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Abstract: We consider a passivity based cooperative control problem, and show that the steady-
state behavior of the networked system is intimately related to a family convex network optimization
problems. This result provides a duality interpretation between the different signals in the cooperative
control system. In particular, we show that the input and output signals as well as the dynamic controller
state and controller output are pairs of dual variables. The presented results facilitate an optimal
controller design in networked systems. We show how this novel interpretation leads the way to an
optimal routing design in distribution networks.

1. INTRODUCTION

A recent trend in modern control theory is the study of coop-
erative control problems amongst groups of dynamical systems
that interact over an information exchange network. The fun-
damental goal for the analysis of these systems is to reveal the
interplay between properties of the individual dynamic agents,
the underlying network topology, and the interaction protocols
that influence the functionality of the overall system. Amongst
the numerous control theoretic approaches being pursued to
define a general theory for networks of dynamical systems,
passivity takes an outstanding role; see e.g., Bai et al. [2011].
In Arcak [2007], a passivity based framework for group co-
ordination problems was established. Passivity was used in
Zelazo and Mesbahi [2010] to derive performance bounds on
the input/output behavior of consensus-type networks. Passiv-
ity is also widely used in coordinated control of robotic sys-
tems (Chopra and Spong [2006]) or for cooperative control
with quantized measurements (De Persis and Jayawardhana
[2012]). The refined concept of incremental passivity provides
a framework to study various synchronization problems (Stan
and Sepulchre [2007], Scardovi et al. [2010]). Passivity was
also used in the context of Port-Hamiltonian systems on graphs,
to establish a unifying framework for a variety of networked
dynamical system in van der Schaft and Maschke [2012]. In
a previous work, we used a passivity-like framework to study
clustering in networks of heterogeneous scalar dynamical sys-
tems with saturated couplings (Bürger et al. [2013, 2011]).

We consider in this paper a canonical passivity-based coopera-
tive control framework comprised of equilibrium independent
passive systems (see Hines et al. [2011]) and dynamic con-
trollers interconnected by the networked structure. We show
that, even without specifying the dynamic controllers, the out-
put agreement steady-state input and output of the plants can
be understood as a primal/dual pair of variables associated to

1 The authors thank the German Research Foundation (DFG) for financial sup-
port of the project within the Cluster of Excellence in Simulation Technology
(EXC 310/2) at the University of Stuttgart.

a network optimization problem. Furthermore, we propose an
internal model based control law for the output agreement prob-
lem and show that the controller state and the controller output
can again be connected to a primal/dual solution of a network
optimization problem. By exploiting these duality relations, it
becomes straight-forward to construct a Lyapunov function to
prove convergence of the closed-loop system. We then proceed
to examine a distribution problem in inventory system and show
how this novel analysis methods lead directly to a distributed
controller design that solves the optimal routing problems.

The remainder of the paper is organized as follows. The prob-
lem set-up is introduced in Section 2. The inverse optimality
of the feasible agreement steady-state in an open-loop con-
figuration is discussed in Section 3. The inverse optimality of
the controller states and the controller outputs is discussed in
Section 4, before a stability analysis of the closed-loop system
is presented in 5. The implications of the results for controller
design is presented in Section 6 with an example related to
dynamic distribution networks. Finally, concluding remarks are
offered in Section 7.

Preliminaries: A graph G = (V,E), consists of a finite set
of nodes and edges, denoted as V = {v1, . . . , v|V|} and E =
{e1, . . . , e|E|}, respectively. The notation ek = (vi, v j) ∈ E ⊂ V ×
V indicates that vi is the initial node of edge ek and v j is the
terminal node, abbreviated as k = (i, j), and written as k ∈ E
and i, j ∈ V. 2 The incidence matrix E ∈ R|V|×|E| of the graph G
with arbitrary orientation, is a {0,±1} matrix with the rows and
columns indexed by the nodes and edges of G such that [E]ik
has value ‘+1’ if node i is the initial node of edge k, ‘-1’ if it
is the terminal node, and ‘0’ otherwise. This definition implies
that for any graph, 1>E = 0, where 1 ∈ R|V| is the vector of all
ones. We refer sometimes to the agreement space of G as the
null spaceN(E>). Additionally,N(E) is named the circulation
space of G, and R(E>) the differential space, see Godsil and
Royle [2001].

2 Although we consider undirected graphs, we assign arbitrary orientations to
each edge
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2. PROBLEM STATEMENT

We study a canonical model for passivity-based cooperative
control. Consider a network G = (V,E) of dynamical systems,
with each node of G representing a single-input/single-output
nonlinear dynamical system,

Σi : ẋi(t) = fi(xi(t), ui(t)),
yi(t) = hi(xi(t), ui(t)), i ∈ V, (1)

with state xi(t) ∈ Rni , control input ui(t) ∈ R and output
yi(t) ∈ R. The standing assumption we impose on the systems
throughout paper is output strictly equilibrium independent
passivity (OSEIP), see Hines et al. [2011] to which we refer
the reader for a detailed discussion on OSEIP. This property
can be summarized as follows
Assumption 2.1. (OSEIP). There exists a set Ui ⊆ R and a
single-valued map ky,i : Ui 7→ R, such that for all ui ∈ Ui

there exists a positive definite C1 function S u(xi) satisfying
Ṡ u(xi(t), ui(t)) ≤ −γi‖yi(t) − yi‖

2 + (ui(t) − ui)(yi(t) − yi), (2)
with yi = ky,i(ui), and ui(t) and yi(t) corresponding to the input
and output of the system in (1) respectively.

The map ky,i is called the equilibrium input-to-output map of
system (1). It characterizes the equilibrium output of the control
system under a constant input signal fromUi. The existence of
a storage function (2) implies that the map ky,i is co-coercive,
see Hines et al. [2011]. We impose here a slightly stronger
assumption.
Assumption 2.2. For all i ∈ {1, . . . , |V |}, it holds that Ui = R,
Yi = R and the equilibrium input-to-output maps ky,i(ui) are
invertible and strongly monotone.

Two important system classes, satisfying the previous assump-
tions are the following.
Example 2.3. (Affine Systems). Consider the affine system

ẋ(t) = Ax(t) + Bu(t) + w
y(t) = Cx(t) + Du(t) + v,

(3)

with (A, B) controllable and (A,C) observable. The system
is OSEIP if (A, B,C,D) satisfy the matrix equations of the
KYP-lemma (Khalil [2002]), (i.e., the system is strictly output
passive in the classical sense) and A is invertible (Hines et al.
[2011]). In addition, with w ∈ Rp and v ∈ R being constant
signals the equilibrium input-output map is the affine function

ky(u) =
(
−CA−1B + D

)
u +

(
−CA−1w + v

)
, (4)

i.e., the dc-gain of the linear system plus the constant value
determined by the exogenous inputs.
Example 2.4. (Gradient Systems). Consider the scalar nonlin-
ear system

ẋ(t) = − f (x(t)) + u(t), y(t) = x(t), (5)
with x(t) ∈ R, u(t) ∈ R, and y(t) ∈ R. The system is OSEIP
if (5) satisfies the QUAD condition, see DeLellis et al. [2011],
i.e., for all x′(t) and x′′(t) it holds that

(x′(t) − x′′(t))
(
f (x′(t)) − f (x′′(t))

)
≥ γ(x′(t) − x′′(t))2.

Systems of this form are considered in the context of synchro-
nization (Scardovi et al. [2010], DeLellis et al. [2011]). Note
that the QUAD condition reduces for the scalar system (5) to
a strong monotonicity condition on f (x(t)). The dynamics can
then be understood as the gradient of a strongly convex func-
tion, i.e., f (x(t)) = ∇F(x(t)). This corresponds to the system

class studied in Bürger et al. [2010, 2011, 2013]. The equilib-
rium input-output map is then the strongly monotone function
ky(u) = f −1(u).

To avoid trivial cases, we implicitly assume throughout the
paper that the systems are heterogeneous. In particular, we
assume that the systems without an external forcing would all
have different equilibrium outputs, i.e., ky,i(0) , ky, j(0).

In the following we will adopt the notation
y(t) = [y1(t), . . . , y|V|(t)]> and u(t) = [u1(t), . . . , u|V|(t)]> for
the stacked output and input vectors of the complete network.
We use normal bold font letters y,u to indicate that a vec-
tor corresponds to equilibrium trajectories. Similarly, we use
ky(u) = [ky,1(u1), . . . , ky,|V|(u|V|)]>. If all ky,i are invertible, we
write k−1

y (y) = [k−1
y,1(y1), . . . , k−1

y,n(y|V|)]>.

The control objective we consider here is output agreement on
a constant steady-state value.
Definition 2.5. A network of dynamical systems (1) is said to
reach output agreement if

lim
t→∞

y(t)→ β1 (6)

for some β ∈ R, called the agreement value.

Output agreement should be achieved through a coupling of
the network nodes using the control inputs. The cooperative
control framework we consider is based on a canonical control
structure, illustrated in Figure 1.

The controllers Πk are dynamical systems located on the edges
of the network,

Πk : η̇k(t) = gk(ηk(t), ζk(t))
µk(t) = ψk(ηk(t), ζk(t)), k ∈ E, (7)

where ηk(t) ∈ Rqk is the internal state of the controller and
ζk(t) ∈ R is its input. In fact, the controller inputs are precisely
the relative outputs of the systems Σi. In a stacked vector form
the controller inputs take the form

ζ(t) = E>y(t). (8)
As we consider the underlying graph to be undirected, we focus
on symmetric couplings, where the output of a controller influ-
ences the two incident systems with reversed signs. Following
the network interpretation, the control input is generated by the
mapping of the controller outputs, i.e.

u(t) = −Eµ(t). (9)

This structure has evolved as a standard control structure in
passivity-based cooperative control, see e.g. Bai et al. [2011],
Arcak [2007], van der Schaft and Maschke [2012], and is the
basis for our work here. Output agreement of such networks
under time-varying external signals is studied in Bürger and
De Persis [2013]. We investigate here the optimality proper-
ties of the steady states appearing in this cooperative control
framework.

3. OPTIMALITY OF THE STEADY-STATE OPEN-LOOP
OUTPUT AGREEMENT

We make the following observation resulting from the network
structure of the control system. The control input u(t) satisfies
by construction

u(t) ∈ R(E). (10)
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Fig. 1. A canonical cooperative control structure.

This structural condition is independent of the exact controller
we choose, but is purely a consequence of the networked struc-
ture of Figure 1. We first investigate the role of the structural
constraint u(t) ∈ R(E) in the agreement problem.
Definition 3.1. A pair (u, y) is said to be an output agreement
steady-state input-output pair if u ∈ R(E), y ∈ N(E>) and
y = ky(u).

The first algebraic constraint u ∈ R(E) contributes to the
structure of the coupling controller. The second constraint y ∈
N(E>) enforces the output agreement since N(E>) = span{1}.
Finally, the condition y = ky(u) ensures that u and y are an
equilibrium input output pair.

We connect the output-agreement steady-state now to a dual
pair of optimization problems, namely an optimal potential and
an optimal flow problem, respectively. The two problems take
the standard form of network optimization problems as defined
in Rockafellar [1998]. We define for each node the integral
function of the equilibrium input-to-output map ky,i(ui), denoted
Ki(ui), and satisfying

∇ui Ki(ui) = ky,i(ui). (11)
From Assumption 2.2, ky,i is strongly monotone, and thus
the integral function Ki is convex. We will call Ki(ui) in the
following the cost function of node i. The convex conjugate of
the cost function Ki(ui) is

K?
i (yi) = sup

ui

{yiui − Ki(ui)}, (12)

and will be called in the following the potential function of node
i. Recall that ∇yK?

i (yi) = k−1
y,i (yi). Consider now the following

dual pair of network optimization problems.

Optimal Potential Problem: Consider the static optimal po-
tential problem of the form

min
yi

|V|∑
i=1

K?
i (yi),

s.t. y ∈ N(E>).

(OPP1)

The objective functions of this problem are the convex conju-
gates of the integral functions of the equilibrium input-to-output
maps. The constraint y ∈ N(E>) (i.e., E>y = 0) enforces a
balancing of the variables, i.e., y1 = · · · = y|V|. We will call y in
the following potential variables.

Optimal Flow Problem: The dual problem to (OPP1) is the
optimal flow problem

min
ui

|V|∑
i=1

Ki(ui)

s.t. u ∈ R(E).

(OFP1)

The vector u ∈ R|V| will be called in the following the diver-
gence of the network.

We can now connect the dual pair of network optimization
problems to the output agreement steady-state.
Theorem 3.2. Consider the network G with node dynamics
(1) and networked input-output channels (8), (9), then the
following statements are equivalent:

(i) (u, y) are are the steady-state output agreement pairs for
the system input and output, respectively;

(ii) (y,u) is a primal/dual solution pair to (OPP1);
(iii) (u, y) is a primal/dual solution pair to (OFP1).

Proof. An output agreement steady-state input-output pair is
such that y = ky(u) = β1, for some u ∈ R(E). By assumption,
all input-output characteristics are invertible, such that u =
k−1

y (β1). From u ∈ R(E), it follows that 1>u = 1>k−1
y (β1) = 0.

To see now the equivalence to (ii), consider the Lagrangian of
(OPP1)

L(y,u) =

|V|∑
i=1

K?
i (yi) − u>y, u ∈ R(E). 3

The optimal primal dual solution pair is such that y is a
minimizer of r(y) = maxu∈R(E)L(y,u), and u ∈ R(E) is a
maximizer of s(u) = minyL(y,u). Now, note that r(y) takes the
finite value

∑|V|
i=1 K?

i (yi) for all y ∈ span{1} (i.e., u>y = 0) and
is unbounded otherwise. Thus, we have y = β1. The optimality
condition for r(y) reduces now to

|V|∑
i=1

∇K?
i (β) =

|V|∑
i=1

k−1
y,i (β) = 0,

which is exactly the condition for an output agreement steady-
state. Additionally, from the optimality condition∇yL(y,u) = 0
follows that u = k−1

y (y). Thus, the primal dual solution to
(OPP1) is an output agreement steady-state input-output pair.
Finally, to see (iii) it sufficies to see that (OFP1) is exaclty
identical to minu∈R(E)

(
−s(u)

)
, where s(u) = minyL(y,u).

This result shows that the equilibrium input output pair in a net-
work of equilibrium independent passive systems is intimately
connected to a pair of dual network optimization problems, i.e.
(OPP1) and (OFP1). We can now conclude that the equilibrium
input output pair has an inverse optimality property, since the
optimization problem solved by this steady-state configuration
is defined only by the systems dynamics and the network topol-
ogy.

4. OPTIMALITY OF THE CONTROLLER STEADY-STATE

We now close the control loop and present a distributed con-
trol scheme that ensures convergence to the agreement steady-
state. We focus on controls in the generic structure illustrated
in Figure 1 and define the dynamical systems Πk. To begin,
note that any static diffusive coupling, using only the current
relative measurement, i.e.,

(
yi(t) − y j(t)

)
, vanishes as an agree-

ment state is reached. Consequently, for systems with different
unforced equilibria, output synchronization cannot be achieved
using only static couplings. As a direct consequence of the
internal model principle for synchronization, see Wieland et al.

3 Note that u is not the true Lagrange multiplier for the problem, but is
interpreted as such by observing it satisfies u = Eλ for the true multiplier λ.
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[2011], we consider dynamic couplings and use an integrator as
common internal model for the entire network of the form

Πk : η̇k(t) = ζk(t)
µk(t) = ψk(ηk(t)).

(13)

We refer to Bürger and De Persis [2013] for a detailed explana-
tion on how such a controller can be derived from the internal
model principle. The function ψk : R 7→ R is a coupling non-
linearity which, similar to Arcak [2007], is assumed to be the
gradient of some convex, differentiable function Pk : R 7→ R≥0,
attaining a minimum at the origin, i.e.,

ψk(ηk(t)) := ∇Pk(ηk(t)). (14)
The control input applied to the plants is computed according
to the structure of Figure 1 and is thus given by (9), i.e. u(t) =
−Eµ(t). Summarizing, the dynamic coupling control law can be
represented as

η̇(t) = E>y(t), η(t0) ∈ R(E>),
u(t) = −Eψ(η(t)),

(15)

where η(t) = [η1(t), . . . , η|E|(t)]> is the controller state and
the controller output is denoted as ψ(η(t)). Please note that
η(t) ∈ R(E>) and u(t) ∈ R(E) for all times by construction.
The coupling nonlinearities ψk are a degree of freedom in the
control design. However, in this paper, we impose the following
requirement.
Assumption 4.1. For all k ∈ {1, . . . , |E|}, the functions Pk(ηk(t))
are twice differentiable, even, and strongly convex on R.

The coupling controller (15) is only a suitable controller for the
output agreement problem if it is able to generate the steady-
state control input u described by Theorem 3.2.
Definition 4.2. A vector η ∈ R|E| is called an output-agreement
controller steady-state if u = −Eψ(η), with u being a solution
to (OFP1). Correspondingly, the vector µ = ψ(η) is called the
output-agreement controller output.

We now connect the steady-state behavior of the controller
again to a dual pair of network optimization problems.

Optimal Potential Problem: We assume in the following that
u = [u1, . . . , u|V|]> is a solution to (OFP1). Consider now the
following optimization problem

min
η,v

|V|∑
i=1

uivi +

|E|∑
k=1

Pk(ηk),

s.t. η = E>v.

(OPP2)

Please note that although (OPP2) is an optimal potential prob-
lem, it is not directly connected to the problem (OPP1), which
was associated to the outputs of the dynamical system. Instead,
(OPP2) is an additional optimal potential problem, which, as
we will show later on, describes the steady-state behavior of
the internal model controller (15).

Optimal Flow Problem: Let again u be a solution to (OFP1).
Consider the following optimal flow problem

min
µ

|E|∑
k=1

P?
k (µk)

s.t. u + Eµ = 0.

(OFP2)

Please note that in this problem, u is not a decision variable, but
the solution previously defined by (OFP1).

To complete the connection between the dynamic variables of
the control systems and the network theory variables, we now

formalize the connection between the optimal flow and the
output of the internal model controller.
Theorem 4.3. Consider the controller (15) and let u be a output-
agreement steady-state input. Then, the following statements
are equivalent:

(i) (η,µ) are the steady-state output agreement pairs for the
controller state and output, respectively;

(ii) (η,µ) is a primal/dual solution pair to (OPP2);
(iii) (µ,η) is a primal/dual solution pair to (OFP2).

Proof. The output agreement controller steady state is charac-
terized by the relation u + E∇P(η) = 0. The corresponding
output agreement contoller output is then µ = ∇P(η). Consider
now the problem (OPP2). After replacing the variable η in
the objective function with E>v for some v ∈ R|V|, it can
be easily verified that the first order optimality condition is
u + E∇P(ET v) = 0. Thus, the primal solution η = ET v is the
output agreement controller steady state. Furthermore, consider
the Lagrangian of (OPP2) with multiplier µ, i.e.,

L(η, v,µ) = u>v + P(η) + µ
>(−η + E>v).

The optimality conditions (KKT-conditions) can be derived
from the Lagrangian as

u + Eµ = 0, ∇P(η) − µ = 0, −η + E>v = 0.

It follows directly that if η is an optimal primal solution
then µ = ∇P(η) is an optimal dual solution. This proves
the equivalence of (i) and (ii). Finally, the equivalence of
(iii) follows directly after noting that (OFP2) is equivalent to
the dual optimization problem minµ

(
−s(µ)

)
, where s(µ) =

minη,vL(η, v,µ).

We have now a second duality relation in the passivity-based
cooperative control framework. We want to emphasize that
we identified network optimization problems on two different
levels of the cooperative control problem. First, at the plant
level, the dual problems (OPP1) and (OFP1) characterize the
properties of the agreement state. The problems are fully de-
termined by the properties of the dynamical systems (1) and
the topology of the network G. Second, another dual pair of
network optimization problems, i.e., (OPP2) and (OFP2), is
associated to the internal model controller (15), used to achieve
output synchronization. These problems depend on the chosen
control structure, i.e., the coupling nonlinearities, as well as on
the solution to (OFP1). Thus, the two levels are not completely
independent, but the plant level problems influence the prob-
lems on the control level.

5. STABILITY ANALYSIS

It remains to analyze the behavior of the closed-loop dynamical
system. We had two important relations between the signals
ζ(t) = E>y(t) and u(t) = −Eµ(t), i.e., the interconnection
conditions (8), (9). The two formulas can be combined to what
is known as the conversion formula, see Rockafellar [1998]:

µ>(t)ζ(t) = −y>(t)u(t). (16)

The right hand side of this dynamic conversion formula is
reminiscent of a supply function for passive dynamical systems.
A natural question to ask in the context of this paper is what the
conversion formula looks like for the supply function (y(t) −
y)>(u(t)−u). Exploiting the previously established connections,
we make the following considerations
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(y(t) − y)>(u(t) − u) = −y>(t)E(µ(t) − µ) − y>(u(t) − u)
= −ζ>(t)(µ(t) − µ) − y>(u(t) − u)

= −η̇>(t)
(
∇P(η(t)) − ∇P(η)

)
− y>(u(t) − u).

(17)

Observe that in this particular problem we have y ∈ span{1} and
u(t),u ∈ R(E). Therefore, y>(u(t) − u) = 0. We conclude that(

∇P(η(t)) − ∇P(η)
)>
η̇(t) = −(y(t) − y)>(u(t) − u). (18)

The last equation has the flavor of a dissipation equality. In fact,
a storage function corresponding to (18) is

BP(η(t),η) = P(η(t)) − P(η) − ∇P(η)>(η(t) − η). (19)
Note that (19) is the Bregman distance, see Bregman [1967],
associated with P between η(t) and η . The function BP(η(t),η)
is positive definite and radially unbounded since P(·) is a strictly
convex function. From (18) it follows now

ḂP(η(t),η) = −(y(t) − y)>(u(t) − u). (20)

We can use these observations now for a Lyapunov analysis of
the closed-loop system.
Theorem 5.1. Consider the network of dynamical systems (1),
with the control inputs defined in (15). Let Assumption 2.2 and
Assumption 4.1 hold. Then the network (1), (13) converges to
the agreement steady-state y = β1, and

V(x(t), η(t)) = S(x(t)) + BP(η(t),η) (21)

with S(x(t)) :=
∑|V|

i=1 S i(xi(t)) (i.e. the EIP storage functions), is
a Lyapunov function for the closed-loop system.

Proof. The Lyapunov function V(x(t), η(t)) is positive definite
since both S i(xi(t)) and BP(η(t),η) are positive definite. By
assumption, all system (1) are OSEIP and thus

Ṡ(x(t)) ≤ −γ‖y(t) − y‖2 + (y(t) − y)>(u(t) − u). (22)
Thus, combining (22) and (20), we obtain the directional
derivative of the Lyapunov function candidate as

V̇(x(t), η(t)) = Ṡ(x(t)) + ḂP(η(t),η) ≤ −γ‖y(t) − y‖2.
Since limt→∞ V(x(t)) − V(x(t0)) exists and is finite, and since
ρi are positive definite, we conclude from Barbalat’s lemma
(Khalil [2002]) that limt→∞ ‖yi(t)−yi‖ = limt→∞ ‖yi(t)−β‖ → 0.
Additionally, by the invertability of the input-to-output map fol-
lows that u(t) converges to u and, consequently, η(t) converges
to η.

We can summarize the observations of this section as follows.
All signals in the dynamical network (1), (9), (15), (8) converge
to their steady-state, and their steady-state values are optimal
solutions to some network optimization problems, defined by
the node dynamics or the chosen controller, respectively. We
want to emphasize that this network interpretation revealed a
duality relation between the plant outputs and inputs, as well as
between the controller states and the controller inputs.

6. OPTIMAL DISTRIBUTION CONTROL

We discuss now the previous results on a specific example. We
consider therefore the flow control problem in a multi-inventory
system. A similar discussion has been presented Bürger and
De Persis [2013], where optimal inventory control is studied
from an internal model control perspective. The contribution
of this paper is the presentation of the results in the context
of the network optimization problems discussed above. The
routing control in multi-inventory systems has also been studied
in Bauso et al. [2006], De Persis [2013].

w1
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w4

s4
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Fig. 2. Illustration of a 10-inventory system. Iinventories i = 1−
4 are supplied with the amount of goods wi > 0, while
there is a constant demand at nodes i = 9, 10, with wi < 0.

We consider here the problem of optimal routing in a distri-
bution network with several inventories, with a deteriorating
storage, see e.g. Goyal and Giri [2001] for a justification of this
model. Consider n inventories with inventory levels Ii(t). The
inventory level is influenced by the external supply or demand
to this inventory Di(t), the amount of goods shipped to/from
another inventory Ri and a decay rate θi > 0, modeling the
perishing of goods in the inventory. This leads to the dynamics
of one inventory system as

dIi

dt
= Di(t) + Ri(t) − θiIi(t), i = 1, . . . , n. (23)

We suppose here that the external demand or supplies at one
node are constant, i.e., Di(t) = Di and that it is balanced over
the network, i.e.,

∑n
i=1 Di = 0. Goods can be shipped between

inventories along m transportation lines of the network. Let E
be the incidence matrix, describing the incidence relation of
transportation lines and inventories, then we have

R(t) = Eµ(t), (24)
where R(t) = [R1(t), . . . ,Rn(t)]> and µ(t) is the amount of goods
transported in the network. A schematic illustration of such an
inventory system with 10 inventories is shown in Figure 2.

We additionally assume that transporting goods within the net-
work incorporates a costs, characterized by the convex function

Fk(µk), k = 1, . . . ,m. (25)
It is reasonable to assume that the transportation capacity of one
line is limited. Therefore, we might constrain the flows on one
line to the set Γk = {µk : −wk ≤ µk ≤ w} for some capacity
bound wk > 0. This constraint can be integrated into the flow
cost functions by simply defining Fk such that

Fk(µk)
{
< ∞ if µk ∈ Γk

= +∞ if µk < Γk.

However, we assume in the following that Fk is twice continu-
ously differentiable and ∇2Fk(µk) > 0 for all µk ∈ Γk.

We assume in the following that the optimal routing problem is
feasible, and that there exists µ ∈ int(Γ1) × · · · × int(Γm), with
int(Γk) being the interior of Γk, such that D + Eµ = 0, where
D = [D1, . . . ,Dn]>.

We aim now to design a distributed control law that takes only
the imbalance between neighboring inventory systems as inputs
and regulates the inventory system to a steady-state configu-
ration where the following two objectives are satisfies: (i) all
storage levels are balanced (see e.g. De Persis [2013]), and (ii)
the flow minimizes the cost induced by the cost functions (25).
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The network theoretic interpretation of the passivity-based co-
operative control system presented above will provide us di-
rectly with a solution to this control problem. First, we note
that the dynamics of each inventory system (23) is equilibrium
independent passive if we take the input ui(t) = Ri(t) and the
output yi(t) = Ii(t). The equilibrium input to output map is
then ky,i(ui) = 1

θi
(ui + Di). The optimization problem (OFP1),

which is used to determine the equilibrium inputs is now easily
formulated as

min
u∈R(E)

n∑
i=1

(
1

2θi
u2

i +
1
θ

Diui

)
.

The dual problem (OPP1) can also be easily derived as

min
y∈N(E>)

n∑
i=1

(
θ

2
y2

i − Diyi

)
From the latter follows directly that the agreement steady state
output is y = 0, i.e., the all zeros vector. The agreement steady
state input is then u = D.

The (static) optimal distribution problem, we aim to solve with
the feedback controller, is the following

min
µ

m∑
k=1

Fk(µk) s.t. D + Eµ = 0, (26)

i.e., the controller should route the optimal supply or demand
instantaneously through the network. We can compare now the
problem (OFP2), and directly see that the two problems are
identical with P?

k (µk) = Fk(µ).

A direct consequence of our previous discussion is, thus, that
the distributed feedback controller

η̇(t) = E>I
R = −E∇F −1(η(t))

(27)

with I = [I1, . . . , In]T , and F −1(η(t)) =
∑m

k=1 F
−1

k (zk(t)),
solves the optimal routing problem. Note that the proof of
Theorem (5.1) remains valid, since, under the stated feasibility
assumption the Bregman distance BF? is a positive definite
function and can serve as a Lyapunov function.

As an example, consider the integral function of wk tanh−1(µk)
as a C2 function that is finite only within the capacity con-
straints; that is Fk(µk) = 1

2 wk log(1 − µ2
k) + wkµk tanh−1(µk)

and ∇F −1(z(t)) = wk tanh(z(t)). In this case, the routing along
a transportation line will always, even during the transient be-
havior, satisfy the capacity bounds.

7. CONCLUSIONS

We studied in this paper the inverse optimality properties of the
steady-states in passivity based cooperative control problems.
We considered a canonical feedback control structure involving
equilibrium independent passive systems on the network nodes
and dynamical controllers on the networks edges. We have
shown that the output-agreement steady state is fully defined
by a dual pair of network optimization problems. This result
revealed also a duality relation between the inputs and the
outputs. We have then shown that an internal model controller,
which is able steer the system to output agreement, has also
a direct connection to a dual pair of network optimization
problems. These optimization problems explained a duality
relation between the controllers state and the controllers output.
We could then exploit the duality relation between the different

variables to derive a Lyapunov function for the closed-loop
system.

The presented results open a novel perspective on passivity-
based cooperative control and explain certain inverse optimality
properties. However, beyond that, the results have implications
also for controller design, as we illustrate on the optimal routing
control problem in an inventory system.
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