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Abstract: We study internal stability in the context of diffusively-coupled control architecture, common
in multi-agent systems (e.g. the celebrated consensus protocol). We derive a condition under which the
system can be stabilized by no controller from that class. The condition says effectively that diffusively-
coupled controllers cannot stabilize agents that share common unstable dynamics, directions included.
This class always contains a group of homogeneous unstable agents, like integrators. We argue that
the underlying reason is intrinsic cancellations of unstable agent dynamics by such controllers, even
static ones, where directional properties play a key role. The intrinsic lack of internal stability explains
the notorious behavior of some distributed control protocols when affected by measurement noise or

exogenous disturbances.
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1. INTRODUCTION

A multi-agent system (MAS) is a collection of independent
systems (agents) coupled via pursuit of a common goal. In
large-scale MASs the information exchange between agents is
normally limited to a subset of the agents, known as neighbors.
Control laws using only information from neighboring agents
are called distributed.

This work studies a class of distributed control laws, where
only relative measurements are exchanged between neighbors.
In other words, each agent has access only to the difference
between its output and that of each of its neighbours. Relative
sensing appears frequently in MAS tasks where absolute mea-
surement are hard to obtain, such as space and aerial explo-
ration and sensor localization, see (Smith and Hadaegh, 2005;
Khan et al., 2009; Zelazo and Mesbahi, 2011b) and the ref-
erences therein. Distributed control laws generated by relative
information are called diffusive, and systems controlled by such
laws are called diffusively coupled. Diffusive coupling appear
naturally in consensus and synchronization problems (Olfati-
Saber et al., 2007; Wieland et al., 2011), making them common
in the MAS literature. However, diffusively-coupled systems
behave poorly when affected by disturbances and noise. Mea-
surement noise rapidly deteriorates performance (Zelazo and
Mesbahi, 2011a, §III.A), and even dynamic controllers can
hardly attenuate disturbances (Ding, 2015). To illustrate some
of these traits, consider a simple example.

1.1 Motivating example

Reaching agreement between autonomous agents is a funda-
mental building block in multi-agent coordination (Ren and
Beard, 2008). In its simplest form, it concerns a group of
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Fig. 1. Consensus protocol for agents perturbed at 7 = 4

integrator agents described by x;(#) = u;(#), which need to
synchronize their states x; in a distributed manner. Namely, it is
required to attain

tlim (xi(t) = x;(1)) =0, Vi, . (1)

by an appropriate choice of control signals u#; with access only
to a states of neighboring agents, denoted by the set A;. This
problem can be solved by the celebrated consensus protocol
(Olfati-Saber et al., 2007), which is a diffusive state-feedback

ui(t) = = )" (xi(1) = x;(1)). @)
JEN;
If certain conditions on the communication topology hold, then
the control law (2) drives the agents to agreement exponentially
fast (Mesbahi and Egerstedt, 2010, Ch. 3).

This is no longer the case if the agent dynamics are affected
also by exogenous inputs,

%i (1) = ui (1) +d;(1) (3)
for some independent and unmeasurable load disturbances d;.
Fig. 1 demonstrates what happens with a group of 4 agents
controlled by (2) when a unit step disturbance appears at one of
them at some time instance ¢t = t,4. For ¢ < t4, when the system
is undisturbed, the states converge exponentially to the average
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of their initial conditions and the control signals go to zero.
However, for ¢ > t; the states x; disagree and diverge, whereas
the control signals u; reach non-zero steady-state values.

The apparent instability of the whole system, manifested in
the unboundedness of the states, can be explained by the well-
known fact that the consensus protocol has a closed-loop eigen-
values at the origin (Olfati-Saber et al., 2007). Nevertheless,
the boundedness of the control signals under such conditions is
intriguing. The situation when some signal in the closed-loop
system are bounded, whereas some other are not, may indicate
unstable pole-zero cancellations in the feedback loop (Zhou
et al., 1996, Ch. 5.3). However, controller (2) is static and thus
has no zeros.

Still, the behavior like that in Fig. 1 prompts a deeper inspection
of the internal stability property, which is the stability of all
possible input/output relations in the system, see (Zhou et al.,
1996; Skogestad and Postlethwaite, 2005). To the best of our
knowledge, the instability phenomenon above was never ex-
plicitly connected with the lack of internal stability or unstable
cancellations ! . This is the starting point of the current study.

1.2 Contribution

In this note we show that the diffusive-coupling distributed con-
trol architecture for MASs is intrinsically internally unstable
for many common agents configurations. Specifically, we prove
that this is the case whenever all agents share common unstable
dynamics (directions included for MIMO agents). This, for ex-
ample, always happens in the group of homogeneous unstable
agents, like integrator agents in (3).

We also explain the mechanism for the shown internal insta-
bility. It is indeed caused by unstable cancellations in the cas-
cade of the block-diagonal aggregate plant and the diffusively
coupled controller. Interesting is that these cancellations are
caused not by controller zeros, but rather by an intrinsic spatial
deficiency of the diffusive coupling configuration. They are thus
independent of particular dynamics in processing relative mea-
surements, only agents dynamics matter. It is worth mentioning
that this instability mechanism is unrelated to the decentralized
fixed modes (Wang and Davison, 1973).

The internal instability in the form of canceled plant poles
explains then observed problems associated with the load dis-
turbance response in some MAS applications.

Notations We extensively use standard notation from alge-
braic graph theory (Godsil and Royle, 2001). An undirected
graph G = (V, &) consists of a finite vertex set V' and edges
E c V x V. Denote by E the (oriented) incidence matrix of
G, defined component-wise by [E(G)];; = 1, when i is the
head of edge j, [E(G)];j = —1 when i is the tail of edge j,
and 0 otherwise. The matrix L := EET is the combinatorial
Laplacian matrix of G. Note that 1 € ker ET, thus L has an
eigenvalue at the origin with 1 as its eigenvector.

The sets of real and complex numbers are denoted by R and
C respectively, while the notations Cy and Cy denote the open
and closed right half complex plane, respectively. The complex-
conjugate transpose of a matrix M is denoted by M. The

! Reminiscent reasoning has been mentioned in a formation control problem
solved by a diffusive controller in (Fax and Murray, 2004, Sec.III.B), where
the a cancelled mode was interpreted as unobservability of absolute motion.
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Fig. 2. Block diagram of the closed-loop

notation diag{M;} stands for a block-diagonal matrix with
diagonal elements M;. The image (range) and kernel (null)
spaces of a matrix M are notated Im M and ker M, respectively.
Given two matrices (vectors) M and N, M ® N denotes their
Kronecker product. By 1,, or simply I/, we denote the v X v
identity matrix, by 1,, or simply 1, the v dimensional all-ones
vector. The notation spec G refers to the set of eigenvalues if
G is a matrix, or the set of poles if G(s) is a proper transfer
function. By H, we denote the space of functions holomorphic
and bounded in Cy.

2. PROBLEM FORMULATION

Consider v continuous-time agents P;, each with m inputs and
p outputs. Their aggregate dynamics are denoted as P :=
diag{P;}, i = 1,...,v. The interconnection topology of all
agents is described by a graph G with v nodes and ¢ edges.
Agent i and agent j are neighbors in the sense described in
Section 1 if they are incident to the same edge. A dynamic
controller, K, := diag{K,. ;}, j = 1,...,q, acts on the relative
measurements on the edges. We assume hereafter that all P; and
K., are linear time invariant (LTT), finite dimensional 2 and that
their transfer functions are proper.

A general diffusively-coupled architecture can be presented as
the interconnection shown in Fig. 2, where the coupling matrix
is the incidence matrix of G. This representation is common in
passivity-based analysis (Arcak, 2007), and sometimes called
the canonical cooperative control structure (Sharf and Zelazo,
2017), (Bullo, 2022, Ch.9). An equivalent representation can
be made using the Laplacian matrix (Bullo, 2022, Ch. 8).

Note that the coupling matrices can be attached to either the
plant or the controller, resulting in two distinct problems. One
of them considers edge controllers stabilizing diagonal node
dynamics (Biirger and De Persis, 2015), while the other a
diagonal controller stabilizing the edge dynamics (Zelazo and
Mesbahi, 2011a). In this note we consider the former, which
includes controller

K = (E ® Im)Ke(E-r ®IP) “)

connected with a diagonal plant, as shown in Fig.2, where v,
and vy are arbitrary and bounded exogenous signals.

We say that the system in Fig.2 is internally stable if all
four closed-loop transfer functions connecting the exogenous
signals v; and v, with the internal signals e; and e, are stable,
i.e. belong to Hy. The question studied in this note is under

2 The arguments below could be extended to infinite-dimensional systems, but
the involved technicalities are beyond the scope of this note.
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what conditions on the dynamics of the agents P; there are edge
controllers K, internally stabilizing this system.

3. THE MAIN RESULT

The main result of this note provides a condition for the
interconnection in Fig.2 to be internally unstable irrespective
of the choice of dynamics of K.. As mentioned, the underlying
reason is cancellations between poles of P and the controller K.
It is well documented that poles cancelled in a cascade between
a plant and controller are not truly cancelled (Anderson and
Gevers, 1981). They may not appear in one I/O relation, but will
still appear in a different one. For SISO systems cancellations
are simple to spot and understand, they happen if and only
if one system has a pole and the other a zero at the same
location. When generalizing this to MIMO, poles and zeros
have directional properties, see (Skogestad and Postlethwaite,
2005, §4.6.1) and (Mirkin, 2019, §3.4.2). Thus, directions, and
not just locations, have to be considered.

Definition 1. Let G be an LTI system with m inputs and p
outputs and (A, B,C, D) be its state space realization with
realization poles at A; € C. The input direction of every A; is

pdir;(G, A;) .= BT ker([4;] - A]") c C™
and its output direction is
pdir, (G, 4;) = Cker(;1 — A) € CP.

Pole directions span subspaces of either the input or output
space. If A; is a hidden, i.e. uncontrollable or unobservable,
mode of the realization (A, B, C, D), then both pdir;(G, 4;) =
{0} and pdir (G, A;) = {0}, which follows by PBH arguments.
In the SISO case, pdir;(G, 4;) = pdir,(G,4;) = C whenever
A; is also a pole of the transfer function G (s), i.e. every pole is
excited by every input.

Cancelled poles correspond to unobservable (uncontrollable)
modes in either KP or PK (Zhou et al., 1996, Thm. 5.7). The
following Lemma provides conditions on pole directions of
the agents in the diagram in Fig.2 under which parts of the
dynamics of agents are canceled by the controller K.

Lemma 2. Let P and K be as described in Section 2 and A be a
common pole of all agents P;.

1) If
4
ﬂpdirU(Pi,/l) # {0},
i=1

then A is an unobservable mode of KP.
i) If
v
(" pdir (P;, ) # {0},
i=1
then A is an uncontrollable mode of PK.

The cancellation of A in Lemma 2 is independent of the con-
troller dynamics. In MIMO systems poles of the plant can be
canceled not by zeros of the controller, but rather by a normal
rank deficiency of the latter. This is exactly what happens in
the diffusively-coupled interconnection in Fig. 2. Namely, the
intrinsic singularity of the incidence matrix, present in every
diffusive controller, might cancel plant poles. A formal condi-
tion for that is stated in Lemma 2.

Since cancelled poles remain poles of at least one closed-
loop transfer function (Anderson and Gevers, 1981), the above
Lemma immediately implies the main result.

Theorem 3. Let P;, i = 1,...,v, be LTI finite-dimensional
agents with proper transfer functions. If 1 € Cy is a pole of
each one of them such that
v
[\pdiri(P;. ) # {0}
=1

J

(52)
or

pdiry (P}, A) # {0}, (5b)
=1

J
then the interconnection shown in Fig.2 is internally unstable
irrespective of the choice of K.. Moreover, if this 4 is not a
zero of K., then condition (5a) implies that A is the pole of the
closed-loop transfer function from v; to e, while condition (5b)
implies that A is the pole of the closed-loop transfer function
from v; to e;.

Theorem 3 asserts that that any common dynamics, determined
by poles and corresponding directions, are cancelled by the
diffusive coupling. This has an interesting immediate corollary.
If the agents are homogeneous they share their entire dynamics,
both stable and unstable, thus the diffusive structure can be
thought of as cancelling an entire agent. This not only proves
the unobservability of the mode at the origin claimed in (Fax
and Murray, 2004), but proves that every pole loses multiplicity
in the cascade.

This may have ramifications not only about the stability of the
system, but also of its maximal attainable performance. For
example, it explains the observation reported in (Li et al., 2010),
where the disturbance rejection performance measure of the
entire system is upper bounded by that of a single, uncontrolled
agent. It also generalizes the observation from (Zelazo and
Mesbahi, 2011a), where it was shown that for integrator agents
there is always an unobservable mode parallel to span 1. Since
this direction is in the null space of the incidence matrix, noise
or disturbances effecting this mode cannot be attenuated by a
diffusive controller. Similarly, this cancellation explains why
the cooperative disturbance rejection scheme of (Ding, 2015)
cannot reject load disturbances, but only synchronize to it.

4. CONCLUDING REMARKS

We presented necessary conditions for internal stabilizability of
diffusively-coupled LTI systems. In particular, we have shown
that, for finite-dimensional agents, common dynamics are can-
celled by the diffusive controller. The final conclusion is that
in numerous multi-agent problems, one cannot simultaneously
achieve a cooperative objective and guarantee internal stability
using only relative measurements. Extending these results to
time-varying graphs and more general systems are subject to
current research.
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