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Abstract—This paper studies bearing-based formation
control of a group of autonomous agents with the leader-
first follower (LFF) structure in an arbitrary dimensional
space. First, the bearing-based Henneberg construction
and some properties of the LFF formation are introduced.
Then, we propose and analyze bearing-only control laws
that almost globally stabilize LFF formations to a desired
formation. Further strategies to rotate and rescale the tar-
get formation are also discussed. Finally, simulation results
are provided to support the analysis.

Index Terms—Bearing-only measurements, distributed
control, Henneberg construction, leader-first follower, multi-
agent systems.

I. INTRODUCTION

FORMATION control is an ongoing research topic in
the realm of multi-agent cooperative control [1], [2].

While distance-based formation control was extensively studied
[3]–[7], bearing-based formation control has recently attracted
much research interest due to the emergent technology of small
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UAVs equipped with vision sensors [8], [9]. In bearing-based
formation control problems, a group of autonomous agents (mo-
bile robots, UAVs) has to achieve a target formation specified
by some bearing information (bearing vectors and/or subtended
bearing angles) [10].

A focus of bearing-based formation control is designing de-
centralized control laws using only bearing information. Con-
sider a small quadcopter, the relative bearing, which is the unit
vector obtained from a relative position vector by normalizing
its length, can be acquired from the onboard cameras, thanks to
vision-based techniques [6], [11]. Since the camera is a passive
sensor, in applications where exchanging signals is prohibited,
bearing-only control is preferred [12]. Furthermore, the quad-
copter system has a limited payload. To save the quadcopter’s
restricted payload, we can reduce the number of sensors in quad-
copter systems by employing vision-based control laws [13].

Early works on bearing-based formation control focused on
controlling the subtended bearing angle, which is invariant in
each agent’s local coordinate frame [14]–[18]. Another ap-
proach is based on bearing rigidity, in which the target formation
is characterized by a set of desired bearing vectors, which are
sufficient to specify the formation up to a scaling and a trans-
lation. In two-dimensional (2-D) space, the concept of bearing
rigidity (or parallel rigidity) has been studied in [19], [20]. Based
on parallel rigidity theory, the authors in [20] defined the bearing
constrained rigidity matrix. Recently, the authors of [21] devel-
oped a theory of bearing rigidity and infinitesimal bearing rigid-
ity in Rd . A bearing-only stabilization control law for formations
with undirected graphs in Rd has been proposed in [21]. Further
applications of bearing rigidity theory in formation maneuver-
ing and network localization have also been discussed in [22]
and [23]. However, in these works, only undirected graphs were
considered. That is, bearing-only control for directed graphs
has been less investigated. Thus, differently from these existing
works, we attempt to fill a gap in the literature on bearing-only
formation control under directed graphs, based on the initial
work [51]. Specifically, we focus on the leader-first follower
(LFF) graphs that may be generated from a set of Henneberg
extensions [31]–[33]. It is worth remarking that the analysis in
the undirected case cannot be used in the directed case due to
the asymmetry in the sensing graph [24]. The lack of symme-
try raises difficulties in analysis, for example, the formation’s
centroid and scale are not invariant as in the undirected case.

There are several initial studies in bearing-based formation
control of directed graphs [25], [27], [26], [24]. For instance, in
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[25], by assuming the existence of three stationary beacons in
the plane, it was proved that any n-agent system with an acyclic
directed sensing graph is locally asymptotically stable. The lo-
cal stability of planar formations with directed cycle graphs was
studied in [24] and [26]. The authors in [27] introduced the
bearing Laplacian from a set of desired bearing vectors and de-
fined bearing persistence based on the null space of the bearing
Laplacian. However, the proposed control law in [27] requires
the relative positions between neighbors, which are not avail-
able from bearing measurements. The authors in [11], [28], [29]
developed bearing-based rigidity theories in SE(2), R3 × S1 ,
and SE(3), in which the bearing vectors are defined in the body
frame of each agent. Although a global reference frame is un-
necessary in [11], [28], the proposed control law requires all
neighbor agents to exchange their local information; thus, its
applicability is limited.

The contributions of this work are as follows. First, we define
the bearing-based Henneberg construction for LFF graphs and
show some properties of the LFF graphs. Note that the bearing-
based Henneberg construction, unlike the bearing rigidity theory
given in [21], is a basic theoretical framework for bearing-based
directed graphs. We extend the bearing-based Henneberg con-
struction in [18] to generate all LFF graphs based on two graph
operations, namely vertex addition and edge splitting. In prac-
tice, systems with LFF structure are easy to implement due
to their cascade structure [30]. Moreover, the LFF formation
is uniquely determined given the leader’s position, the set of
desired bearing vectors, and the formation scale. Second, we
study the LFF formation [31]–[33] under the bearing-only con-
trol law in an arbitrary dimensional space. The analysis is based
on the notion of almost global input-to-state stability of cascade
systems [34], [35]. Third, we propose a modified bearing-only
control law that guarantees the formation to escape from any
undesired equilibrium, and globally asymptotically converge to
the desired one. In practice, it may be unrealistic to assume the
existence of a global reference frame. Even though all agents’
local body frames are initially aligned, due to drift in inertial
sensing, misalignment between local frames may still occur
[36]. To address this issue, as the fourth contribution, a control
strategy with orientation alignment is proposed. Under some
assumptions, all local orientations are aligned with the leader’s
orientation; thus, the formation almost globally converges to the
target formation under the proposed control strategy. Finally, we
propose several extensions of the control law, including rotation
and rescaling of the target formation. The ability to rotate and
rescale the formation is an important feature for formation ma-
neuvering [31].

The rest of this paper is organized as follows. In Section II, we
introduce the bearing-based Henneberg construction and prove
some properties of the LFF formation. In Sections III and IV,
we analyze the LFF formation under the bearing-only control
law for two cases: with and without a global reference frame. A
bearing-only global stabilization control law is also studied in
Section III. Strategies to rotate and rescale the target formation
are discussed in Section V. Section VI provides numerical simu-
lations to support the analysis. Finally, some concluding remarks
and further research directions are reported in Section VII.

Notations: In this paper, Rd denotes the d-dimensional Eu-
clidean space. Bold font lower case letters denote vectors,
while bold font upper case letters denote matrices. Let x =
[x1 , . . . , xd ]� denote a vector in Rd . The orthogonal projection
matrix of a nonzero vector x is defined as

Px := Id − x
‖x‖

x�

‖x‖ ∈ Rd×d . (1)

Note that Px is symmetric, positive semidefinite, and idempo-
tent. Moreover, Px has the nullspace N (Px) = span{x}, and
the eigenvalue set {0, 1, . . . , 1} [21].

II. BEARING-BASED HENNEBERG CONSTRUCTION

A. Preliminaries

Let G = (V, E) be a directed graph with a vertex set V =
{v1 , . . . , vn} of |V| = n vertices and an edge set E = {eij =
(vi, vj )|vi, vj ∈ V, vi �= vj} of |E| = m directed edges. A di-
rected edge eij = (vi, vj ) ∈ E is considered to be directed
from vi to vj , and we refer to vi and vj as the start and the
end vertex, respectively. If eij ∈ E , we call vertex j a neigh-
bor of vertex i and denote the neighbor set of vertex i by
Ni := {vj ∈ V| eij ∈ E}. A directed path is a sequence of edges
(vi1 , vi2 ), (vi2 , vi3 ), . . . (vik −1 , vik

) in E . A directed cycle is a di-
rected path having the same start and end node, i.e., vi1 ≡ vik

. A
graph G is called an acyclic directed graph if G has no directed
cycle. If there exists a vertex vi ∈ V such that for any vertex
vj �= vi, vj ∈ V , we can find at least one directed path connect-
ing vj to vi , then G is called a rooted in-branching graph with a
root vertex vi . For an acyclic directed graph, we define the parent
set of a vertex vi as Pi = {vk | ∃ a directed path from vk to vi}
[37].

For each vertex vi ∈ V , we associate each vi with a point
pi ∈ Rd in a global reference frame. Then, the stacked vector
p = [p�

1 , . . . ,p�
n ]� ∈ Rdn is referred to as a configuration of

G. The directed graph G and the configuration p together define
a framework G(p) in the d-dimensional space [1].

Define zij := pj − pi as the displacement vector between
pi and pj . The distance between pi and pj is dij = ‖zij‖. The
relative bearing vector gij ∈ Rd between two noncollocated
points pi and pj is defined as the unit vector pointing from pi

to pj . In other words, gij is the vector obtained from zij by
normalizing its length,

gij :=
pj − pi

‖pj − pi‖ =
zij

‖zij‖ . (2)

Consider the task of controlling a group of n autonomous agents
in a d-dimensional space to take up a formation shape that
is bearing congruent to a prescribed configuration p∗ ∈ Rdn .
Here, bearing congruency means that the formation and the tar-
get formation differ only by a translation and a dilation [21].
Let Γ := {g∗

ij | i, j = 1, . . . , n, i �= j} be the set of all bearing
vectors in the target configuration p∗. Supposing that all agents
have access to a global reference frame, in order to guarantee
bearing congruence between the formation with the configura-
tion p∗, it is unnecessary to control all bearing vectors. In fact,
based on bearing rigidity theory [21], when a certain subset of
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Fig. 1. An example of bearing constraint assignment: Agents 2 and 3
control their bearings toward agent 1, agents 1 and 4 both control the
bearing between them, and agent 4 controls two bearings with regard to
agents 1 and 3.

Fig. 2. An LFF graph of eight vertices: vertex 1 (the leader) has no
neighbor, vertex 2 (the first follower) has one neighbor, and each vertex
i (i = 3, . . . , 8) has two neighbors.

the desired bearing vectors in Γ is achieved, the target formation
shape will be attained.

Therefore, the formation control task is distributed to every
agent in the group, and each agent must only maintain one
or more local bearing vectors with regard to other agents in
the system. The directed graph G is used to describe this task
assignment. We use a slight abuse of terminology here to refer to
G(p) also as a formation. A directed edge eij in E is understood
to imply that the task of controlling gij is assigned to agent i
while a double-edge eij and eji means that both agents i and j
are assigned to control gij and gj i , respectively. An example of
task allocation on a group of four agents is illustrated in Fig. 1.

Besides achieving the group’s task, in formation control, it is
desirable that the control scheme has a scalability property and
should be cost effective. A possible design strategy is minimiz-
ing the number of bearing vectors that have to be controlled. Let
all agents have access to a common global reference frame, then
it holds gij = −gj i . The role of controlling a bearing vector be-
tween two agents i and j can be assigned to only one of the two
agents, for example, to agent i, and then agent j moves without
awareness of this task. The rest of this paper will focus on a task
distribution strategy in a special structure termed “leader-first
follower” or “two-leader formation” [18], [31].

B. Bearing-Based Henneberg Construction

The underlying graph of an LFF formation is constructed
from a bearing-based Henneberg construction. For example, an
LFF graph of eight vertices is given in Fig. 2. The Henneberg
construction starts from a directed edge followed by a sequence
of operations namely vertex addition and edge splitting and is
defined as follows:

Fig. 3. An example of a Henneberg construction. In each step, the
added vertex and added edges are in yellow and red, respectively. Vertex
addition is used in steps 2, 4, and 5 while edge splitting is used in steps
3 and 6.

Definition 1 (Henneberg construction): Start from a pair of
vertices v1 and v2 and a directed edge (v2 , v1) joining them.
Define the degree of cascade of a vertex as the length of its
longest directed path from this vertex to the vertex v1 . Then,
vertex 1 has degree 0, vertex 2 has degree 1, and we denote
doc (v1) = 0, doc(v2) = 1. In each step, we perform one of the
following two operations:

1) Vertex Addition: Add a new vertex vi to the graph, to-
gether with two directed edges to two existing vertices
vj , vk in the graph. The degree of cascade of the new ver-
tex is defined by doc(vi) = max[doc(vj ),doc(vk )] + 1.

2) Edge Splitting: Consider a vertex vi having precisely
two neighbors vj and vm in the graph. Remove an edge
(vi, vj ) from the graph and add a new vertex vk to-
gether with three directed edges (vi, vk ), (vk , vj ), and
(vk , vl), where doc(vl) ≤ doc(vi). Then, update the de-
grees of cascade of vk and all its parent vertices, Pi , in
the new graph: doc(vk ) = max[doc(vj ), doc(vl)] + 1,
doc(vi) = max[doc(vk ),doc(vm )] + 1, . . ..

Fig. 3 depicts an example on constructing the eight-vertex
graph in Fig. 2. Any graph G = (V, E) of n vertices ob-
tained from a Henneberg construction is acyclic and rooted
in-branching. Furthermore, G has exactly 2n − 3 directed edges
[1], [38], and except for vertex 1 and vertex 2, each vertex in G
has precisely two neighbors. It is not difficult to see that in each
step the degree of the new vertex is two, and the degree of exist-
ing vertices in the graph before and after the step is unaltered.
An induction argument then shows that all vertices other than
v1 and v2 have degree two.

Let each vertex in V represent an agent in the group and
each edge in E represent a bearing vector assignment. There is
an agent 1 (the leader) with no neighbor. Agent 2 is the first
follower, which is supposed to control one bearing vector to the
leader. Agent 3 (the second follower) has to control exactly two
bearing vectors to the leader and the first follower. Similarly,
each agent i (3 ≤ i ≤ n) (a follower) has to control two bearing
vectors to two agents j, k ∈ {1, . . . , i − 1}. The Hennenberg
construction together with a bearing assignment is referred to
as a bearing-based Henneberg construction.
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Fig. 4. Since agents 1, 2, and 3 are in the same plane P1 , the two
desired bearing vectors g∗

31 and g∗
32 of agent 3 must be in the same

plane with g∗
21 . The position p∗

3 in Rd can be uniquely determined from
p∗

1 , p∗
2 and g∗

31 , g∗
32 .

Consider an n-agent formation in Rd , we examine the degrees
of freedom specifying the formation shape. With n agents, there
are dn coordinates, from which d + 1 (d accounting for position
of the centroid and 1 for the scale) should be subtracted. Thus,
dn − d − 1 scalar values specify the formation shape.

Now, consider an LFF formation obtained from a bearing-
based Henneberg construction. Consider agent 2 which is as-
signed only one unit bearing vector g∗

21 ∈ Rd . Note that any
vector in Rd contains d pieces of data. Since one constraint
‖g∗

21‖ = 1 was used, there are d − 1 independent pieces of bear-
ing data1 in g∗

21 . Next, consider agent 3, which is assigned two
bearing vectors g∗

31 and g∗
32 as depicted in Fig. 4. The two vec-

tors g∗
31 and g∗

32 cannot be chosen arbitrarily. If we choose g∗
31

first, since g∗
31 �= ±g∗

21 and ‖g∗
31‖ = 1, we have d − 1 indepen-

dent pieces of bearing data in g∗
31 . Now, because the positions of

three agents 1, 2, and 3 define a plane, it follows that g∗
31 and g∗

21
define the same plane, call it, P1 . Next, we choose g∗

32 . Besides
the constraints ‖g∗

32‖ = 1, g∗
32 �= ±g∗

31 , and g∗
32 �= ±g∗

21 , g∗
32

must be additionally restricted to the plane P1 , which is called
coplanarity restriction. By choosing a direction in a plane, we
have only one degree of freedom. This implies that only one
piece of bearing data in g∗

32 can be freely chosen. Thus, there
are total d [i.e., (d − 1) + 1] independent pieces of bearing data
chosen by agent 3. From a similar argument, for each agent
i > 3 with two neighbors 1 ≤ j < k < i, there are d indepen-
dent pieces of bearing data from g∗

ij and g∗
ik . Hence, for the

overall LFF formation with 2n − 3 bearing vectors, there are
exactly (d − 1) + d(n − 2) = dn − d − 1 pieces of indepen-
dent bearing data that can be chosen.

Remark 1: For planar LFF formations (d = 2), each bearing
vector contains exactly one independent bearing data. Thus, the
number of independent bearing data specifying the formation
(dn − d − 1 = 2n − 3) matches the number of edges in the
graph (m = 2n − 3). Hence, 2n − 3 is the minimal number
of bearing vectors to specify a formation in the plane. This
observation is consistent with [18].

1When we measure a relative bearing vector in Rd , we obtain d − 1 scalar
pieces of information, which we term bearing data. As far as a single mea-
surement is concerned, they are all independent, in the sense that no relation is
implied among them. When a collection of such measurements is obtained for a
number of agents in a general formation, relations may exist, and then the data
would not be independent.

For LFF formations in Rd , there are totally 2n − 3 bearing
vectors that specify the formation. For d ≥ 3, the 2n − 3 bearing
vectors give rise to more pieces of data than degrees of freedom
due to the coplanarity restriction, i.e., there is redundant data in
the collection of bearing vectors. Determining whether 2n − 3
is also the minimal number of bearing vectors to specify a
formation with general directed graph in Rd , d ≥ 3 is beyond
the scope of this paper. We refer readers to [39] for a further
discussion on this topic. Henceforth, we shall assume that all
specifications of bearings are consistent with the coplanarity
restriction described before.

C. Properties of LFF Formations

This section studies some properties of LFF formations gen-
erated from a bearing-based Henneberg construction.

Lemma 1 (Uniqueness of the target formation): Consider
an LFF formation with the position of the leader p∗

1 , the
distance d∗21 = ‖p∗

2 − p∗
1‖ and the bearings {g∗

ij}(i,j )∈E . If
each agent i (i ≥ 3) has two neighbors 1 ≤ j �= k < i with
g∗

ij �= g∗
ik , the location p∗

i is uniquely determined from its
neighbors’ positions and the desired bearing vectors. More
specifically, p∗

i is calculated iteratively by

p∗
i =

⎛
⎝∑

j∈Ni

Pg∗
i j

⎞
⎠

−1 ⎛
⎝∑

j∈Ni

Pg∗
i j
p∗

j

⎞
⎠ . (3)

Proof: For agent 2, since g∗
21 = (p∗

1 − p∗
2)/d∗21 , we have

p∗
2 = p∗

1 − d∗21g
∗
21 .

Consider agent 3. The position p∗
3 of agent 3 satisfies two

bearing vectors g∗
31 and g∗

32 as depicted in Fig. 4. Thus,

Pg∗
3 1

(p∗
1 − p∗

3) = 0 and Pg∗
3 2

(p∗
2 − p∗

3) = 0. (4)

From (4), it follows that

(Pg∗
3 1

+ Pg∗
3 2

)p∗
3 = Pg∗

3 1
p∗

1 + Pg∗
3 2

p∗
2 . (5)

Consider the matrix (Pg∗
3 1

+ Pg∗
3 2

). We have N (Pg∗
3 1

) =
span(g∗

31) and N (Pg∗
3 2

) = span(g∗
32). Since g∗

31 �= ±g∗
32 , and

recalling that Pg∗
3 1

and Pg∗
3 2

are positive semidefinite matrices,
the nullspaces of Pg∗

3 1
and Pg∗

3 2
intersect at only {0}. As a re-

sult, (Pg∗
3 1

+ Pg∗
3 2

) is invertible, and p∗
3 can be calculated from

(5) as

p∗
3 =

(
Pg∗

3 1
+ Pg∗

3 2

)−1 (Pg∗
3 1

p∗
1 + Pg∗

3 2
p∗

2
)

(6)

which can be written in a compact form as (3). For i = 4, . . . , n,
the position can be calculated in a similar way. �

Lemma 2 (Translation of the target formation): For an LFF
formation, given d∗21 and {g∗

ij}(i,j )∈E , the translation of the
leader’s position determines the translation of the entire
formation.

Proof: We only need to prove that if p∗
1 is changed to

q∗
1 = p∗

1 + δ, then p∗
i for all i will be changed to q∗

i = p∗
i + δ.

For agent 2, it is obvious that q∗
2 = q∗

1 − d∗21g
∗
21 = p∗

1 + δ −
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d∗21g
∗
21 = p∗

2 + δ. For agent 3, we have

q∗
3 =

(
Pg∗

3 1
+ Pg∗

3 2

)−1 (Pg∗
3 1

q∗
1 + Pg∗

3 2
q∗

2
)

= (Pg∗
3 1

+ Pg∗
3 2

)−1(Pg∗
3 1

p∗
1 + Pg∗

3 2
p∗

2

+ (Pg∗
3 1

+ Pg∗
3 2

)δ)

= p∗
3 + δ.

For agent i (i = 4, . . . , n), the proof is similar. �
Although the main goal is achieving a formation shape de-

fined by some desired bearing vectors, it is important to have a
measure to compare the size between two LFF formations. To
this end, we have the following definition.

Definition 2 (Formation scale): Consider an LFF formation
G(p), the formation scale is defined as the average of all the
interagent distances defined by the edge set, E ,

ζ(G(p)) :=
1
|E|

∑
(i,j )∈E

‖pi − pj‖ =
1
|E|

∑
(i,j )∈E

dij .

Lemma 3 (Scale of the target formation): For an LFF for-
mation, if d∗21 is scaled by α, all interagent distances will be
scaled by α, i.e., the formation scale is determined by d∗21 .

Proof: Suppose that p∗
2 − p∗

1 is changed to α(p∗
2 − p∗

1) for
α �= 0, then for any (i, j) ∈ E , p∗

i − p∗
j will be changed to

α(p∗
i − p∗

j ). We only consider n = 3 without loss of gener-
ality. Since p∗

3 − p∗
1 = (Pg∗

3 1
+ Pg∗

3 2
)−1(Pg∗

3 1
p∗

1 + Pg∗
3 2

p∗
2)

− p∗
1 = (Pg∗

3 1
+ Pg∗

3 2
)−1(Pg∗

3 1
p∗

1 + Pg∗
3 2

p∗
2−(Pg∗

3 1
+Pg∗

3 2
)

p∗
1) = (Pg∗

3 1
+ Pg∗

3 2
)−1Pg∗

3 2
(p∗

2 − p∗
1), which shows that

p∗
3 − p∗

1 is a linear mapping of p∗
2 − p∗

1 . Thus, when p∗
2 − p∗

1
is changed to α(p∗

2 − p∗
1), p∗

3 − p∗
1 will be changed to

α(p∗
3 − p∗

1). �

III. BEARING-ONLY CONTROL OF LFF FORMATIONS

A. Problem Formulation

Consider a group of n agents modeled by a single integrator
model

ṗi = ui , i = 1, . . . , n. (7)

where pi ∈ Rd and ui ∈ Rd are the position and the control
input of agent i at time instance t, respectively. All agents in
the group have access to a common global reference frame
and each agent can sense the relative bearing vectors to its
neighbor agents. We assume that the n-agent system satisfies
the following assumptions.

Assumption 1: The sensing graph of the group is charac-
terized by a graph G = (V, E) generated from a Henneberg
construction. Each agent can measure the bearing vectors with
regard to its neighbor agents.

Assumption 2: The information of a desired formation is
given as a set of feasible desired bearing constraints B = {g∗

ij ∈
Rd | eij ∈ E}. The feasibility conditions are i) there exists a
configuration p̄ ∈ Rdn such that g∗

ij = p̄j −p̄ i

‖p̄j −p̄ i ‖ ,∀g∗
ij ∈ B; ii)

Agent i’s (3 ≤ i ≤ n) desired position is not collinear with its
two neighbor agents j, k (1 ≤ j �= k < i), i.e., g∗

ij �= ±g∗
ik .

Fig. 5. Agent 2 adopts the control law (9). There are two isolated
equilibria p∗

2a and p∗
2b corresponding to g21 = g∗

21 and g21 = −g∗
21 ,

respectively.

Note that Assumption 2 implies that the desired bearing vec-
tors have been chosen to guarantee the coplanarity condition as
discussed in Section II-B.

Assumption 3: Initially, the positions of the agents are not
collocated, i.e., pi(0) �= pj (0),∀1 ≤ i �= j ≤ n.

This section aims to solve the following problem.
Problem 1: Under the Assumptions 1–3, design control laws

for the agents using only local bearing information such that all
desired bearing vectors in B are asymptotically achieved as
t → ∞.

B. Almost Global Stabilization of LFF Formations

The following bearing-only control law is proposed for each
agent i (i = 1, . . . , n):

ṗi = ui = −
∑
j∈Ni

Pgi j
g∗

ij . (8)

We will prove that the control law (8) almost globally stabilizes
the n-agent system to the target formation, satisfying all bearing
vectors inB. Note that almost global stability is understood in the
sense that every trajectory starting in Rnd \ A asymptotically
converges to the target formation, where A is a set of measure
zero in Rnd [34], [35]. The analysis starts from the leader and
the first follower to other followers. Due to the cascade structure
of LFF formations, mathematical induction will be invoked to
establish almost global stability of the n-agent LFF formation.

1) The Leader and the First Follower: Since the leader
(agent 1) has no neighbor, from (8), ṗ1 = u1 = 0 and the
leader’s position is fixed at p1 = p∗

1 for all t ≥ 0.
The first follower (agent 2) can measure one bearing vector

g21 and has to asymptotically reach to p∗
2a = p∗

1 − d21g∗
21 cor-

responding to g21 = g∗
21 (see Fig. 5). The control law for agent

2 is proposed as

ṗ2 = u2 = −Pg2 1 g
∗
21 . (9)

We have the following lemma on the equilibria of the first fol-
lower.

Lemma 4: Under Assumptions 1–3 and control law (9): i)
d21 is invariant; ii) there are two equilibria of (9): p∗

2a =
p∗

1 − d21g∗
21 , where g21 = g∗

21 , and p∗
2b = p∗

1 + d21g∗
21 , where

g21 = −g∗
21 . The equilibrium p∗

2a is almost globally exponen-
tially stable, whiereas the equilibrium p∗

2b is unstable.
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Proof: i) We have

d

dt
d2

21 =
d

dt
(z�21z21) = 2z�21 ż21

= 2z�21(ṗ1 − ṗ2) = 2z�21Pg2 1 g
∗
21 = 0 (10)

where the last equality follows from z21 = d21g21 and g�
21Pg2 1

= (Pg2 1 g21)� = 0�. Consequently, d21 is invariant under the
control law (9).

(ii) It follows from (9) and the property of the projection
matrix that ṗ2 = 0 if and only if g21 = g∗

21 or g21 = −g∗
21 .

Since d21 is invariant, in Rd there are only two equilibrium
points: p∗

2a corresponding to g21 = g∗
21 and p∗

2b corresponding
to g21 = −g∗

21 , as depicted in Fig. 5.
Consider the Lyapunov function Vb = 1

2 ‖p2 − p∗
2b‖2 , which

is continuously differentiable everywhere since d21 = d21(0) �=
0 for all t ≥ 0. Moreover, Vb is positive definite and Vb = 0 if
and only if p2 = p∗

2b . The derivative of Vb along a trajectory of
system (9) is

V̇b = (p2 − p∗
2b)

�ṗ2 = −(p2 − p∗
2b)

�Pg2 1 g
∗
21

= (p2 − p∗
2b)

�Pg2 1

d21
(p1 − p2 + p2 − p∗

2b)

= (p2 − p∗
2b)

�Pg2 1

d21
(p2 − p∗

2b) ≥ 0 (11)

since Pg2 1 z21 = 0 and Pg2 1 is positive semidefinite. There-
fore, p2 = p∗

2b is unstable by Chetaev’s instability theorem [40,
Th. 4.3].

Similarly, consider the Lyapunov function Va = 1
2 ‖p2 −

p∗
2a‖2 , which is continuously differentiable, radially un-

bounded. Moreover, Va is positive definite, Va = 0 if and only
if p2 = p∗

2a . Along a trajectory of system (9),

V̇a = (p2 − p∗
2a)�ṗ2 = −(p2 − p∗

2a)�Pg2 1 g
∗
21

= −(p2 − p∗
2a)�

Pg2 1

d21
(p2 − p∗

2a) ≤ 0. (12)

Note V̇a = 0 if and only if p2 = p∗
2a or p2 = p∗

2b (see Fig. 5).
Since p∗

2b is unstable, p∗
2a is almost globally asymptotically

stable due to LaSalle’s invariance principle.
Moreover, consider p2(0) �= p∗

2b , we can write

V̇a = −2 sin2 α

d21
Va ≤ −2 sin2 α(0)

d21
Va = −κVa

where α is the angle as depicted in Fig. 5, α(0) ∈ (0, π
2 ] for

p2(0) �= p∗
2b , and κ = 2d−1

21 sin2 α(0) > 0. It follows that p2 →
p∗

2a exponentially fast if p2(0) �= p∗
2b . �

2) The Second Follower: We will analyze the dynamics of
agent 3 (the second follower), whose neighbors are agents 1 and
2. The other agent’s dynamics can be treated later in a similar
way. The dynamics of agent 3 is

ṗ3 = u3(p3 ,p2) = −Pg3 1 g
∗
31 − Pg3 2 g

∗
32 . (13)

We consider (13) as a cascade system with p2 being an input to
the unforced system

ṗ3 = u3(p3 ,p∗
2a) = −Pg3 1 g

∗
31 − Pg3 2 g

∗
32 . (14)

The unforced system (14) characterizes the motion of agent 3
when agent 2 is located at its desired position p∗

2a . However, if
agent 2 is initially located at the undesired equilibrium p2(0) =
p∗

2b , then ṗ2(t) = 0 and the dynamics of agent 3 changes to

ṗ3 = u3(p3 ,p∗
2b). (15)

The following lemma characterizes the equilibrium set of (14)
and (15).

Lemma 5: i) The system (14) has a unique equilib-
rium point p∗

3a = (Pg∗
3 1

+ Pg∗
3 2

)−1(Pg∗
3 1

p∗
1 + Pg∗

3 2
p∗

2a) cor-
responding to g31 = g∗

31 and g32 = g∗
32 . ii) The system

(15) has a unique equilibrium point p∗
3b = (Pg∗

3 1
+ Pg∗

3 2
)−1

(Pg∗
3 1

p∗
1 + Pg∗

3 2
p∗

2b) corresponding to g31 = −g∗
31 and g32 =

−g∗
32 .
Proof: (i) The equilibria of (14) satisfy

ṗ3 = −(Pg3 1 g
∗
31 + Pg3 2 g

∗
32) = 0. (16)

Premultiplying g�
31 on both sides of (16), we have

g�
31(Pg3 1 g

∗
31 + Pg3 2 g

∗
32) = 0

or g�
31Pg3 2 g

∗
32 = 0. (17)

Equation (17) is satisfied if and only if g31 = ±g32 or g∗
32 =

±g32 . The condition g32 = ±g31 happens if and only if agent
3 is collinear with agents 1 and 2. In this case, Pg3 1 = Pg3 2 =
Pg∗

1 2
. Substituting them into (16) gives Pg∗

1 2
(g∗

31 + g∗
32) = 0,

or equivalently

g∗
32 + g∗

31 = kg∗
12 (18)

where k is a nonzero constant.
On the other hand, from the assumption on feasibility of the

target formation, the desired position of agent 3 and two leaders
must be coplanar. Thus, there exist positive scalars d∗12 , d

∗
31 , and

d∗32 such that

d∗12g
∗
12 − d∗32g

∗
32 + d∗31g

∗
31 = 0. (19)

Substitute (18) into (19), it follows that

d∗12

k
(g∗

31 + g∗
32) − d∗32g

∗
32 + d∗31g

∗
31 = 0

or (d∗12 + kd∗31)g
∗
31 + (−kd∗32 + d∗12)g

∗
32 = 0

which implies g∗
31 is parallel with g∗

32 . This contradicts As-
sumption 2 that g∗

31 �= ±g∗
32 . Thus, i) cannot happen and (17)

holds if and only if g32 = ±g∗
32 . Substituting g32 = ±g∗

32 into
(14), it follows that g31 = ±g∗

31 .
The feasibility of B guarantees the existence of p∗

3a , where
g∗

31 and g∗
32 are both achieved. The equilibrium p∗

3a is uniquely
determined as in Lemma 1. Note that when p2 = p∗

2a , other
combinations −g∗

31 and g∗
32 , or g∗

31 and −g∗
32 , or −g∗

31 and
−g∗

32 are unrealizable in Rd .
ii) Following the same process as the above-mentioned, the

equilibrium has to satisfy g31 = ±g∗
31 and g32 = ±g∗

32 . The
existence of p∗

3a in case (i) implies the existence of p∗
3b , which

is symmetric with p∗
3a about p1 as depicted in Fig. 6. At p∗

3b ,
the bearing vectors with regard to p1 and p∗

2b are g31 = −g∗
31

and g32 = −g∗
32 , respectively. �
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Fig. 6. Illustration when the position of agent 3, p3 , is collinear with p1
and p∗

2a .

We discuss on stability of the equilibria of two systems (14)
and (15) in the following lemma.

Lemma 6: i) The equilibrium p∗
3a corresponding to g31 =

g∗
31 and g32 = g∗

32 of the unforced system (14) is globally
asymptotically stable. ii) The equilibrium p∗

3b corresponding
to g31 = −g∗

31 and g32 = −g∗
32 of the unforced system (15) is

unstable.
Proof: i) Consider the Lyapunov candidate function V =

1
2 ‖p3 − p∗

3a‖2 , which is positive definite, radially unbounded,
and continuously differentiable. We have

V̇ = − (p3 − p∗
3a)�(Pg3 1 g

∗
31 + Pg3 2 g

∗
32)

= − (p3 − p∗
3a)�

Pg3 1

‖z∗31‖
(p1 − p3 + p3 − p∗

3a)

− (p3 − p∗
3a)�

Pg3 2

‖z∗32‖
(p2 − p3 + p3 − p∗

3a)

= − (p3 − p∗
3a)�

(
Pg3 1

‖z∗31‖
+

Pg3 2

‖z∗32‖
)

︸ ︷︷ ︸
:=M

(p3 − p∗
3a). (20)

Since Pg3 1 and Pg3 2 are positive semidefinite matrices, M is
also positive semidefinite. Thus, V̇ ≤ 0. Moreover, V̇ = 0 if
and only if (p3 − p∗

3a) ∈ N (M). We consider two cases:
1) If g31 = ±g32 or three agents are in collinear positions,

then, N (M) = span{g31}. Due to Assumption 2 on the
feasibility of B, p∗

3a is not collinear with p1 and p∗
2a , i.e.,

(p3 − p∗
3a) /∈ N (M). Therefore

V̇ ≤ −γsin2 α‖p3 − p∗
3a‖2 = −γ sin2 αV ≤ 0

where α is the angle between the line connecting p3 and
p∗

3a and the line connecting p1 and p∗
2a , as depicted in

Fig. 6, and γ = ‖z∗31‖−1 + ‖z∗32‖−1 . It is easy to see that
α ∈ (0, π).

2) If g31 �= ±g32 , M is positive definite (see the proof of
Lemma 1). As a result

V̇ ≤−λmin(M(t))‖p3 − p∗
3a‖2 = −λmin(M(t))V ≤ 0

where λmin(M(t)) > 0 is the smallest eigenvalue of M
at time t and V̇ = 0 if and only if p3 = p∗

3 .
Choosing κ = min{inf t{λmin(M)}, γ sin2 α} > 0, it fol-

lows that V̇ ≤ −κV ≤ 0. As a result, V̇ is negative definite
and V̇ = 0 if and only if p3 = p∗

3a . Thus, p3 = p∗
3a of (14) is

globally asymptotically stable [40].

ii) Consider the function V = 1
2 ‖p3 − p∗

3b‖2 . Similar to i),
along a trajectory of system (15), we have

V̇ = (p3 − p∗
3b)

�(Pg3 1 (−g∗
31) + Pg3 2 (−g∗

32))

= (p3 − p∗
3b)

� Pg3 1

‖z∗31‖
(p1 − p3 + p3 − p∗

3b)

+ (p3 − p∗
3b)

� Pg3 2

‖z∗32‖
(p2 − p3 + p3 − p∗

3b)

= (p3 − p∗
3b)

�M(p3 − p∗
3b) ≥ 0.

Thus, V̇ > 0 if p3 �= p∗
3b . The equilibrium p3 = p∗

3b is unstable
and ‖p3 − p∗

3‖ grows unbounded in this case. Thus, p2(0) �=
p∗

2b is required to avoid the divergence of p3 . �
Since the bearing vectors are undefined when the neighbor

agents are collocated, the analysis is valid when collision avoid-
ance is guaranteed. In practice, when each agent is equipped
with vision sensors, collision avoidance can be treated inde-
pendently by vision-based techniques, see [41], [42] and the
references therein for examples. Next, we give a sufficient con-
dition for collision-free between agent 3 and its leaders under
the dynamics (14).

Lemma 7: In the system (14), agent 3 never collides with
agents 1 and 2 if

‖p3(0) − p∗
3‖ < min{‖p∗

3 − p∗
1‖, ‖p∗

3 − p∗
2a‖}. (21)

Proof: Agent 3 never collides with agent 1 if ‖p3 − p1‖ =
‖p3 − p∗

1‖ > 0,∀t ≥ 0. Since

‖p3 − p∗
1‖ = ‖(p3 − p∗

3) + (p∗
3 − p∗

1)‖
≥ ‖p∗

3 − p∗
1‖ − ‖p3 − p∗

3‖
and p3 → p∗

3 asymptotically [Lemma 6(i)], the following con-
dition is sufficient to avoid collision between agents 1 and 3:

‖p3(0) − p∗
3‖ < ‖p∗

3 − p∗
1‖.

Similarly, a sufficient condition for collision-free between
agents 2 and 3 is given as

‖p3(0) − p∗
3‖ < ‖p∗

3 − p∗
2a‖.

Thus, condition (21) guarantees collision-free between agent 3
and its leaders. �

Remark 2: In [43], a bearing-only navigation problem in a
2-D space with three stationary landmarks was studied. The
authors in [43] proposed a 2D version of the control law (14)
to guide an agent to any desired position in R2 . Lemma 6(i)
improved the result in [43, Proposition 1] by showing that it
is sufficient to use only two stationary beacons to reach any
position in Rd that is not collinear with the two landmarks.

At this stage, we can prove the following result on the stability
of the system (13).

Proposition 1: The system (13) has an almost globally
asymptotically stable equilibrium p3 = p∗

3a corresponding to
g31 = g∗

31 and g32 = g∗
32 .

Proof: We will show that the system (13) satisfies the ulti-
mate boundedness property. Consider the Lyapunov function
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V = 1
2 ‖p3 − p∗

3a‖2 , which is positive definite, radially un-
bounded, and continuously differentiable. If p2(0) �= p∗

2b , the
derivative of V along a trajectory of system (13) is

V̇ = − 2(p3 − p∗
3)

�(Pg3 1 g
∗
31 + Pg3 2 g

∗
32)

= − (p3 − p∗
3)

�
(

Pg3 1

‖z∗31‖
(p1 − p3 + p3 − p∗

3a)

+
Pg3 2

‖z∗32‖
(p∗

2a − p2 + p2 − p3 + p3 − p∗
3a)
)

= − (p3 − p∗
3)

�
(

Pg3 1

‖z∗31‖
+

Pg3 2

‖z∗32‖
)

(p3 − p∗
3)

+ (p3 − p∗
3)

� Pg3 2

‖z∗32‖
(p2 − p∗

2a)

≤ − (p3 − p∗
3)

�
(

Pg3 1

‖z∗31‖
+

Pg3 2

‖z∗32‖
)

(p3 − p∗
3)

+ ‖p3 − p∗
3‖

‖Pg3 2 ‖
‖z∗32‖

‖p2 − p∗
2a‖

≤ − (p3 − p∗
3)

�
(

Pg3 1

‖z∗31‖
+

Pg3 2

‖z∗32‖
)

(p3 − p∗
3)

+
2d21

‖z∗32‖
‖p3 − p∗

3‖. (22)

When ‖p3‖ is large, the second term in (22) is O(‖p3 − p∗
3a‖)

while the first term is −O(‖p3 − p∗
3a‖2). This implies V̇ < 0

when ‖p3‖ is large. Equivalently, ‖p3 − p∗
3a‖ is ultimately

bounded and so is ‖p3‖. Since the unforced system (14) has
a globally asymptotically stable equilibrium p∗

3a as shown in
Lemma 6 and satisfies the ultimate boundedness property, the
system (13) is input-to-state stable (ISS) with regard to the input
p2 . On the other hand, according to Lemma 4, the input p2 ex-
ponentially converges to p∗

2a if it is not initially located at p∗
2b .

Thus, the equilibrium p3 = p∗
3a is almost globally asymptoti-

cally stable [34, Th. 2]. �
By Proposition 1, we have proved that the desired equilibrium

p2 = p∗
2a , p3 = p∗

3a of the cascade connection

ṗ2 = u2(p2)

ṗ3 = u3(p3 ,p2) (23)

is almost globally asymptotically stable. All trajectories of (23)
converge to the desired positions except for those starting at
p2(0) = p∗

2b . Moreover, the undesired equilibrium p2 = p∗
2b ,

p3 = p∗
3b is unstable.

3) The n-Agent System: Consider the LFF formation of
n-agents (n ≥ 3) satisfying all assumptions in Problem 1. From
the assumption on the graph G, each agent i (3 ≤ i ≤ n) has
two neighbors 1 ≤ j �= k ≤ i − 1 and must control two bear-
ing vectors gij , gik . The control law for agent i is explicitly
given as

ṗi = ui(pi ,pi−1 , . . . ,p2) = −Pgi j
g∗

ij − Pgi k
g∗

ik . (24)

The dynamics of n agents can be expressed in the form of a
cascade system:

ṗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṗ1
ṗ2
ṗ3
...
ṗi

...
ṗn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
u2(p2)
u3(p3 ,p2)
...
ui(pi ,pi−1 , . . . ,p2)
...
un (pn ,pn−1 , . . . ,p2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

where (pi−1 , . . . ,p2) is considered as an input to the dynamics
of an agent i (i = 3, . . . , n).

From Lemmas 5 and 6, for all i = 3, . . . , n, it fol-
lows that pi = p∗

ia = (
∑

j∈Ni
Pg∗

i j
)−1(

∑
j∈Ni

Pg∗
i j
p∗

ja) is a
globally asymptotically stable equilibrium of the unforced
subsystem

ṗi = ui(pi ,p∗
(i−1)a , . . . ,p∗

2a). (26)

Based on the stability of cascade interconnected systems [34],
we can prove almost global stability of the system (25) in the
following theorem.

Theorem 1: Under the Assumptions 1–3 and the proposed
control laws, the system (25) has two equilibiria. The equilib-
rium p∗

a = [p∗�
1 ,p∗�

2a , . . . ,p∗�
na ]� satisfying all desired bearings

constraints in B is almost globally asymptotically stable. The
equilibrium p∗

b = [p�
1 ,p∗�

2b , . . . ,p∗�
nb ]

� is unstable. All trajecto-
ries starting with p2(0) �= p∗

2b asymptotically converge to p∗
a .

Proof: We will prove this theorem by mathematical induc-
tion. Consider p2(0) �= p∗

2b . First, for l = 2, we have p2 = p∗
2a

almost globally asymptotically stable and p2 = p∗
2b unstable

based on Lemma 4. Thus, Theorem 1 is true for l = 2. Second,
Theorem 1 is also true for l = 3 based on Proposition 1.

Second, suppose that the claim of Theorem 1 is true for 3 ≤
l ≤ i − 1. That is, pi = p∗

ia is globally asymptotically stable
for all 3 ≤ l ≤ i − 1. We have to prove that the theorem is also
true for l = i. By following a similar process as in the proof of
Lemma 6, we can show that p∗

ia is a globally asymptotically
stable equilibrium of the unforced system (26).

We will next show that pi(t) is bounded. To this end, suppose
i has two neighbor agents j and k, 1 ≤ j �= k < i. Consider
the Lyapunov function V = 1

2 ‖pi − p∗
ia‖2 , which is positive

definite, radially unbounded, and continuously differentiable.
The derivative of V along a trajectory of the system (26) is
given by

V̇ = − (pi − p∗
ia)�(Pgi j

g∗
ij + Pgi k

g∗
ik )

= − (pi − p∗
ia)�

(
Pgi j

‖z∗ij‖
(p∗

ja − pj + pj − pi + pi − p∗
ia)

+
Pgi k

‖z∗ik‖
(p∗

ka − pk + pk − pi + pi − p∗
ia)
)

= − (pi − p∗
ia)�

(
Pgi j

‖z∗ij‖
+

Pgi k

‖z∗ik‖

)
(pi − p∗

ia)
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− (pi − p∗
ia)�

(
Pgi j

‖z∗ij‖
(p∗

ja − pj ) +
Pgi k

‖z∗ik‖
(p∗

ka − pk )

)

≤ − (pi − p∗
ia)�

(
Pgi j

‖z∗ij‖
+

Pgi k

‖z∗ik‖

)
(pi − p∗

ia)

+‖pi − p∗
ia‖
(
‖Pgi j

‖
‖z∗ij‖

‖p∗
ja − pj‖ +

‖Pgi k
‖

‖z∗ik‖
‖p∗

ka− pk‖
)

.

Because Theorem 1 is true for l ≤ i − 1, ‖pj − p∗
ja‖ and

‖pk − p∗
ka‖ are bounded and converge to zero as t → +∞.

It follows that ‖pi − p∗
ia‖ is bounded, which implies that ‖pi‖

is also bounded. Thus, the equilibrium p∗
ia is asymptotically sta-

ble and all trajectories with p2(0) �= p∗
2b converge to p∗

ia [34,
Th. 2]. Furthermore, if p2(0) = p∗

2b , the system has an unstable
equilibrium p∗

ib due to Lemma 6. Therefore, pi = p∗
ia is almost

globally asymptotically stable and Theorem 1 is also true for
l = i.

Finally, from mathematical induction, the claim holds for
all l ≥ 3. Thus, the n-agent system (25) is almost globally
asymptotically stable. All trajectories satisfying p2(0) �= p∗

2b

converge to a formation satisfying all desired bearing vectors
in B. If p2(0) = p∗

2b , the system has an undesired equilibrium,
where gij = −g∗

ij for all g∗
ij ∈ B. This undesired equilibrium

is unstable. �

C. Global Stabilization of LFF Formations

In the previous subsection, the fact that instead of a global
stabilization we have an almost global stabilization of the overall
formation is due to the possibility that p2(0) = p∗

2b , which is an
unstable equilibrium. Of course, in practice, noise may displace
the system from p∗

2b if it is initialized there. However, instead
of relying on noise, we can propose the following modified
bearing-only control law for agent 2:

u2 = −Pg2 1 g
∗
21 − k ‖g21 − g∗

21‖Pg2 1 (sgn (Pg2 1 g
∗
21) + n) .

(27)
In this control law, k > 0 is a control gain, sgn denotes
the signum function, sgn(Pg2 1 g

∗
21) := [sgn([Pg2 1 g

∗
21 ]1), . . . ,

sgn([Pg2 1 g
∗
21 ]d)]

�; n = n(t) = [n1(t), . . . , nd(t)], where n1
(t), . . . , nd(t) are time-varying continuous functions satisfying∑d

k=1 n2
k (t) = c, and c is a constant satisfying 0 < c < 1.2

In the control law (27), the first term is the same as the
control law (9) while the last term is added to guarantee global
convergence of g21 to g∗

21 . Note that the adjustment term in (27)
was originally introduced in another form in [4]. Observe that
under the control law (27), we have

d

dt
d2

21 =
d

dt
(z�21z21) = 2z�21(ṗ1 − ṗ2)

= −2z�21Pg2 1 (g
∗
21 + k ‖g21 − g∗

21‖
(sgn (Pg2 1 g

∗
21) + n))

= 0. (28)

2When d = 2, we may choose n =
√

c[cos t, sin t]�.

Thus, d21 is invariant under the control law (27). Furthermore,
it can be checked that p∗

2b is not an equilibrium of (27) due to
the adjustment term. We prove the following result on stability
of the agent 2.

Proposition 2: Under the control law (27), the equilibrium
p∗

2a = p∗
1 − d21g∗

21 corresponding to g21 = g∗
21 is globally

asymptotically stable and almost globally exponentially stable.
Proof: We consider the solution p2 of the nonsmooth system

(27) in the Filippov sense [44], [45]. For almost all time,

ṗ2 ∈ −Pg2 1 g
∗
21 − k‖g21 − g∗

21‖Pg2 1 (K[sgn](Pg2 1 g
∗
21) + n)

(29)

where K[f ](x) denotes the Fillipov set-valued mapping of
f(x) [44]. Consider the Lyapunov function V = 1

2 ‖p2 − p∗
2a‖2 ,

which is continuously differentiable, radially unbounded, and
positive definite. Then, at each point, p2 ∈ Rd , ∂V = (p2 −
p∗

2a). Based on [44, Th. 2.2], V̇ exists almost everywhere (a.e.)

and V̇ ∈a.e. ˙̃V , where

˙̃V =
⋂

ξ∈∂V

ξ�ṗ2

= − (p2 − p∗
2a)� Pg2 1 g

∗
21

− k‖g21 − g∗
21‖ (p2 − p∗

2a)� Pg2 1

(K[sgn](Pg2 1 g
∗
21) + n)

= − (p2 − p∗
2a)�

Pg2 1

d21
(p2 − p∗

2a)

− kd21‖g21 − g∗
21‖(Pg2 1 g

∗
21)

�(K[sgn](Pg2 1 g
∗
21) + n) .

Define η := Pg2 1 g
∗
21 = [η1 , . . . , ηd ]�, we have

˙̃V ≤ − (p2 − p∗
2a)�

Pg2 1

d21
(p2 − p∗

2a)

− kd21‖g21 − g∗
21‖
(
η�K[sgn](η) − |η�n|) . (30)

From the property of sgn function, we can write

η�K[sgn](η) =
d∑

i=1

ηkK[sgn](ηk ).

Recall from [44] that

K[sgn](ηk ) =

⎧⎪⎨
⎪⎩

1 ηk > 0

[−1, 1] ηk = 0

−1 ηk < 0

.

Thus, ηkK[sgn](ηk ) = |ηk |, and

η�K[sgn](η) =
d∑

k=1

|ηk |. (31)

Moreover,
∣∣∣∣∣

d∑
k=1

ηknk

∣∣∣∣∣ ≤
d∑

k=1

|ηknk | ≤
d∑

k=1

|ηk ||nk | ≤
√

c

d∑
k=1

|ηk |
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where the last inequality follows from the fact that |nk | ≤√∑d
k=1 n2

k =
√

c < 1. Therefore

˙̃V ≤ − (p2 − p∗
2a)�

Pg2 1

d21
(p2 − p∗

2a)

− k(1 −√
c)d21‖g21 − g∗

21‖
d∑

k=1

|ηk |

≤ − (p2 − p∗
2a)�

Pg2 1

d21
(p2 − p∗

2a) ≤ 0. (32)

It follows that ˙̃V = 0 if and only if p2 = p∗
2a or p2 = p∗

2b .
Since ṗ2 |p2 =p∗

2 b
�= 0, based on LaSalle’s invariance principle

for nonsmooth system [44, Th. 3.2], every trajectory of (29)
asymptotically converges to p∗

2a .
Next, let α be the angle between p∗

2a − p2 and g∗
21 as depicted

in Fig. 6, we have α ∈ [0, π/2]. Furthermore, we can write
‖Pg2 1 (p2 − p∗

2a)‖ = sin α‖p2 − p∗
2a‖. For all p2(0) �= p∗

2b ,
we have α(0) > 0. Since p2 → p∗

2a asymptotically, we have
α(t) ≥ α(0) > 0, ∀t > 0. It follows from (32) that

V̇ ≤ −(p2 − p∗
2a)�

Pg2 1

d12
(p2 − p∗

2a)

= − sin2 α

d21
‖p2 − p∗

2a‖2

≤ −2 sin2 α(0)
d21

V = −κV ≤ 0

where κ = 2d−1
21 sin2 α(0) > 0. Therefore, the equilibrium

p2 = p∗
2a is globally asymptotically stable and almost globally

exponentially stable. �
Theorem 2: Under Assumptions 1–3, if agent 2 employs the

control law (27) and agent i (3 ≤ i ≤ n) employs the control law
(24), the formation globally asymptotically reaches the desired
formation satisfying all bearing vectors in B. �

Proof: The proof involves the same steps as in
Section III-B. The only difference is agent 2 always reaches
p∗

2a from any initial condition. Thus, pi → p∗
ia ,∀ 3 ≤ i ≤ n,

or, i.e., the LFF formation globally asymptotically converges to
the desired formation satisfying all bearing vectors in B.

IV. BEARING-BASED CONTROL OF LFF FORMATIONS

WITHOUT A GLOBAL ORIENTATION

In this section, we extend the result in the previous section
to a more general setup. The model of each agent in this sec-
tion is given in R3 × SO(3), thus including both position and
orientation of the agent.

A. Problem Formulation

Consider a group of n autonomous agents in the 3-D space
R3 . The position, linear velocity, and angular velocity of agent
i given in a global reference frame are denoted as pi , ui , and
wi ∈ R3 , respectively. Each agent i maintains a local reference
frame iΣ; the linear and the angular velocity of agent i expressed
in iΣ are given by ui

i = [ui
x , ui

y , ui
z ]

� and wi
i = [wi

x, wi
y , wi

z ]
�,

respectively. Let Ri ∈ SO(3) be the rotation from iΣ to a global
reference frame gΣ, we have det(Ri) = 1 and RiR�

i = I3 . The
position and orientation dynamics of agent i written in the global
reference frame are

ṗi = Riui
i (33)

Ṙi = RiSi (34)

where

Si =

⎡
⎣

0 −wi
z wi

y

wi
z 0 −wi

x

−wi
y wi

x 0

⎤
⎦

is a skew-symmetric matrix. Note that from (33)–(34), the dy-
namics of agent i are now defined in R3 × SO(3). We follow
the Assumptions 1–3 of Problem 1 on the sensing graph and the
initial position of the agents. Furthermore, we assume that in
addition to the local bearing vectors gi

ij = R�
i gij , agent i can

also obtain the relative orientation R�
i Rj with regard to each

neighboring agent j. Finally, we adopt the following assumption
on the initial orientations of the agents.

Assumption 4: The initial orientations of all agents are con-
tained within a closed ball B̄r (R1) of radius r less than π/2.
Equivalently, the symmetric part of R�

1 Ri(0) is positive defi-
nite, ∀i = 2, . . . , n [46].

At this point, we can formulate the following problem.
Problem 2: Given an n-agent system with initial position

p(0) and orientations {Ri(0)}i∈V , satisfying Assumptions 1–
4, design ui

i and wi
i for agent i ∈ V based on local bearing

measurements and relative orientation measurements, such that
{Ri(t)}i∈V , converges to R1(0) and gi

ij → g∗
ij for all g∗

ij ∈ B.

B. Proposed Control Strategy

To solve Problem 2, we propose a two-layer control strategy
for the n-agent system. The two layers will be referred to as the
orientation alignment layer and the formation control layer. On
the orientation alignment layer, we use a consensus algorithm
to synchronize all agents’ orientations. Simultaneously, on the
formation control layer, we implement the bearing-only control
law proposed earlier in Problem 1 in each agent’s local frame
to achieve the desired formation. Note that this two-layer con-
trol strategy was also used in distance-based formation control
problems with different setups [5], [6], [21], [47].

1) Orientation Alignment Layer: The following orienta-
tion alignment control law for each agent i (1 ≤ i ≤ n) is
adopted in this paper:

Si = −
∑
j∈Ni

(R�
j Ri − R�

i Rj ). (35)

The control law (35) is adopted from the attitude synchroniza-
tion control law in [46], [48], [49]. Since R�

j Ri = (R�
i Rj )�,

the control law (35) requires only the local relative orientations
of agent i with regard to its neighbors, i.e., communication be-
tween agents is not needed [49].

Because the leader has no neighbor, we let Ṙ1 = 0. Thus, the
orientation of the leader is time invariant, i.e., R1(t) = R1(0),
∀t > 0.
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From (34), the angular velocity in the global reference frame
can be rewritten as follows:

Ṙi = −
∑
j∈Ni

Ri(R�
j Ri − R�

i Rj ). (36)

Unlike [5], [6], [21], [47], where the interaction graphs are
assumed to be undirected, the alignment (35) is performed in a
directed graph G built up via a Henneberg construction, i.e., a
rooted directed graph with a root at vertex v1 . This setup leads
to a different result. When the interaction graph is bidirectional,
the final orientation is determined by all agents’ initial orienta-
tions [49]. However, when the graph is directed and has a rooted
spanning tree, the aligned orientation is determined by the ori-
entations of the agent locating at the root of the graph, as stated
in the following lemma.

Lemma 8: [49], [50, Th. 3.2] Assume that G has a rooted
spanning tree. If there is R ∈ SO(3), such that the orientations
of all agents are initially contained within a closed ball B̄r (R) of
radius r less than π/2 centered aroundR, then the controller (35)
is a synchronization controller, i.e., R�

i Rj → I3 asymptotically
for all i, j ∈ V .

The following result is implied from Lemma 8 and Corollary
2 in [46].

Lemma 9: Under Assumption 4 and the orientation align-
ment control law (34), if the directed graph G is built up by a
Henneberg construction, all agents’ orientations will asymptot-
ically converge to the leader’s orientation, i.e., for i = 2, . . . , n,
Ri(t)�R1 → I3 asymptotically, as t → ∞.

Proof: Since the graph G is built up by a Henneberg con-
struction, it has a rooted spanning tree. Thus, all conditions of
Lemma 8 are satisfied and orientations of all agents will con-
verge to a common aligned orientation. Under the control law
(35), R1(t) = R1(0), for all time t > 0, and thus Ri(t) → R1 ,
as t → ∞. �

2) Formation Control Layer: In this layer, we use a locally
implemented version of the control laws in Section III. The
leader is stationary, i.e., u1

1 = 0. The first follower’s position
control law written in its local reference frame 2Σ is designed
as3

u2
2 = −Pg2

2 1
(I3 + R�

2 R1)g∗
21 . (37)

For each follower agent i (3 ≤ i ≤ n), the position control law
written in iΣ is

ui
i = −

∑
j∈Ni

Pg i
i j

(I3 + R�
i Rj )g∗

ij (38)

where Pg i
i j

= I3 − gi
ij (g

i
ij )

� is the orthogonal projection ma-
trix. Using the following derivation:

RiPg i
i j

(I3 + R�
i Rj )g∗

ij

= Ri(I3 − R�
i gijg�

ijRi)(I3 + R�
i Rj )g∗

ij

= RiR�
i (I3 − gijg�

ij )Ri(I3 + R�
i Rj )g∗

ij

= Pgi j
(Ri + Rj )g∗

ij

3The global stabilization control law (27) cannot be used here since it uses
global information.

and (33) and (38), we can express the dynamics of agent 2 in
the global frame as follows:

ṗ2 = −2Pg2 1 R1g∗
21︸ ︷︷ ︸

:= f2(p, t)

+Pg2 1 (R1 − R2)g∗
21︸ ︷︷ ︸

:= h2(p, t)

. (39)

Similarly, the dynamics of an agent i (i = 3, . . . , n) can be
expressed in gΣ as

ṗi = −
∑
j∈Ni

Pgi j
(Ri + Rj )g∗

ij

= −2
∑

j∈Ni

Pgi j
R1g∗

ij︸ ︷︷ ︸
:= fi(p, t)

+
∑

j∈Ni

Pgi j
(2R1− Ri − Rj)g∗

ij︸ ︷︷ ︸
:= hi(p, t)

.

Then, the position dynamics of the n-agent system can be ex-
pressed in the following compact form:

ṗ = f(p) + h(p, t) (40)

where f(p) = [f�1 , . . . , f�n ]�, h(p, t) = [h�
1 , . . . ,h�

n ]�, and
f1 = 0, h1 = 0. We will analyze the system (40) in the next
section using the results on almost global ISS [35]. Note that
the approach in the next section is similar to [21].

C. Stability Analysis

1) Input to the Nominal System: Observe that in the com-
pact form (40), h(t) can be considered as an input to the nominal
system

ṗ = f(p). (41)

We have the following lemma on h(t).
Lemma 10: Under Assumptions 1–4, the input h(t) from

the orientation alignment layer to the formation control layer
is bounded. Moreover, h(t) asymptotically converges to 0 as
t → ∞.

Proof: This proof is similar to the proof of [21, Lemma 12]
and will be omitted. �

2) The First Follower: The dynamics of agent 2 (the first
follower) is given by

ṗ2 = f2(p2) + h2(t)

= −2Pg2 1 R1g∗
21 + Pg2 1 (R1 − R2)g∗

21 (42)

Ṙ2 = −R2(R�
1 R2 − R�

2 R1). (43)

We have the following lemma on the unforced system ṗ2 =
f2(p2), whose proof is similar to the proof of Lemma 4.

Lemma 11: The unforced system ṗ2 = f2(p2) has two equi-
libria. The first equilibrium p2 = p∗

2a corresponding to g21 =
R1g∗

21 is almost globally asymptotically stable. The second
equilibrium p2 = p∗

2b corresponding to g21 = −R1g∗
21 is (ex-

ponentially) unstable.
In fact, every initial condition, other than the unstable equi-

libirium point, is in the region of attraction of the equilibirium
point p∗

2a .
Lemma 12: The system (42) has two equilibria. The equi-

librium p2 = p∗
2a is almost globally asymptotically stable. The

equilibrium p2 = p∗
2b is exponentially unstable. All trajectories
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with p2(0) �= p∗
2b , R2(0) �= R1 asymptotically converge to the

stable equilibrium.
Proof: We first prove the system (42) satisfies the ulti-

mate boundedness property. Consider the potential function
V = 1

2 ‖p2 − p∗
2a‖2 , which is positive definite, radially un-

bounded, and V = 0 if and only if p2 = p∗
2a . Then

V̇ = (p2 − p∗
2a)�ṗ2

= −2(p2 − p∗
2a)�Pg2 1 R1g∗

21 + (p2 − p∗
2a)�h2

= −2(p2 − p∗
2a)�

Pg2 1

d21
(p2 − p∗

2a) + (p2 − p∗
2a)�h2

≤ −2 sin2 α(0)
d21

‖p2 − p∗
2a‖2 + ‖p2 − p∗

2a‖‖h2‖

≤ −κV + 2d21‖h2‖ (44)

where κ = 4d−1
21 sin2 α(0), and α is the angle between p∗

2a − p2
and g∗

21 . Since ‖p2 − p∗
2a‖ is bounded, it follows from (44) that

the system (42) satisfies the ultimate boundedness property [35,
Proposition 3].

When h2(t) = 0, the unforced system has two isolated equi-
libria with properties given in Lemma 11. Since the system (42)
satisfies Assumptions A0–A2 in [35] and the ultimate bound-
edness property, (42) is almost globally ISS with respect to the
equilibrium p2 = p∗

2a based on [35, Proposition 2].
Since h2(t) → 0 as proved in Lemma 10, the equilibrium

p2 = p∗
2a of (42) is almost globally asymptotically stable [34,

Th. 2]. �
3) The Second Follower: The second follower’s dynamics

is given by

ṗ3 = f3(p3 ,p2) + h3(t)

= −2Pg3 1 R1g∗
31 − 2Pg3 2 R1g∗

32 + h3(t). (45)

Lemma 13 is about the unforced systems

ṗ3 = f3(p3 ,p∗
2a) (46)

ṗ3 = f3(p3 ,p∗
2b). (47)

Lemma 13: The system (46) has a globally asymptotically
stable equilibrium p∗

3a , where g31 = R1g∗
31 and g32 = R1g∗

32 .
The system (47) has an unstable equilibrium p∗

3b , where g31 =
−R1g∗

31 and g32 = −R1g∗
32 .

Proof: The result follows from Lemma 6. �
Lemma 14: The cascade system (42), (45) has two equilib-

ria. The equilibrium p2 = p∗
2a , p3 = p∗

3a is almost globally
asymptotically stable. The equilibrium p2 = p∗

2b , p3 = p∗
3b is

unstable. All trajectories starting out of the undesired equilib-
rium asymptotically converge to the stable equilibrium.

Proof: As in Lemma 12, we first prove that the system
(45) satisfies the ultimate boundedness property if p2(0) �=
p∗

2b . Consider the Lyapunov function V = 1
2 ‖p3 − p∗

3a‖, the

derivative of V is given by

V̇ = − 2(p3 − p∗
3)

�(Pg3 1 R1g∗
31 + Pg3 2 R1g∗

32 − h3)

= − 2(p3 − p∗
3)

�
(

Pg3 1

‖z∗31‖
+

Pg3 2

‖z∗32‖
)

(p3 − p∗
3)

+ (p3 − p∗
3)

� Pg3 2

‖z∗32‖
(p2 − p∗

2a) + (p3 − p∗
3)

�h3

≤ − 2(p3 − p∗
3)

�M(p3 − p∗
3)

+ ‖p3 − p∗
3‖
(‖Pg3 2 ‖

‖z∗32‖
‖p2 − p∗

2a‖ + ‖h3‖
)

≤ − 2κ‖p3 − p∗
3‖2 + ‖p3 − p∗

3‖
(

2d21

‖z∗32‖
+ ‖h3‖

)
(48)

where κ > 0 as defined in Lemma 6. Furthermore, in (48),
‖h3‖ is bounded from Lemma 10. Thus, if ‖p3 − p∗

3a‖ is
large enough, the second term is O(‖p3 − p∗

3a‖) while the
first term is O(−‖p3 − p∗

3a‖2), and V̇ < 0. Consequently,
‖p3 − p∗

3a‖ is bounded, and we can choose m3 such that
m3 > maxggt≥0‖p3 − p∗

3a‖. It follows that

V̇ ≤ −2κV + 2d21‖z∗32‖−1m3 + m3‖h3‖
or the system (45) satisfies the ultimate boundedness property.
When h3(t) = 0, the unforced system has two isolated equilib-
ria with properties given in Lemma 13. Since the system (45)
satisfies Assumptions–A2 and the ultimate boundedness prop-
erty, (45) is almost globally ISS with respect to the equilibrium
p3 = p∗

3a [35, Proposition 3].
Because h3(t) → 0 as proved in Lemma 10, the equilibrium

p3 = p∗
3a of (42) is almost globally asymptotically stable [34,

Th. 2]. �
4) The Overall System: Consider the n-agent system (40)

ṗ = f(p) + h(p, t).

We have the following lemma whose proof follows from
Lemma 11 and repetitively applying Lemma 12.

Lemma 15: The unforced system ṗ = f(p) has two equilib-
ria. The first equilibriump = p∗

a corresponding togij = R1g∗
ij ,

∀g∗
ij ∈ B is almost globally asymptotically stable. The second

equilibrium p = p∗
b corresponding to gij = −R1g∗

ij , ∀g∗
ij ∈ B

is unstable.
Finally, the main result of this section is given in the following

Theorem.
Theorem 3: Consider the system (33)–(34). Under Assump-

tions 1–4 and the proposed control laws (35), (37), and (38),
Ri → R1 (i = 1, . . . , n) and p → p∗

a asymptotically if initially
R2(0) �= R1 ,p2(0) �= p∗

2b .
Proof: We have Ri → R1 ,∀i = 1, . . . , n according to

Lemma 9. The convergence of p to the target formation follows
from Lemma 12, Lemma 14, and by invoking mathematical
induction as in Theorem 1. �

V. REGULATING THE TARGET FORMATION

In this section, we study two strategies to regulate the LFF
formations given that the n-agent system starts from a forma-
tion that is bearing congruent to the desired formation. First,
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we propose a strategy to control the formation’s orientation by
switching the leader’s orientation. Second, we show that by con-
trolling the distance between the leader and the first follower,
we can control the formation scale.

A. Controlling the Formation’s Orientation

As proved in Section IV, under the two-layer control strategy,
the n-agent system (33)–(34) almost globally asymptotically
converges to the desired formation p∗

a corresponding to gij =
R1g∗

ij , ∀(i, j) ∈ E . The desired formation’s orientation with
regard to the global reference frame is thus determined by the
leader’s orientation. When the actual formation is identical with
the desired formation gij = g∗

ij , Ri = R1 for all 1 ≤ i ≤ n,
the leader can control the overall formation’s orientation with
regard to the global reference frame by switching its orientation
R1 to a new orientation R′

1 . The new orientation must satisfy
the following assumption.

Assumption 5: The new orientation R′
1 is contained within

a closed ball B̄r (R1) of radius r less than π/2, or equivalently,
the symmetric part of (R′

1)
�R1 is positive definite.

Corollary 1: Under Assumptions 1–3 and control laws
(36)–(38), if initially the formation is at a desired equilib-
rium satisfying gij (0) = R1g∗

ij ,∀g∗
ij ∈ B, Ri(0) = R1 ,∀i =

1, . . . , n, and agent 1 switches its orientation to R′
1 satisfying

Assumption 5, the formation asymptotically converges to a for-
mation with the same formation scale satisfying gij = R′

1g
∗
ij ,

∀g∗
ij ∈ B.
Proof: Since the new orientation R′

1 satisfies Assumption 5,
after the leader switches its orientation, the convergence of all
other agents’ orientations to R′

1 is guaranteed and thus Ri →
R′

1 , 2 ≤ i ≤ n.
The new desired formation has to satisfy gij = R′

1g
∗
ij ,

∀g∗
ij ∈ B. Because g21(0) = R1g∗

21 , R2(0) = R1 , after the
leader switches its orientation, agent 2 cannot be at the new
undesired equilibrium, i.e., g21(0) �= −R′

1g
∗
21 , R2(0) �= R′

1 .
Therefore, the convergence of the formation to the new desired
formation follows immediately from Theorem 3. �

B. Rescaling the Formation

In practice, it may be desired to control the scale of the for-
mation. If only the bearing information is measured, there is
apparently no basis to control the size of the overall forma-
tion. Suppose the formation is in its desired shape. Further-
more, assume that one distance, d12 , between the leader and
first follower, for which there is an associated desired distance
constraint d∗, can be measured by the leader. It turns out that by
controlling d12 , the whole other distances in the LFF formation
will be controlled. The scale adjustment control law is proposed
as

ṗ1 = α1(d2
12 − (d∗)2)(p2 − p1) (49)

where α1 > 0 is a control gain.
Proposition 3: Under Assumptions 1–3, if the LFF forma-

tion is initially in a desired formation, agent 1 moves under the
control law (49) and other agents move under the control law

(37)–(38), then the LFF formation asymptotically converges to
a new desired formation with formation scale specified by d∗.

Proof: First, since the formation is assumed to be initially at
a desired formation, all local orientations are aligned and will
not be changed with time.

Second, the first follower is initially in its desired position,
that is g21(0) = R1g∗

21 , and it will not move (ṗ2 = 0) because
the motion of the leader preserves g21 . This fact follows from

∂g21

∂p1
ṗ1 =

Pg2 1

d12
α1(d2

12 − (d∗)2)(p2 − p1)

= α1
d2

12 − (d∗)2

d12
Pg2 1 z12 = 0. (50)

We prove that d21 converges to d∗ exponentially fast. To this
end, consider the distance dynamics

d

dt
(d2

12) = 2α1(d2
12 − (d∗)2)z�21(p2 − p1)

= − 2α1d
2
12(d

2
12 − (d∗)2). (51)

Consider also the Lyapunov function V = 1
4 (d2

12 − (d∗)2)2 ,
which is positive definite, continuously differentiable, and ra-
dially unbounded. Furthermore, V = 0 if and only if d12 = d∗.
We have

V̇ = −α1d
2
12(d

2
12 − (d∗)2)2 < 0, ∀d12 �= d∗

and V̇ = 0 if and only if d2
21 = (d∗)2 . Since V̇ ≤ 0, it follows

that d2
12 is bounded and the variable d12 increases or decreases

monotonically to the desired distance d∗12 . Thus, there exists
κ = α1 mint≥0 d2

12(t) > 0 and

V̇ = −α1d
2
12(d

2
12 − (d∗)2)2 ≤ −κV ≤ 0.

It follows that d12 converges to d∗ exponentially fast [40].
The remaining proof for convergence of other followers is

similar to the proof of Theorem 1.
Consequently, the formation scale asymptotically converges

to the desired one, which is fully determined by the dis-
tance between the leader and the first follower as discussed
in Lemma 3. �

VI. SIMULATION RESULTS

In this section, we consider an eight-agent system with an
LFF graph as depicted in Fig. 2. The desired bearing vectors
were chosen satisfying Assumption 3 and such that the desired
formation is a cube in R3 .

A. Simulation 1: Achieving the Desired Formation

In this simulation, the leader’s initial conditions are p1(0) =
[0, 0, 0]�, R1(0) = I3 . Other agents’ orientations were ran-
domly chosen such that Assumption 4 is satisfied. Agent 1
is placed at the origin. Agent 2’s initial position is chosen at
p2(0) = [1,

√
3, 0]�, which is not an undesired equilibrium.

Fig. 7 depicts trajectories and orientations of eight agents.
The initial orientations and the final orientations are colored
black and red, respectively. Observe that agent 1 does not move
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Fig. 7. Simulation 1: Achieving the desired formation with orientation
alignment.

in this simulation, and d21(t) = d21(0) = 2, ∀t ≥ 0. In the final
formation, all orientations are aligned and all desired bearing
vectors are satisfied. Thus, the simulation result is consistent
with Theorem 3.

B. Simulation 2: Rotating Formation by Switching
Leader’s Orientation

This simulation continues from the end of Simulation 1, i.e.,
eight agents have taken up the desired formation shape described
in the previous simulation. Agent 1 switches its orientation from
I3 to

R′
1 =

⎡
⎣

0.7071 0 0.7071
0.3536 0.8660 −0.3536
−0.6124 0.5000 0.6124

⎤
⎦

which satisfies Assumption 5. Fig. 8 depicts trajectories and
orientations of eight agents after agent 1 switched its orientation.
The final formation is rotated by R′

1 from the initial formation
and all agent’s local orientations converge to R′

1 . Agent 1 does
not move in this simulation. Also, the formation’s scale does not
change during the system’s evolution and d21(t) = 2, ∀t ≥ 0.

C. Simulation 3: Rescaling the Formation

This simulation continues from the end of Simulation 2. The
leader starts to control the scale. It is shown in Fig. 9 that
the formation is rescaled to the desired formation scale, and
d21(t) → d∗ = 1. Agent 1 moves along a straight line toward
agent 2 while agent 2 does not move since its bearing constraint
g∗

21 is always satisfied. Thus, the simulation result is consistent
with Proposition 3.

Fig. 8. Simulation 2: Rotating the target formation by switching the
leader’s orientation.

Fig. 9. Simulation 3: Rescaling the target formation by controlling the
distance d12 .

VII. CONCLUSION

This paper studied bearing-based LFF formation control in
an arbitrary dimensional space. The stability of LFF formations
under the proposed bearing-only control law was extensively ex-
amined. As far as we know, this is the first paper fully dedicated
to the stability analysis of a directed bearing-constrained forma-
tion in an arbitrary dimensional space. Additionally, strategies
to achieve the desired formation without a common reference
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frame, to rotate and to rescale the formation, were also ad-
dressed.

Several problems in bearing-only based formation control are
still open. For example, a bearing-based persistence theory on
directed formations has not yet been developed. Furthermore,
studies on formations containing directed cycles may lead to
some ideas for solving this problem. We are also planning to
implement the control law in quadcopter systems with vision
sensors. Hardware implementation may raise many practical is-
sues in bearing-based formation control including agent’s non-
linear dynamics, bearing measurement errors, and vision sen-
sor’s range.
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