence of complete subgraphs
of a certain order. An example of a Turán graph is
shown in Figure 4.

Fig. 15. A Turàn graph.

Extremal graphs may shed insight on the performance
and stability of large-scale networked systems. Indeed,
one may consider an extremal perspective for the
design of monitoring of large-scale networks where
centralization is not feasible. For example, perfor-
mance metrics such as those discussed in Section
V may be studied for special classes of extremal
graphs, leading to performance guarantees (bounds)
even without a complete knowledge of the network
structure. A simple example can be adapted from a
result shown in [22], which provides a characterization
of the H2-performance of a relative sensing network as
‖Σ(G)‖22 = 2|E|‖Σ‖22, where ‖Σ‖22 is the performance
of the agents comprising the network system. For this
simple example it immediately becomes clear that a
corresponding ‘Turán type’ result can be stated as
follows: Let Σ(G) be a relative sensing network with
n agents such that G is Kr+1-free. Then the H2

performance of Σ(G) is at most r−1(r − 1)n2‖Σ‖22.
We believe that adopting such “extremal” point of view
for system theory on networks will further deepen its
unique combinatorial character.

2) Learning and network evolution: Networks not only
support the dynamic evolution of the states associated
with each node, but also can be the subject of the
evolution, possibly through network-level feedback via
the node states. For example, the edge weights in a
network can be a function of the state of the nodes, that
in turn evolve according to interaction characterized by
these weights. The term ”co-evolution” captures this

10The order of a graph is the number of its vertices.

interplay between node and edge level interactions. Al-
though co-evolution often leads to nonlinear dynamics,
its analysis can benefit from graph theoretic methods.
For example, graph theoretic analysis can unravel time-
scale separation in the co-evolution process, facilitat-
ing multiple time-scales analysis. On the other hand,
one can embed learning algorithms in the node/edge
evolution, such that the network assumes desired input-
output properties. Such a point of view in turn can be
used to embed network-level learning for robust and
resilient operation of networked systems [23].

3) Composite networks: Over the past decade, a num-
ber of compositional rules for networks have been
proposed. These compositional rules not only pro-
vide mechanisms for synthesizing large-scale networks
from the smaller “atomic” ones, but often lead to ef-
fective decompositional approach for examining large
networks. The corresponding compositional approach
for the analysis and synthesis of networked dynamic
systems, however, is in its infancy. A few repre-
sentative works in this direction–for example–have
examined how network controllability is preserved
under Cartesian products [24], [25]. Much less is
known on how performance of large scale networks
can be examined from such a point of view, or how
network decomposition can lead to efficient synthesis
procedures. This point of view is particularly relevant
for control theoretic treatment of networks, as com-
putational requirements for typical control synthesis
problems do not readily facilitate their application to
large scale networks.

4) Random graphs and minimal properties: Random
graph theory provides powerful tools to study structural
and dynamical properties of large scale systems, scale
at which the fine structure of the graph has less impact
on its global properties, such as controllability or
stability. One of the first and still most widely-used
random graph model is the one of Erdös and Rényi [?].
In this model, given a fixed set of nodes, an edge
between a pair of nodes is present with probability
p, and each edge can be present independently of the
other edges. Under this graph model, properties such
as the controllability of the diffusion dynamics [26] or
the structural stability of an associated zero-pattern [?]
have been studied, but many open problems remain
and it is fair to say that the area is vastly unexplored.
Another area that is still unexplored is the one of
minimal structures: when studying structural proper-
ties, some properties of the system are preserved when
changing a 0 entry of a zero-pattern to a ∗ entry or
equivalently, when adding an edge to the corresponding
graph. The reciprocal is however not true; hence we
can introduce minimal graphs for property P as the
ones with the least amount of edges that meet property
P . Characterizing these minimal graphs for different
classes of properties remains wide-open.

REFERENCES

[1] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Robotic
Networks: a Mathematical Approach to Motion Coordination Algo-
rithms. Princeton, NJ: Princeton University Press, 2009.

[2] W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle
Cooperative Control. London: Springer London, 2008.

[3] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton, NJ: Princeton University Press, 2010.

[4] C. Godsil and G. Royle, Algebraic graph theory. Springer, 2001.
[5] R. T. Rockafellar, Network Flows and Monotropic Optimization.

Athena Scientific, 1998.
[6] A. Schrijver, Theory of Linear and Integer Programming. John Wiley

& Sons, Inc., 1986.
[7] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory. Cam-

bridge University Press, 1991.
[8] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathe-

matical Journal, vol. 23, no. 98, pp. 298 – 305, 1973.
[9] W. Tutte, Graph Theory. Cambridge: Cambridge University Press,

2001.
[10] D. Zelazo and M. Mesbahi, “Edge agreement: Graph-theoretic per-

formance bounds and passivity analysis,” IEEE Transactions on Au-
tomatic Control, vol. 56, no. 3, pp. 544–555, 2011.

[11] D. Zelazo, S. Schuler, and F. Allgöwer, “Performance and design of
cycles in consensus networks,” Systems & Control Letters, vol. 62,
no. 1, pp. 85–96, 2013.

[12] M.-A. Belabbas, “Sparse stable systems,” Systems & Control Letters,
vol. 62, no. 10, pp. 981–987, 2013.

[13] A. Kirkoryan and M.-A. Belabbas, “Decentralized stabilization and
planar graphs,” in IEEE Conference on Decision and Control, 2014.

[14] C.-T. Lin, “Structural controllability,” IEEE Transactions on Automatic
Control, vol. 19, no. 3, pp. 201–208, 1974.

[15] R. Shields and J. Pearson, “Structural controllability of multiinput
linear systems,” IEEE Transactions on Automatic Control, vol. 21,
no. 2, pp. 203–212, 1976.

[16] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability
of Multi-Agent Systems from a Graph-Theoretic Perspective,” SIAM
Journal on Control and Optimization, vol. 48, no. 1, pp. 162–186,
2009.

[17] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of Parallel and Distributed
Computing, vol. 67, no. 1, pp. 33 – 46, 2007.

[18] D. Klein and M. Randić, “Resistance distance,” Journal of Mathemat-
ical Chemistry, vol. 12, pp. 81–95, 1993.

[19] D. Zelazo and M. Bürger, “On the Definiteness of the Weighted Lapla-
cian and its Connection to Effective Resistance,” in IEEE Conference
on Decision and Control, 2014.

[20] M. S. Bartlett, “An inverse matrix adjustment arising in discriminant
analysis,” The Annals of Mathematical Statistics, vol. 22, no. 1,
pp. 107–111, 1951.

[21] P. Turàn, “On an extremal problem in graph theory,” Matematikai ès
Fizikai Lapok, vol. 48, pp. 436–452, 1941.

[22] D. Zelazo and M. Mesbahi, “Graph-Theoretic Analysis and Synthesis
of Relative Sensing Networks,” IEEE Transactions on Automatic
Control, vol. 56, pp. 971–982, May 2011.

[23] A. Chapman, E. Schoof, and M. Mesbahi, “Online adaptive network
design for disturbance rejection,” in Principles of Cyber-Physical
Systems (S. Roy and S. Das, eds.), Cambridge University Press, to
appear.

[24] W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition.
New York: Wiley, 2000.

[25] A. Chapman, M. Nabi-Abdolyousefi, and M. Mesbahi, “Controllability
and observability of network-of-networks via Cartesian products,”
IEEE Transactions on Automatic Control, vol. 59, no. 10, pp. 2668–
2679, 2014.

[26] S. O’Rourke and B. Touri, “On a conjecture of godsil concerning con-
trollable random graphs,” SIAM Journal on Control and Optimization,
vol. 54, no. 6, pp. 3347–3378, 2016.

	Introduction and Motivation
	Graph Theory
	Graphs and their structures
	Trees, cycles, and decompositions
	Graphs and their algebraic representations

	Graphs and Structural Stability of Systems
	Graphs and system's structure: zero-patterns
	Structural stability of linear Systems
	The general case
	The symmetric case

	Graphs and Controllability of Systems
	Structural controllability of linear systems
	Network diffusion and its controllability

	Graphs and Performance of Network Systems
	Outlooks
	References

