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Abstract— This paper studies a clustering phenomena that emerges
from a dynamic network with bounded and non-linear interactions.
Necessary and sufficient conditions are given describing when the
network exhibits clustering. We introduce a synchronization coefficient
to quantify whether a network is synchronizing or clustering and
provide a robustness margin for clustering. A combinatorial description
of the dynamic network clustering is provided that relates to optimal
graph partitioning. Finally, the synchronization coefficient is also used
for defining a set of critical disturbances that can cause the system to
cluster.

I. INTRODUCTION

Synchronization is an important emerging behavior seen in many
complex dynamical networks. Originally observed as a natural
phenomenon in physics, biology, and neuroscience, synchronization
has also found applications in engineering systems such as with
group coordination or the synchronization of power networks [1],
[2]. This, in turn, has led to a new notion of stability and currently
an advanced control theory for synchronization is being developed
[3], [4].

Another emergant behavior of complex networks is clustering
or cluster synchronization. Clustering is a phenomenon where sub-
groups of agents within a complex system agree on a common state.
This kind of behavior has been observed across various disciplines
ranging from social networks and opinion dynamics to large-scale
power networks [5], [6]. In general, the clustering phenomena of
dynamical networks is considered a hard problem both for analysis
and prediction. Moreover, in many engineered systems, clustering
is deemed an undesirable behavior as opposed to a synchronous
state (e.g., in power systems or flocking in multi-agent systems).

As a result, the development of a fundamental theory for clus-
tering in dynamical networks is gaining attention. Various math-
ematical models with different mechanisms leading to clustering
have been proposed in the literature. This includes the celebrate
“bounded confidence opinion dynamics” [6], where clustering is
caused by a state-dependent interaction graph [7]. Clustering in
different diffusively coupled networks has been studied in [8], [9].
In [10], [11] a dynamical network model with bounded interaction
rules is proposed. The authors of this paper presented in a previous
work an alternative clustering model that also used a bounded
interaction rule leading to a clustering behavior [12], [13]. The
main contribution of this model was that the dynamic clustering
behavior could be precisely analyzed and predicted by considering
an associated static optimization problem.

This paper complements our previous work [12], [13] and
contributes towards a theory for clustering in dynamical networks.
In particular, we analyze the transition from a synchronous to a
clustered behavior in dynamical networks. The first contribution
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of this paper is the introduction of the synchronization coefficient
that quantifies a networks ability to synchronize. We show that the
dynamical model can synchronize if and only if the synchronization
coefficient does not exceed unity; otherwise, the system will exhibit
clustering. The synchronization coefficient is shown to be strongly
related to a purely combinatorial property of the underlying network
graph. As the second contribution of this paper, it is shown that the
network synchronizes if an only if all possible bi-partitions of the
graph satisfy a specified partition quality criterion. Therefore, this
paper establishes a connection between the combinatorial problem
of optimal graph partitioning and clustering in dynamical net-
works. The synchronization coefficient is also used to characterize
robustness properties of the synchronous state in the presence
of disturbances. We provide sufficient conditions for disturbances
entering both nodes and edges of the network that lead to clustering.
This condition provides a characterization of the nodes and edges
that can most impact the synchronous state in the presence of
disturbances. We show that these critical nodes and edges are
directly related to the synchronization coefficient. In this direction,
this paper contributes towards a robustness theory for clustering
networks.

The remainder of the paper is organized as follows. The dy-
namical network model is presented in §II. The synchronization
coefficient is introduced in §III along with necessary and sufficient
conditions for clustering. These conditions are then connected
to optimal partitions of the interaction graph in §IV. In §V we
characterize critical disturbances leading to clustering in a given
network. Finally, some concluding remarks are given in §VI.

Preliminaries: Throughout this paper we consider systems de-
fined over graphs [14]. A graph, G = (V,E), consists of a set of
nodes, V = {v1, . . . , vn}, and a set of edges, E = {e1, . . . , em}
describing the incidence relation between pairs of nodes. We assume
connected graphs for this work. We make use of the incidence
matrix, E(G) ∈ R|V|×|E| of G, defined in the standard way after
assigning an arbitrary orientation to each edge [14].

For a given graph G a cut-set is a set of edges whose deletion
leads to an increase in the number of connected components in G.
A cut-set always induces a partition of the nodes. A p-partition of
G is a collection of node sets P = {P1, . . . ,Pp} with Pi ⊆ V,
∪pi=1Pi = V, and Pi ∩Pj = ∅ for all Pi,Pj ∈ P, such that each
subgraph Pi induced by the node sets Pi is connected. Throughout
this paper, we follow the convention that bold-faced capital letters
refer to sets, as in V, and the script notation for graphs, as in P .

II. A DYNAMIC MODEL FOR CLUSTERING

We study a class of dynamical networks that exhibit asymptoti-
cally a clustered behavior. The mathematical model of this network
was originally presented and analyzed in [12], [13]. A dynamic
state variable xi(t) is assigned to each node vi ∈ V, and zk(t) is
assigned to each edge ek ∈ E. The proposed dynamic network has
the form

ẋ = −∇J(x)− E(G)Wψ(z)

ż = E(G)′x,
(1)
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where x = [x1, . . . , xn]′ and z = [z1, . . . , zm]′. The (possibly non-
linear) vector valued function ∇J(x) = [∇J1(x1), . . . ,∇Jn(xn)]′

is defined on the nodes and ∇Ji(xi) are the gradients
of strictly convex functions Ji(xi). The functions ψ(z) =
[ψ1(z1), . . . , ψm(zm)]′ are assigned to the edges and represent the
nonlinear interaction between the nodes. We assume that the func-
tions ψk(zk) are monotonically increasing and ultimately bounded,
i.e.,

lim
zk→∞

ψk(zk) = 1, lim
zk→−∞

ψk(zk) = −1.

The edge weighting matrix W ∈ Rm×m is a diagonal matrix
W = diag(α1, . . . , αm), where the αk’s are referred to as the
edge capacities of the edges.

Definition 2.1: A network G is synchronizing if
limt→∞ ‖xi(t)− xj(t)‖ = 0 for all vi, vj ∈ V.
When a network is synchronizing, each state converges to what
is termed the agreement state, x∗ ∈ R; that is limt→∞ xi(t) →
x∗ for all i. A network might not be synchronizing but still
exhibit a structured asymptotic behavior, in which groups of nodes
synchronize.

Definition 2.2: A network is clustering if there exists a p-
partition P such that limt→∞ ‖xi(t) − xj(t)‖ = 0 for all vi, vj ∈
Pl, l ∈ {1, . . . , p}.

Clustering Structure and Saddle-Point Analysis

A main result from [13] is that the system (1) is clustering in
its asymptotic behavior. The exact structure of the clustering was
shown to depend on (i) the functions ∇Ji(xi), (ii) the interaction
graph G and (iii) the edge capacities αk, but is independent of the
initial conditions and the form of the nonlinear functions ψk(zk).
The main analytic tool for characterizing the clustering behavior
of (1) was to relate the asymptotic solution to the solution of a
corresponding static saddle-point problem,

max
µ∈Γ

min
x

n∑
i=1

Ji(xi) + µE(G)′x, (2)

where Γ = Γ1 × . . . × Γm with Γk = {µk : −αk ≤ µk ≤ αk}.
Note that the decision variables x ∈ Rn are associated with the
nodes, while the variables µ ∈ Rm are associated with the edges.
We denote the set of saddle-point solutions to (2) by (X,M). It
was shown in [12] that the x solution to the saddle-point problem
is unique, while the set M might contain infinitely many points. In
particular, the set M is related to the flow space of G [14], and can
be expressed as M = {µ ∈ Γ|µ = µ∗+ν, ν ∈ N (E(G)} for some
µ∗ ∈ M.

The following result relates the saddle-point problem (2) to the
dynamical network (1).

Theorem 2.3 ([12]): Let X ×M be the set of saddle-points of
problem (2). The trajectories x(t) of (1) remain bounded and
limt→∞ x(t)→ X, limt→∞Wψ(z(t))→ M.

The implications of this result is that analysis of the network
clustering can be considered from a static convex optimization
standpoint instead of a dynamic and nonlinear systems perspective.
We now recall some of the main ideas developed in [12] required
for this work. An important concept for the analysis of clustering
structures is the notion of saturated edges.

Definition 2.4: An edge ek ∈ E is said to be saturated if for all
µ∗ ∈ M, µ∗k ∈ ∂Γk (e.g., |µ∗k| = αk).
Saturated edges are edges for which the constraint is active but
cannot be varied within the set M. Since M is related to the cycles
of G, the saturated edges must always partition the graph.

Lemma 2.5 ([12]): The set of saturated edges in M forms a cut-
set for the graph.
This implies that any (undirected) cycle in G either contains none
or at least two saturated edges, but cannot contain a single saturated
edge. Saturated edges are crucial for the clustering structure of the
network.

Theorem 2.6 ([12]): Let X × M be the saddle-points of (2),
and let Q ⊆ E be the set of saturated edges. Then Q induces
a p-partition P = {P1, . . . ,Pp} and the network is clustering
according to P.

With the results of Theorem 2.3 and Theorem 2.6 the clustering
structure of the dynamical model (1) can be exactly characterized
using the saddle-point problem (2).

III. THE SYNCHRONIZATION COEFFICIENT AND THE

CLUSTERING MARGIN

The previous analysis of Theorem 2.6 shows that the network
(1) is either synchronizing or clustering. In this section we derive
necessary and sufficient conditions for (1) to exhibit clustering. We
will focus on the transition from a synchronous to a clustering
behavior and exploit the properties of the saddle-point solutions to
derive these conditions.

We first consider the situation that the network is synchronizing.
Due to Theorem 2.3, the agreement state x∗ of the network (1)
is independent of the initial condition and is only determined by
the properties of the network. We can conclude from Theorem
2.6 that the network reaches agreement if no edges are saturated.
This implies that the network will always reach agreement if the
edge capacities αk are sufficiently large. Consequently, we are able
to relate the agreement state to the solution of a static network
optimization problem,

min
xi

n∑
i=1

Ji(xi) s.t. E(G)′x = 0. (3)

The equality constraint forces all decision variables on the nodes
xi to be identical. Note that for Γ = Rm the saddle-point problem
(2) is the Lagrage dual of (3).

Proposition 3.1: The agreement state x∗ for the system (1) that
is synchronizing is the unique minimizer of (3).

Proof: The trajectories x(t) converge to the unique solution of
the saddle point problem (2). For sufficiently large edge capacities,
the primal and dual solution to the network optimization problem
(3) is also a solution to the saddle-point problem. Since the x
solution of the saddle point problem is unique, the network must
agree on x∗.

A main contribution of this section is the proposal of a measure
which indicates whether a network is synchronizing or clustering.
We therefore introduce the notion of a synchronization coefficient
for a given network (1) with agreement state x∗.

Definition 3.2: The synchronization coefficient γ∗ of a network
with form (1) is

γ∗ := min
µ
‖W−1µ‖∞ s.t. ∇J(x∗) + E(G)µ = 0. (4)

The value γ∗ contains important information about the synchro-
nization or clustering structure of the network.

Theorem 3.3: The dynamical network (1) is synchronizing if and
only if γ∗ ≤ 1.

Proof: We first show that γ∗ ≤ 1 implies that all nodes
converge to x∗. If γ∗ ≤ 1, there is a µ∗ such that |µ∗k| ≤ αk for
all k and thus µ∗ ∈ Γ. This vector µ∗ is a dual solution to (3) and
satisfies the first-order optimality condition

∇J(x∗) + E(G)µ∗ = 0. (5)
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With the two conditions µ∗ ∈ Γ and and µ∗ satisfying (5), we
can conclude that (x∗, µ∗) is a saddle-point solution to (2). It now
follows from Theorem 2.3 that all trajectories xi(t) of (1) will
asymptotically converge to x∗ and therefore synchronize.

It remains to show that if the network synchronizes then γ∗ ≤ 1.
If the network synchronizes, from the uniqueness of x∗, there must
be a saddle point solution (x∗, µ∗) satisfying (5) with x∗ being the
agreement state and µ∗ ∈ Γ. This implies that |µ∗k| ≤ αk and thus,
γ∗ ≤ 1.

Theorem 3.3 allows to quickly verify whether the network will
synchronize. The condition is a linear program and can be checked
efficiently. The synchronization coefficient has an interpretation,
relating to clustering.

Corollary 3.4: The dynamical network (1) is clustering if and
only if γ∗ > 1.

The synchronization coefficient γ∗ can be interpreted as a ro-
bustness measure of the network.

Definition 3.5: The clustering robustness margin for a network
in synchronization is 1− γ∗.

The synchronization coefficient contains information about how
much the network can be modified before it is clustering. Another
important observation is that the value γ∗ is always determined by
a cut-set of G.

Proposition 3.6: Let µ∗ be a solution to (4) and let Q be the set
of edges for which |µ∗k| = γ∗αk. Then Q is a cut-set.

Proof: Given any solution µ∗ satisfying the equality constraint
of (4), any other saddle point µ̃ ∈ M must also satisfy the constraint.
The null-space of the incidence matrixN (E(G)) contains all signed
path vectors ζ ∈ {−1, 0, 1}m corresponding to the cycles of G (see
e.g., [12] or [14]). Therefore, one can always find a µ̃ such that for
a particular edge ek, contained in a cycle C, |µ̃k| < |µ∗k|. However,
there must then be at least one other edge el in the cycle C for
which |µ̃l| > |µ∗l |, a consequence of Lemma 2.5.

The result is now demonstrated via contradiction. Assume that
the set of edges Q, with |µ∗k| = γ∗αk for ek ∈ Q, does not form
a cut-set. Then every edge ek ∈ Q must be contained in at least
one undirected cycle of G, say C, such that (C \ {ek}) ∩ Q = ∅.
This, however, implies that one can find a δ, with |δ| sufficiently
small, and define µ̃ = µ∗ + δz, where z is the signed path vector
corresponding to the cycle C, such that |µ̃k| < |µ∗k| = γ∗αk for
ek ∈ Q and |µ̃l| < γ∗αl for all other edges el in the cycle C. This
contradicts the original assumption that γ∗ = min ‖W−1µ‖, and
thus Q must form a cut-set.

We will refer to Q in the following as the γ∗-cut set. The
synchronization coefficient γ∗ and the γ∗-cut set have various
implications on the synchronization and clustering behavior of (1).
These quantities also have a combinatorial interpretation that we
explore next.

IV. A COMBINATORIAL CONDITION FOR CLUSTERING

The results of §III related the synchronization coefficient γ∗

to the dynamic behavior of (1). We show that this condition is
also intimately connected to a purely combinatorial property. The
combinatorial problem of finding an optimal graph partition is
related to the clustering behavior of (1).

We assume that the agreement state x∗ and the edge capacities
αk are known. We can then interpret this network as a static
weighted graph with ∇Ji(x∗) being node-weights and αk being
edge-weights. Note that due to the optimality properties of x∗, it
holds that

∑n
i=1∇Ji(x

∗) = 0.
We consider in the following only 2-partitions of the (weighted)

graph G. The set of all possible 2-partitions of G is denoted by

Σ1

. . .

Σn

E(G)′E(G)

u(t) x(t)

y(t)w(t)

d

η
Π1

. . .

Πm

Fig. 1. Network model (1) with disturbances on the nodes and edges. The
operator Σi maps the control ui(t) to the state xi(t); the operator Πi maps
the relative state E(G′x(t) to the edge state wk(t) [13].

P2(G). A particular 2-partition P ∈ P2(G) is then characterized by
the triplet P = (P1,P2,Q), where P1 and P2 are disjoint node
sets, such that P1 ∪ P2 = V and Q ⊂ E is the set of edges
connecting the two node sets. We define the quality of a 2-partition
in the following.

Definition 4.1: The quality of a 2-partition P = (P1,P2,Q) ∈
P2(G) is

Ψ(P) =
|
∑
i∈P1

∇Ji(x∗)|∑
k∈Q αk

. (6)

The quality of a graph partition is a purely combinatorial property.
The quantity |

∑
i∈P1

∇Ji(x∗)| can be interpreted as the weighted
imbalance of the two clusters P1 and P2, since

∑
i∈P1

∇Ji(x∗) =
−
∑
i∈P2

∇Ji(x∗). Thus, the quality Ψ(P) measures the ratio of
the weight imbalance of the partitions and the capacity of the
corresponding cut-set

∑
k∈Q αk. Surprisingly, the measure Ψ(P)

is directly connected to the synchronization coefficient.
Theorem 4.2: Let P2(G) be the set of all possible 2-partitions of
G and let γ∗ be the synchronization coefficient (4). Then

max
P∈P2(G)

Ψ(P) = γ∗. (7)

The proof is presented in the appendix.
Thus, the quality of a partition provides a necessary and sufficient

condition for synchronization of the system (1).
Theorem 4.3: The dynamical network (1) is synchronizing if and

only if for all P ∈ P2(G), Ψ(P) ≤ 1.
It is also useful to interpret the previous result as a condition on
the clustering behavior of the dynamical network.

Corollary 4.4: The dynamical network (1) is clustering if and
only if there exists a 2-partition P ∈ P2(G) for which Ψ(P) > 1.

This result relates the dynamic behavior of (1) to the properties of
the weighted graph partitions. This result has an intuitive interpreta-
tion: The existence of partitions with high quality (i.e., Ψ(P) > 1)
corresponds to the existence of weakly connected components of
the graph. If the weighted graph contains such weakly connected
components then the corresponding dynamical network will cluster.

V. A ROBUSTNESS MEASURE FOR SYNCHRONIZATION

Given a network in synchronization, a natural question is how
robust is the system against clustering. In particular, is it possible
to quantify how certain disturbances can affect and disrupt the
synchronous state of the network. We consider an infiltration
scenario on the network, where constant disturbance signal entering
either the nodes or the edges of the system, see Figure 1. For
this discussion, we restrict our attention to the case of linear node
dynamics of the form

∇Ji(xi) = qi(xi − ξi), qi ∈ R>0, ξi ∈ R. (8)
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We define ξ = [ξ1, . . . , ξn]′ and Q = diag(q1, . . . , qn). To aid the
subsequent discussions, we present an alternative formulation of the
synchronization coefficient problem (4).

A. An LP Reformulation of the Synchronization Coefficient

Problem (4) can also be written as the linear program

γ∗ := min
t≥0,µ

t (9)

s.t. E(G)µ = −Q(x∗1− ξ), −t1 ≤W−1µ ≤ t1.

One can now express the Lagrangian of (9) as

LLP = t+ p′ (E(G)µ+Q(x∗1− ξ)) +

λ′u(W−1µ− t1) + λ′l(−W−1µ− t1), (10)

where p ∈ Rn is the Lagrange-multiplier for the equality constraint
and λu ∈ Rm≥0 (λl ∈ Rm≥0) is the multiplier corresponding to
W−1µ ≤ t1 (W−1µ ≥ −t1). Note that p is a variable associated
with the nodes in the graph, whereas λl, λu are associated with the
edges in the graph. The edges for which the inequality constraints
are active are exactly the edges in the γ∗-cut set.

The dual of (9) is given as

max
p,λu,λl

Q(x∗1− ξ)′p (11)

s.t. WE(G)′p = −λu + λl, 1− λ′u1− λ′l1 ≥ 0.

The form of (11) allows us to immediately infer certain properties
of the optimal solution. The complementary slackness condition for
(11) states that λ′u(W−1µ∗ − t∗1) = 0 (λ′l(−W−1µ∗ − t∗1) =
0) for all optimal solutions µ∗, t∗ of the linear program (9). In
particular, for any edge k such that |W−1µ∗k| < γ∗, i.e., an edge not
contained in the γ∗-cut set, it must be the case that the associated
multipliers are identically zero (i.e., [λu]k = [λl]k = 0). Otherwise,
for the γ∗-cut set edges, those with |W−1µ∗k| = γ∗, then either
[λu]k > 0 and [λl]k = 0 or [λl]k > 0 and [λu]k = 0.

The conditions on λu and λl have direct implications on the
structure of the optimal solution p of (11). Consider all the edges
ek = (vi, vj) such that |W−1µ∗k| < γ∗. The complementary
slackness conditions imply that [WE(G)′p]k = 0; therefore, for
these edges one must have that pi = pj . On the other hand, for the
γ∗-cut set either [WE(G)′p]k = −[λu]k or [WE(G)′p]k = [λl]k.

The key feature from this analysis is that the variable p defines a
partition of the network. The elements pi that are identical to each
other define a partition in the graph, and the edges between them
correspond to a cut-set; these are precisely the edges in the γ∗-cut
set defined in §III.

Yet another interpretation arises from the formulation of the
dual problem in (11). Using the standard price interpretation of
the Lagrange multipliers, we find that the multiplier p effectively
assigns a price to each partition. Therefore, comparing the “prices”
of the induced partitions gives an indication of the importance
that particular partition has on the synchronization coefficient. We
explore this interpretation further in the sequel.

B. Disturbance and Infiltration Model

As we are considering a scenario where a disturbance or in-
filtrator is trying to disrupt the synchrony of the system, we
assume that the system is already in a steady state. Therefore,
we can consider the disturbance as a perturbation to the first-order
optimality condition of the saddle-point problem (2).

As shown in Figure 1, disturbances may enter directly on the
nodes or on the edges of the network. We model the effect of
the node disturbance d ∈ D ⊆ Rn and the edge disturbances

η ∈ Ω ⊆ Rm as a variation of the first-order optimality condition
to (2) in the form

Q(x̃1− ξ) + E(G)(µ̃+ η) + d = 0. (12)

Here we recall that the synchronous solution (x∗, µ∗) will in
general be different from the solution of the perturbed problem
(12), denoted as (x̃, µ̃). We will also at times refer to the combined
disturbance as the signal ν = (d, η) ∈ D × Ω.

Observe that adding a constant disturbance to either the nodes or
edges in the network can lead in general to two behaviors. The first
is that the entire network remains in a synchronous state, with the
agreement value possibly being shifted. The second behavior leads
to clustering; that is the disturbances cause the system to break
from its synchronous state and form clusters.

It is in general difficult to characterize disturbances that will
cause the network to cluster. One has, for any possible disturbance
ν, first to compute the new agreement state and then to solve the
LP for determining γ̃. Such a proceeding is neither efficient nor
provides insight into the problem. It seems to be more desirable
to quantify critical disturbances in terms of the undisturbed
network configuration. This allows, without extensive simulations,
to quantify whether a network configuration is robust or can be
easily disrupted. We aim to derive such conditions in the following.

The perturbed equilibrium condition in (12) can be used to
determine the new steady-state synchronous value of the network.

Proposition 5.1: Given a disturbance d ∈ D and η ∈ Ω on the
steady-state node and edge dynamics, the resulting agreement value
is given as

x̃ = x∗ − (1′Q1)−1
1
′d. (13)

Proof: The proof follows directly from the first order opti-
mality conditions.
Observe that the new agreement value is only affected by distur-
bances directly on the nodes. The edge disturbances do not influence
the agreement state. It should also be emphasized that whether or
not the system actually obtains the new agreement value depends
on if the disturbances lead to clustering, or if the system remains
synchronous.

Note that as a consequence of Proposition 5.1 the constraint (12)
can be expressed entirely as a function of the undisturbed solution
x∗.

Q(x∗1− ξ) + E(G)(µ̃+ η) +Ad = 0, (14)

where A =
(
I − (1′Q1)−1Q11′

)
. Observe that if Q = I , then

A is the graph Laplacian matrix for the complete graph [14].
For general Q, we can therefore conclude that any disturbance
effectively influences each node in the network.

We can now examine how the synchronization coefficient
changes under the disturbance ν ∈ D×Ω, which is the solution of
the following optimization problem,

γ̃ := min
µ∈R|E|

‖W−1µ‖∞ (15)

s.t. Q(x∗1− ξ) + E(G)(µ+ η) +Ad = 0. (16)

To aid in the analysis, we first introduce the Lagrangian function
associated with (15),

L(µ, p, ν) =‖W−1µ‖∞ + p′ (Q(x∗1− ξ) + E(G)µ) +

p′ (E(G)η +Ad) . (17)

Here we have explicitly included the disturbance in the description
of the Lagrangian function to better illustrate its effect on (15).
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Note that the Lagrange multipliers p ∈ Rn in (17) are precisely
the same multipliers from the dual reformulation of the program in
(10).

Following our notational convention, the optimal Lagrange mul-
tipliers for the undisturbed problem (i.e., when ν = 0 ) is denoted
p∗ ∈ Rn, while the optimal multipliers for the disturbed problem
are denoted as p̃ . In general we have that p̃ 6= p∗.

Observe that for the undisturbed case, one has γ∗ = L(µ∗, p∗, 0),
which is the synchronization coefficient defined in (4). Meanwhile,
for any other non-zero disturbance ν one has γ̃ = L(µ̃, p̃, ν). Due
to the saddle-point properties associated with the optimal primal
and dual solutions of (15), one can obtain the following inequality
statements,

L(µ∗, p, 0) ≤ L(µ∗, p∗, 0) ≤ L(µ, p∗, 0), ∀µ, p (18)

L(µ̃, p, ν) ≤ L(µ̃, p̃, ν) ≤ L(µ, p̃, ν), ∀µ, p. (19)

Note that in particular, the inequalities in (19) also hold for ν = 0.
We are now prepared to formally state how the disturbance can
affect the network. The following theorem provides a bound on the
synchronization coefficients in terms of the disturbance ν and the
multipliers p∗ and p̃.

Theorem 5.2: Given the optimal value of the undisturbed and
disturbed synchronization coefficients γ∗ and γ̃, their difference is
bounded as

p∗
′
(E(G)η +Ad) ≤ γ̃ − γ∗ ≤ p̃′ (E(G)η +Ad) . (20)

Proof: We show the left inequality first. Observe that
L(µ̃, p∗, ν) = L(µ̃, p∗, 0) + p∗

′
(E(G)η +Ad). Consider that

γ̃ = L(µ̃, p̃, ν) ≥ L(µ̃, p∗, 0) + p∗
′
(E(G)η +Ad)

≥ L(µ∗, p∗, 0) + p∗
′
(E(G)η +Ad)

= γ∗ + p∗
′
(E(G)η +Ad)

The right inequality is derived in the same manner as above, and
omitted for brevity.

C. Synchronization Robustness and Critical Infiltration

The inequality provided in (20) leads to a direct interpretation
of how disturbances can affect the robustness of the system against
clusters. In particular, considering the left side inequality, one has

γ̃ ≥ γ∗ + p∗
′
(E(G)η +Ad) . (21)

Note that this provides a lower bound on the synchronization coef-
ficient in terms of the disturbances ν, the nominal synchronization
coefficient γ∗, and the nominal multipliers p∗ from the program
(15). As the quantities γ∗ and p∗ represent the steady-state nominal
properties of the network and it can now be quantified how ν can be
used to disrupt that state. A critical disturbance leading to network
clustering is one which makes γ̃ greater than unity.

Theorem 5.3: Given a dynamical network (1) with linear node
dynamics (8) in synchronization, any disturbance ν = (d, η) in the
set

V = {(d, η) ∈ D × Ω | p∗
′
(E(G)η +Ad)) > 1− γ∗}

will cause the network to cluster.
This formulation provides a characterization of critical disturbances
only in terms of information related to the synchronous network
configuration. Since the vector p∗ can be determined for the
network in synchronization independent of disturbances, the set
of critical disturbances can be determined off-line. However, note
that there might actually be other disturbances not in V that also

cause clustering. Our analysis provides, therefore, only a sufficient
conditions for the critical disturbances.

We now pose a family of infiltration problems, where an infil-
trator aims to disrupt the network. The set D × Ω then is used
to describe the precise nature of the disturbance caused by the
infiltrator. These problems all take the following general form:

max
d,η

p∗
′
(E(G)η +Ad) (22)

s.t. d ∈ D, η ∈ Ω. (23)

The set D × Ω then is used to describe the precise nature of the
disturbance. We aim to answer where, in terms of the network
structure, a disturbance is most critical and can cause the network
to cluster. We characterize the critical nodes and edges in terms
of a maximal increase of the lower bound on the synchronization
coefficient (21).

Node Infiltration: We would like to determine which single node
in the network, when confronted with a disturbance, can cause
the largest change in the synchronization coefficient and therefore
lead to network clustering with minimal effort. We assume here no
disturbances on the edges, η = 0. The disturbance set is therefore
the set of unit coordinate vectors ei ∈ Rn, with 1 in the ith
component, and zeros elsewhere; i.e., D = {e1, . . . , en}. In this
setting, problem (22) becomes a mixed-integer linear program.

However, a closer examination of this problem reveals that an
analytic solution is already available. First, note that

p∗
′
A = p∗

′ (
I − (1′Q1)−1Q11′

)
= p∗

′
−
∑n
i=1 p

∗
i qi∑n

i=1 qi
1
′.

Therefore, the optimal solution of (22) is equivalent to

max
i

[
p∗ −

∑n
i=1 p

∗
i qi∑n

i=1 qi
1

]
i

.

Here we recall our discussion from §V-A that the multiplier p∗

induces a partition in the network. In particular, the multipliers
corresponding to nodes within the same partition are identical. The
vector p∗ can be interpreted as a “price” and each element of that
partition is assigned the same price. Therefore, by simply searching
for the partition that is most “expensive,” one can obtain the nodes
at which a disturbance is most critical.

Proposition 5.4: The critical nodes are all nodes within the
partition induced by the γ∗-cut set which has the largest multiplier
value p∗.

Edge Disturbance: We now consider an analogous situation to
the above scenario for edges. We assume no disturbances on the
nodes, and the edge disturbances take the form Ω = {e1, . . . , e|E|}
with ei ∈ R|E|. As in the node case, we find the solution can be
obtained by examining the term E(G)′p∗. The price interpretation
of the multiplier p∗ is again relevant. Observe that the kth element
of E(G)′p∗ is either 0 or p∗i − p∗j for ek = (vi, vj).

Proposition 5.5: The critical edges are precisely the edges in the
γ∗-cut set.
The edges linking the partitions induced by p∗ with the largest
difference can therefore have the largest affect on the synchro-
nization coefficient. Note that the the critical nodes and edges are
determined by maximizing a lower bound on the synchronization
coefficient. The γ∗-cut set gives both the critical nodes and the
critical edges on which a disturbance maximally increases the lower
bound. There might, however, be other disturbances which increase
the synchronization coefficient, but do not affect the lower bound.

This analysis contributes towards the development of a robustness
theory for complex dynamical networks. It provides constructive
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methods for determining the critical nodes and edges at which a
disturbance can cause the system to cluster.

VI. CONCLUDING REMARKS

The phenomena of clustering in coupled multi-agent system is
observed in many natural and engineered systems yet is not well
understood. This work provided a step towards a general theory
for explaining clustering. By showing that the steady-state of the
dynamic model is equivalent to the solution of a static saddle-
point problem, we are able to inherit many tools available from
static optimization. This then allowed us to provide a condition for
when the system will synchronize or form clusters. This condition
was termed the synchronization coefficient, and was also shown to
be intimately related to robustness properties of the synchronous
state. This was further explored in an infiltration scenario, where
attacks on the nodes and edges of the system are made in attempt
to cause the system to cluster. The synchronization coefficient also
was used to show how the notion of clustering also solves a purely
combinatorial problem of finding an optimal partition of the graph.

APPENDIX

A. Proof of Theorem 4.2

Proof: First, we show that Ψ(P) ≤ γ∗ for all possible
partitions. Given γ∗, there exists a solution to (4) µ∗ satisfying
|µ∗k| ≤ αkγ∗ for all k and satisfying the first-order optimality con-
dition (5). One can now choose any 2-partition P = (P1,P2,Q) ∈
P2(G), and define, without loss of generality, P1 to be such that∑
i∈P1

∇Ji(x∗) > 0. For a 2-partition, we define an indicator
vector ζ ∈ {−1, 1}n such that ζi = +1 if node i ∈ P1 and
ζi = −1 if node i ∈ P2. Note that ζ′∇J(x∗) = 2

∑
i∈P1

∇Ji(x∗).
Multiplying (5) from the left with the indicator vector leads to the
condition

ζ′∇J(x∗) + ζ′E(G)µ∗ = 2
∑
i∈P1

∇Ji(xi) + ζ′E(G)µ∗ = 0.

(24)

Given the indicator vector of a partition, define a new vector c =
1
2
E(G)′ζ, which has a very characteristic structure

ck =

+1 if edge k originates in P1

−1 if edge k terminates in P1

0 if edge k /∈ Q.

Now, the condition (24) can be written as
∑
i∈P1

∇Ji(xi) =
−c′µ∗. As |µ∗k| ≤ αkγ∗ for all k, we obtain the upper bound

−c′µ∗ ≤
∑
k∈Q

αkγ
∗.

This bound leads to (
∑
i∈P1 ∇Ji(xi)) ≤

∑
k∈Q αkγ

∗ and there-
fore to the conclusion that

Ψ(P) =

∑
i∈P1 ∇Ji(xi)∑

k∈Q αk
≤ γ∗. (25)

This last inequality has to hold for any possible two partition
proving the first direction.

In the second step, we show that maxP∈P2(G) Ψ(P) ≥ γ∗.
With the goal to arrive at a contradiction, we assume that
maxP∈P2(G) Ψ(P) < γ∗. Again, without loss of generality, let any
2-partition P = (P1,P2,Q) be such such that

∑
i∈P1

∇Ji(x∗) >
0. It follows from the assumption that∑

i∈P1
∇Ji(x∗)∑

k∈Q αk
< γ∗ ⇔

∑
i∈P1

∇Ji(x∗) < γ∗
∑
k∈Q

αk (26)

for any possible 2-partition. Additionally, we know that there is a
(x∗, µ∗) satisfying (5). We define, as in the first part of the proof,
an indicator vector ζ for any 2-partition. Multiplying (5) from left
with ζ allows us to conclude that∑

i∈P1

∇Ji(x∗) = −c′µ∗. (27)

Combining the two conditions (26) and (27) leads to the new
condition

−c′µ∗ < γ∗
∑
k∈Q

αk; (28)

this must hold for any possible 2-partition. As a consequence of
(28), there cannot be a 2-partition P with a corresponding cut-set
Q for which µ∗k = −ckαkγ∗ for all k ∈ Q. However, if there is
no such cut-set Q, then every edge el ∈ E for which |µ∗l | = αlγ

∗

must be contained in at least one cycle of edges C for which every
other edge es ∈ C\{l} has |µ∗s | < αsγ

∗. But this implies now that
one can find another µ̃ satisfying (5), given by µ̃ = µ∗+δz, where
δ is some (maybe small) constant and z ∈ Rm is the signed path
vector corresponding to the cycle C ([14]), such that |µ̃l| < αlγ

∗

for every edge el ∈ C. But this contradicts the definition of γ∗,
as being the minimal value satisfying γ∗ ≤ |µ̃k|

αk
for all edges ek.

This is the contradiction we were looking for, and we can conclude
that maxP∈P2(G) Ψ(P) ≥ γ∗. Having shown both directions, we
can conclude that maxP∈P2(G) Ψ(P) = γ∗ and we have proven the
theorem.
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