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Abstract— This study investigates the state synchronization
of linear time-invariant (LTI) agents within a networked envi-
ronment characterized by intermittent and asynchronous com-
munication, alongside heterogeneous time-varying transmission
delays. These delays are not assumed to be known a-priori
but only time-stamped. A hybrid controller, augmented with
a special kind of predictor, is proposed to compensate for the
delays and guarantee synchronization. Notably, synchronization
is achieved under comparable conditions to the delay-free
case, provided that transmission delays are smaller than the
corresponding sampling interval. This is independent of the
agents’ dynamics and requires no additional knowledge of the
underlying communication topology. An algorithm is presented
for implementing the required predictor buffer with a size of
one, offering a straightforward and scalable implementation.

Index Terms— Sampled-data systems, network control sys-
tems, time delays.

I. INTRODUCTION

The study of multi-agent systems (MAS) has been a
central tenet in a multitude of scientific and engineering
disciplines over the past decades, with applications including
biology, optimization, and robotics. Perhaps the most widely
known control problem in MAS is the consensus [1], [2]
or synchronization [3], [4] problem, in which the agents
must agree on some common steady-state trajectory. The
crux of this problem is that the agents must reach agreement
distributedly with limited communication, constraints which
can be divided into two categories: spatial and temporal.

Spatially constrained communication reflects the require-
ment that each agent generate its control law based on partial
information. Each agent is only privy to information from
a subset of the group, its neighbors [5], [6]. These neigh-
borhoods can be time-varying and induce a graph structure
on the overall system, which has been widely exploited to
design control laws [7]. While spatial constraints restrict the
identity of interacting agents, temporal constraints restrict
the communication time. These constraints encompass both
sampled communication and various forms of time delays,
both staples of networked systems.

There exists substantial theory and a variety of methods
to address each type of constraint individually. For exam-
ple, spatial constraints have been extensively studied, with
solutions proposed through graph and matrix theory [2],
[8], while temporal constraints have also received attention
within the context of networked control systems [9], [10].
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However, in practice, systems must cope with both types of
constraints. Moreover, common assumptions such as contin-
uous communication, static graphs, or periodic synchronous
sampling [11]–[13] might not be realistic. This cumulative
burden makes even consensus of simple integrators chal-
lenging [14], often leading to conservative, robustness-based
approaches [15], [16], even without delays. To the best of our
knowledge, achieving synchronization under asynchronous
communication and heterogeneous transmission delays is
still an open problem.

We propose a sampled-data control protocol that guaran-
tees asymptotic synchronization for switching graphs, asyn-
chronous sampling, and time-varying transmission delays.
The control structure is an extension of the emulation-based
controller proposed in [17], with an added internal predictor.
The only additional assumptions required are: i) the incoming
information is time-stamped (i.e. each agent knows when
incoming information was sent) and ii) that the time delays
are shorter than the next sampling instance. This is made
possible by leveraging the hybrid nature of the original
controller, allowing for decoupled, continuous-time behavior
of the agents between sampling instances.

This paper is organized as follows. In §II-A we set up
the delay-free problem and its solution, and in §II-B we
define the transmission delays and how they enter the system.
Section III contains the main result of this note; §III-A
motivates the structure of the predictor by solving the delayed
problem for integrator consensus, while §III-B generalizes
it to more general LTI agents. §III-C provides a simple
algorithm to implement the predictor using a simple buffer
of dimension 1. Section IV provides two numerical examples
to illustrate the proposed controller, while Section V offers
some concluding remarks.

Notation: The sets of all non-negative integers are denoted
as ℤ+ and ℕ𝜈 ≔ {𝑖 ∈ ℤ | 1 ≤ 𝑖 ≤ 𝜈}. Sequences with
indices from ℤ+ are indicated as {𝑠𝑖}. The sets of real and
complex numbers are denoted by ℝ and ℂ, respectively, and
ℂ0 ≔ {𝑠 ∈ ℂ | Re 𝑠 > 0}. The complex-conjugate transpose
of a matrix 𝑀 is denoted by 𝑀 ′. The image (range) and
kernel (null space) of a matrix 𝑀 are notated Im 𝑀 and
ker 𝑀 , respectively. Given two matrices (vectors) 𝑀 and 𝑁 ,
𝑀⊗𝑁 denotes their Kronecker product, while spec(𝑀) refers
to the set of all eigenvalues of 𝑀 . By 𝟙𝜈 , or simply 𝟙 when
the dimension is clear from the context, the all-ones vector
from ℝ𝜈 . Objects with the superscript (·)𝐷𝐹 refer to their
delay-free counterparts.
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(a) Standard. (b) With delays.

Fig. 1. Sampled-data multi-agent control architectures.

II. PROBLEM SETUP AND PRELIMINARIES

A. The delay-free problem and solution

This section outlines the delay-free problem and its solu-
tion as given in [17]. Consider 𝜈 homogeneous agents, each
with linear dynamics given by

¤𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡), 𝑥𝑖 (0) = 𝑥𝑖,0, 𝑖 ∈ ℕ𝜈 (1)

for some matrices 𝐴 ∈ ℝ𝑛×𝑛 and 𝐵 ∈ ℝ𝑛×𝑚, where 𝑥𝑖 (𝑡) and
𝑢𝑖 (𝑡) are the 𝑖th state and control signal, respectively. The
communication between the agents is restricted both spatially
and temporally; however, the local state is assumed to be
continuously available for each agent. The spatial constraints
manifest as neighborhood sets, N𝑖 (𝑡) ⊂ ℕ𝜈 \ {𝑖}, where
each N𝑖 (𝑡) denotes the set of neighbors of agent 𝑖 at time 𝑡.
The temporal constraints are given by a strict monotonically
increasing sequence of sampling instances {𝑠𝑘}, 𝑘 ∈ ℤ+. The
agents may exchange information only at discrete instances
𝑡 = 𝑠𝑘 , and only with the neighboring agents. Hence,
the combined communication constraints induce a switching
graph structure, G[𝑘], on the system. Note that N𝑖 [𝑘] can
be empty for some sampling instances, and G[𝑘] can be
directed, which allows the setup to consider asynchronous
sampling.

The objective is to design a controller which respects these
communication constraints and asymptotically synchronizes
the states of the agents to a common trajectory.
Ps: Given a matrix 𝐴0 ∈ ℝ𝑛×𝑛 with spec(𝐴0) ∈ ℂ \ℂ0, de-

sign control signals 𝑢𝑖 (𝑡) satisfying the spatio-temporal
constraints that ensure

lim
𝑡→∞

∥𝑥𝑖 (𝑡) − e𝐴0𝑡𝑟0∥ = 0, ∀𝑖 ∈ ℕ𝜈 (2)

for some constant 𝑟0 ∈ ℝ𝑛 and all initial conditions of
agents (1).

It should be emphasized that the matrix 𝐴0 does not represent
a leader node, but rather the shape of the required agreement
trajectories. Globally, Ps implies that not only must the
aggregate state be driven to the agreement set, Im 𝟙𝜈 ⊗ 𝐼𝑛,
but to a particular set of trajectories within it as determined
by 𝐴0.

We make the following two assumptions on the agent’s
dynamics, the desired trajectory, and the communication
constraints.

A 1: The pair (𝐴, 𝐵) is stabilizable, and there is 𝐹̄ such that
𝐴0 = 𝐴 + 𝐵𝐹̄.

A 2: There is a strictly increasing sub-sequence of sam-
pling indices {𝑘 𝑝} such that for all 𝑝 ∈ ℤ+ (i) the
intervals 𝑠𝑘𝑝+1 − 𝑠𝑘𝑝 are uniformly bounded, and (ii)
∪𝑘𝑝+1
𝑘=𝑘𝑝+1G[𝑘] contains a directed rooted tree.

The following is a variant of the main result from [17].
Theorem 2.1: If A 1,2 hold and each agent can continu-

ously measure its own state, then the following 𝑛th order
local controllers

¤𝑧𝑖 (𝑡) = (𝐴 + 𝐵𝐹̄)𝑧𝑖 (𝑡) + 𝐵(𝐹̄𝑥𝑖 (𝑡) − 𝑢𝑖 (𝑡)), 𝑧𝑖 (0) = 𝑧𝑖,0

𝑧𝑖 (𝑠+𝑘) = 𝑧𝑖 (𝑠𝑘) −
1
𝜈

∑︁
𝑙∈N𝑖 [𝑘 ]

(𝑧𝑖 (𝑠𝑘) − 𝑧𝑙 (𝑠𝑘) + 𝑥𝑖 (𝑠𝑘) − 𝑥𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) +
1
𝜈
(𝐹̄ − 𝐹d) (𝑧𝑖 (𝑡) + 𝑥𝑖 (𝑡))

(3)
solves Ps for all gains 𝐹d, 𝐹̄ such that 𝐴+𝐵𝐹̄ = 𝐴0 and 𝐴d =

𝐴 + 𝐵𝐹d is Hurwitz. Moreover, lim𝑡→∞∥ 𝜇̄𝑖 (𝑡) − 𝑥𝑖 (𝑡)∥ = 0
for all 𝑖 ∈ ℕ𝜈 , where 𝜇̄𝑖 B

1
𝜈
(𝑧𝑖 + 𝑥𝑖).

Proof: By considering the coordinate transformation
𝜇̄𝑖 =

1
𝜈
(𝑧𝑖 + 𝑥𝑖) we obtain
¤̄𝜇𝑖 (𝑡) = (𝐴 + 𝐵𝐹̄) 𝜇̄𝑖 (𝑡), 𝜇̄𝑖 (0) = 𝜇̄𝑖,0

𝜇̄𝑖 (𝑠+𝑘) = 𝜇̄𝑖 (𝑠𝑘) −
1
𝜈

∑︁
𝑙∈N𝑖 [𝑘 ]

( 𝜇̄𝑖 (𝑠𝑘) − 𝜇̄𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) + (𝐹̄ − 𝐹d) 𝜇̄𝑖 (𝑡)

(3′)

which is precisely the structure in [17, Corollary 4.4].
For simplicity, we will use 𝜇̄𝑖 and (3′) from here on,
and the quantity the agents transmit at sampling instances
is 𝜇̄𝑖 (𝑠𝑘). We further assume that the discrete component
incorporating incoming information is event driven in the
sense that updates occur whenever new information arrives,
without explicit knowledge of {𝑠𝑘}. Lastly, we shall use
the fact that if 𝜇̄𝑖 (𝑡) synchronizes then so will 𝑥𝑖 (𝑡) and
we will focus the analysis and modification on the hybrid
dynamics given by (3′). To this end, we require the following
proposition.

Proposition 2.2: If the conditions of Theorem 2.1 hold,
then

𝑑

(
𝜇̄(𝑠𝑘𝑝+1 ), Im 𝟙𝜈 ⊗ e𝐴0𝑡

)
< 𝑑

(
𝜇̄(𝑠𝑘𝑝 ), Im 𝟙𝜈 ⊗ e𝐴0𝑡

)
where 𝜇̄(𝑠𝑘) is the aggregation of (3′) and 𝑑 (·, ·) is the set
(Hausdorff) distance.

Proof: The proof follows directly from applying the set-
valued Lyapunov function of [18] to the aggregate solution
of (3′) along the subsequence defined in A 2.

B. Introducing transmission delays

We now consider Ps under the same setup and as-
sumptions as before, but with heterogeneous time-varying
delays on the communicated information between the agents.
Denote by 𝜏𝑖 𝑗 [𝑘] the transmission delay from agent 𝑗 to
agent 𝑖 at time instance 𝑡 = 𝑠𝑘 . We assume that
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A 3: incoming information is time stamped and

𝑠𝑘 + 𝜏𝑖 𝑗 [𝑘] < 𝑠𝑘+1, ∀𝑖, 𝑗 ∈ ℕ𝜈 , 𝑘 ∈ ℤ+.

The assumption above does not imply that the delays are
known a priori, only that the receiving agent knows 𝜏𝑖 𝑗 [𝑘]
at 𝑡 = 𝑠𝑘 +𝜏𝑖 𝑗 [𝑘]. The second part guarantees that there is no
packet disorder, which is a reasonable assumption in MAS
[13] and networked systems in general [10]. Note that the
delays are allowed to vary between sampling instances as
well as across communication channels.

In the sequel, we shall propose a modified version of
the controller (3′) to solve Ps for all transmission delays
satisfying A 3.

III. DEAD TIME COMPENSATION

Since the agents interact only at discrete time instances
and are decoupled otherwise, the delays modify only the
discrete component of (3′). Essentially, A 3 splits the delay-
free update of agent 𝑖 at 𝑠𝑘 into up to |N𝑖 [𝑘] | different
updates spread over the interval [𝑠𝑘 , 𝑠𝑘+1) but still verifying⋃

𝑗∈N𝑖 [𝑘 ]
N𝑖 [𝑡𝑖 𝑗 [𝑘]] = N𝐷𝐹

𝑖 [𝑘] ∀𝑖 ∈ ℕ𝜈 , 𝑘 ∈ ℤ+ (4)

where 𝑡𝑖 𝑗 [𝑘] B 𝑠𝑘 + 𝜏𝑖 𝑗 [𝑘] and N𝐷𝐹
𝑖

[𝑘] denotes the delay-
free neighborhood of agent 𝑖.

Remark 3.1 (Packet loss): Note that (4) does not preclude
the possibility of packet losses, but rather relegates them to
the graphs induced by {𝑠𝑘}. ▽

We now need to design an update rule

𝜇̄𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝜅
©­«𝛼𝑖 𝜇̄𝑖 (𝑡𝑖 𝑗 [𝑘]) +

∑︁
𝑗∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]

𝛼 𝑗 𝜇̄ 𝑗 (𝑠𝑘)
ª®¬

for some function 𝜅(·). The problem at hand is qualitatively
different from the standard delay problems considered in the
literature. Continuous-time delays are infinite dimensional
systems, and therefore so are predictors used in delay com-
pensation. In the proposed setup, the delays affect continuous
information that is sent intermittently and used to update
𝜇̄𝑖 in a discrete fashion. In discrete time, delays are finite
dimensional and occur at discrete steps synchronized with the
regular increments of the system. However, A 3 implies that
the delayed information arrives and is processed before the
next global sampling instance. Hence, the delay at hand does
not fit into either of the standard descriptions. To understand
how to construct a predictor for this hybrid type of delay, we
shall first consider the special case of consensus of integrator
agents.

A. Consensus of integrator agents

Consider the special case of first order integrator agents
trying to achieve consensus. This corresponds to Ps with
𝐴 = 𝐴0 = 0, and (3′) simplifies to

𝜇̄𝑖 (𝑠+𝑘) = 𝜇̄𝑖 (𝑠𝑘) −
1
𝜈

∑︁
𝑙∈N𝑖 [𝑘 ]

( 𝜇̄𝑖 (𝑠𝑘) − 𝜇̄𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d (𝑥𝑖 (𝑡) − 𝜇̄𝑖 (𝑠+𝑘))
.

The equation above is a generalization of the control law
proposed in [19, §III.A], for which the dynamics of 𝜇̄𝑖 are
purely discrete. This significantly simplifies the analysis and,
in fact, makes any predictor redundant, as demonstrated in
the following proposition.

Proposition 3.1: Consider Ps with 𝐴 = 𝐴0 = 0 and
transmission delays. The control law
𝜇̄𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝜇̄𝑖 (𝑡𝑖 𝑗 [𝑘]) −

1
𝜈

∑︁
𝑙∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]

( 𝜇̄𝑖 (𝑠𝑘) − 𝜇̄𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d (𝑥𝑖 (𝑡) − 𝜇̄𝑖 (𝑡𝑖 𝑗 [𝑘]+))
(5)

will drive the agents asymptotically to consensus for all
sampling sequences {𝑠𝑘} satisfying A 2, all time delays
𝜏𝑖 𝑗 [𝑘] satisfying A 3, and all gains 𝐹d < 0.

Proof: Consider an ordered sequence {𝑞𝑙 [𝑘]} where
each element is defined by

𝑞1 [𝑘] = min
𝑖 𝑗

𝑡𝑖 𝑗 [𝑘]

𝑞𝑙 [𝑘] = min
𝑖 𝑗

{𝑡𝑖 𝑗 [𝑘]} \ {𝑞 𝑗 [𝑘] : 𝑗 < 𝑙}

𝑙 = 2, 3, . . . , |N𝑖 [𝑘] |,

(6)

i.e., the ordered time instances for the interval [𝑠𝑘 , 𝑠𝑘+1]
in which information arrives. By A 3, {𝑞 𝑗 [𝑘]} has a finite
(possibly different) number of elements for each 𝑘 . Assume
without loss of generality that 𝑞𝑝 [𝑘] is the last instance,
since 𝜇̄𝑖 is discrete this implies that 𝜇̄𝑖 (𝑠𝑘+1) = 𝜇̄𝑖 (𝑞𝑝 [𝑘]+).
Expanding the above we have

𝜇̄𝑖 (𝑠𝑘+1) = 𝜇̄𝑖 (𝑞𝑝 [𝑘]) −
1
𝜈

∑︁
𝑙∈N𝑖 [𝑞𝑝 [𝑘 ] ]

( 𝜇̄𝑖 (𝑠𝑘) − 𝜇̄𝑙 (𝑠𝑘))

= 𝜇̄𝑖 (𝑠𝑘) −
1
𝜈

𝑝∑︁
𝑟=1

∑︁
𝑙∈N𝑖 [𝑞𝑟 [𝑘 ] ]

( 𝜇̄𝑖 (𝑠𝑘) − 𝜇̄𝑙 (𝑠𝑘)) .

By A 3 and (4), we know that
𝑝⋃

𝑟=1
N𝑖 [𝑞𝑟 [𝑘]] = N𝐷𝐹

𝑖 [𝑘],

hence
𝜇̄𝑖 (𝑠𝑘+1) = 𝜇̄𝐷𝐹

𝑖 (𝑠𝑘+1).

This is true for all 𝑖 ∈ ℕ𝜈 and 𝑘 ∈ ℤ+. Therefore, if (3′) will
drive the delay-free system to consensus, (5) will as well.
Note that for 𝐴 = 𝐴0 = 0, A 1 trivially holds, and that if A 2
holds for {𝑠𝑘} then it will also hold for the shifted sequence
{𝑠𝑘+1}. Thus, we can conclude that if the delay-free system
will reach agreement for the sequence {𝑠𝑘} and its induced
graphs, then the delayed system will for {𝑠𝑘+1}.

Proposition 3.1 illustrates how the hybrid nature of the
delay can render it redundant in certain cases. Since the
updates are event-drive, i.e., an update occurs when new
information arrives, and 𝜇̄𝑖 is constant between updates, the
transmission delays only amount to splitting one update into
several smaller ones within the same time interval. When
combined with A 2, which considers the union of the induced
graphs over some subsequence, it is evident that the delays
amount to a partition of the interval [𝑠𝑘 , 𝑠𝑘+1] for which
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⋃G[𝑡𝑖 𝑗 [𝑘]] = G[𝑘]. Hence, from a consensus standpoint,
there is no difference between the original problem and the
delayed one. As such, there’s no need to predict anything,
simply to guarantee that the original sampling intervals
remain disjoint, as required in A 3.

The above reasoning does not hold when 𝜇̄𝑖 (𝑡) is no longer
constant between updates, as in the general case of Ps.
However, this insight is the guiding principle in designing
an appropriate predictor as will be done in the following
section.

B. Synchronization of LTI agents

The key property exploited in §III-A was that the value of
𝜇̄(𝑠𝑘+1) was the same as it would have been in the delay-free
case for all 𝑘 . In the following lemma, we propose an update
rule that will guarantee this property for arbitrary 𝐴 and 𝐴0
satisfying A 1.

Lemma 3.2: If A 1,3 hold and 𝐴 + 𝐵𝐹̄ = 𝐴0, then under
the update rule

𝜇̄𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝜇̄𝑖 (𝑡𝑖 𝑗 [𝑘])

− 1
𝜈

e𝐴0𝜏𝑖 𝑗 [𝑘 ]
∑︁

𝑗∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]
( 𝜇̄𝑖 (𝑠𝑘) − 𝜇̄ 𝑗 (𝑠𝑘)), (7)

we recover the same 𝜇̄𝑖 (𝑠𝑘+1) as in the delay-free system
(3′).

Proof: Consider the ordered sequence {𝑞𝑙 [𝑘]} from
(6) for an arbitrary agent with index 𝑖, and assume that it
receives 𝑝 delayed updates in the interval [𝑠𝑘 , 𝑠𝑘+1). Define

𝜃𝑖 [𝑘, 𝑙] B
∑︁

𝑗∈N𝑖 [𝑞𝑙 [𝑘 ] ]
( 𝜇̄𝑖 (𝑠𝑘) − 𝜇̄ 𝑗 (𝑠𝑘)),

to simplify the notation, we shall omit the argument 𝑘 when it
is clear from context or unimportant. Now consider 𝑘 = 𝑙 = 1,
for which the update reads

𝜇̄𝑖 (𝑞+1) = e𝐴0𝑞1 𝜇̄𝑖,0 −
1
𝜈

e𝐴0𝜏1𝜃 [1, 1]

= e𝐴0𝜏1

(
𝜇̄(𝑠1) −

1
𝜈
𝜃 [1, 1]

)
,

where we used the general fact that e𝐴0 (𝑞𝑙+1−𝑞𝑙 )e𝐴0𝜏𝑙 =

e𝐴0𝜏𝑙+1 . From here, by induction

𝜇̄𝑖 (𝑞+𝑝) = e𝐴0𝜏𝑝

(
𝜇̄(𝑠1) −

1
𝜈

𝑝∑︁
𝑙=1

𝜃 [1, 𝑙]
)
,

and once more applying A 3 and (4) we obtain that

𝜇̄𝑖 (𝑞+𝑝 [1]) = e𝐴0𝜏𝑝 𝜇̄𝐷𝐹
𝑖 (𝑠+1 ) = 𝜇̄𝐷𝐹

𝑖 (𝑞𝑝 [1]).

Now consider an arbitrary 𝑘 and 𝑙 = 1, for which the
update reads

𝜇̄𝑖 (𝑞+1 [𝑘]) = e𝐴0 (𝑞1 [𝑘 ]−𝑞𝑝 [𝑘−1] ) 𝜇̄𝑖 (𝑞𝑝 [𝑘 − 1]+)

− 1
𝜈

e𝐴0𝜏1 [𝑘 ]𝜃 [𝑘, 1]

= e𝐴0𝜏1 [𝑘 ]
(
𝜇̄(𝑠𝑘) −

1
𝜈
𝜃 [𝑘, 1]

)
,

where we used the fact that

e𝐴0 (𝑞1 [𝑘 ]−𝑞𝑝 [𝑘−1] ) 𝜇̄𝑖 (𝑞𝑝 [𝑘 − 1]+) =
e𝐴0𝜏1 [𝑘 ]e𝐴0 (𝑠𝑘−𝑞𝑝 [𝑘−1] ) 𝜇̄𝑖 (𝑞𝑝 [𝑘 − 1]+) =

e𝐴0𝜏1 [𝑘 ] 𝜇̄𝑖 (𝑠𝑘) .

From here, by similar arguments, we can conclude that

𝜇̄𝑖 (𝑞+𝑝 [𝑘]) = e𝐴0𝜏𝑝 𝜇̄𝐷𝐹
𝑖 (𝑠+𝑘) = 𝜇̄𝐷𝐹

𝑖 (𝑞𝑝 [𝑘]),

since there are no updates between 𝑞𝑝 [𝑘] and 𝑠𝑘+1 and the
choice of 𝑖 was arbitrary, the system evolves like its delay-
free counterpart (3′).

One can view the Lemma 3.2 from a different angle.
Consider the aggregation 𝜇̄(𝑡) =

[
𝜇̄1 (𝑡)′, . . . , 𝜇̄𝜈 (𝑡)′

] ′, then
(7) in aggregate form is given by

𝜇̄(𝑡𝑖 𝑗 [𝑘]+) = 𝜇̄(𝑡𝑖 𝑗 [𝑘]) −
1
𝜈

(
L[𝑡𝑖 𝑗 [𝑘]] ⊗ e𝐴0𝜏𝑖 𝑗 [𝑘 ]

)
𝜇̄(𝑠𝑘)

=

(
(𝐼𝜈 −

1
𝜈
L[𝑡𝑖 𝑗 [𝑘]]) ⊗ 𝐼𝑛

)
𝜇̄(𝑡𝑖 𝑗 [𝑘]),

which is exactly the delay-free update rule for the sampling
sequence {𝑡𝑖 𝑗 [𝑘]} instead of {𝑠𝑘}. The predictor can be
thought of as inducing a new sequence of graphs and
sampling instances, whose union over the interval [𝑠𝑘 , 𝑠𝑘+1]
results in the same induced graph as the original sampling
sequence and delay-free update mechanism. This is the key
step in the proof of the main result.

Theorem 3.3: If assumptions A 1,2 hold and 𝐹̄, 𝐹𝑑 are
chosen such that 𝐴0 = 𝐴 + 𝐵𝐹̄ and 𝐴 + 𝐵𝐹𝑑 is Hurwitz,
then the controller

¤̄𝜇𝑖 (𝑡) = (𝐴 + 𝐵𝐹̄) 𝜇̄𝑖 (𝑡), 𝜇̄𝑖 (0) = 𝜇̄𝑖,0

𝜇̄𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝜇̄𝑖 (𝑡𝑖 𝑗 [𝑘]) −
1
𝜈

e𝐴0𝜏𝑖 𝑗 [𝑘 ]
∑︁

𝑙∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]
( 𝜇̄𝑖 (𝑠𝑘) − 𝜇̄𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) + (𝐹̄ − 𝐹d) 𝜇̄𝑖 (𝑡)
(8)

solves Ps for all heterogeneous and time-varying transmis-
sion delays satisfying A 3.

Proof: Consider first the aggregate delay-free state on
the sequence {𝑠𝑘}, denoted by 𝜇̄𝐷𝐹 (𝑠𝑘). If A 2 holds, we
know by Theorem 2.1 that 𝜇̄𝐷𝐹 (𝑠𝑘) → Im 𝟙𝜈 ⊗ 𝐼𝑛, and
by Proposition 2.2 that it gets closer to that set along the
sequence {𝑘 𝑝} from A 2. Applying Lemma 3.2 we know
that 𝜇̄𝑖 (𝑠𝑘+1) = 𝜇̄𝐷𝐹

𝑖
(𝑠𝑘+1) for all 𝑖 and all 𝑘; hence, both

of them approach Im 𝟙𝜈 ⊗ 𝐼𝑛 at the same rate. Since the
agreement set is an invariant set of both the continuous and
discrete dynamics of (8), this implies that

lim
𝑡→∞

∥ 𝜇̄𝐷𝐹
𝑖 (𝑡) − 𝜇̄𝑖 (𝑡)∥ = 0, ∀𝑖 ∈ ℕ𝜈 .

Applying Theorem 2.1 implies that

lim
𝑡→∞

∥ 𝜇̄𝑖 (𝑡) − 𝑥𝑖 (𝑡)∥ = 0,

hand ence the states synchronize.
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C. Implementability

Local controllers (8) are independent of the size of the
system; however, update rule (7) makes use of 𝜇̄𝑖 (𝑠𝑘).
Since the sequence {𝑠𝑘} is not assumed to be known, an
immediate question arises as to whether the control law can
be implemented. The following proposition states that it can
be using a small buffer, and details how to update this buffer
accordingly.

Proposition 3.4: The update law (7) can be implemented
using a buffer of size 1.

Proof: Each agent constructs its buffer as follows. Let[
𝑏′
𝑖
𝑡′
𝑖

] ′ denote the values of the 𝑖th buffer and correspond-
ing timestamp, and denote by 𝑡𝑖 [𝑘] the instance at which
information is received and by 𝑠𝑘 the time when it was sent.

1) If 𝑡𝑖 [𝑘] = 𝑠𝑘 , assign[
𝑏𝑖
𝑡𝑖

]
=

[
𝜇̄𝑖 (𝑠𝑘)
𝑠𝑘

]
.

2) If 𝑠𝑘 < 𝑡𝑖 [𝑘], check
a) If 𝑡𝑖 = 𝑠𝑘 , keep the current buffer.
b) If 𝑡𝑖 < 𝑠𝑘 assign[

𝑏𝑖
𝑡𝑖

]
=

[
e𝐴0 (𝑠𝑘−𝑡𝑖 [𝑘 ] ) 𝜇̄𝑖 (𝑡𝑖 [𝑘])

𝑠𝑘

]
.

From A 3 we know that if 𝑡𝑖 = 𝑠𝑘 then we are still in the
interval (𝑠𝑘 , 𝑠𝑘+1); hence, we need to keep the start of the
interval in the buffer. Similarly, if 𝑡𝑖 < 𝑠𝑘 , this means that
our buffer corresponds to the previous interval. Thus, there
were no jumps in [𝑠𝑘 , 𝑡𝑖 [𝑘]] and we can reconstruct 𝜇̄𝑖 (𝑠𝑘)
like we would for a regular LTI system.

IV. ILLUSTRATIVE EXAMPLE

To illustrate the proposed sampled-data protocol, consider
two cases, both comprised of 𝜈 = 3 identical agents. We
assume that communication between agents is intermittent
and asynchronous, meaning that each agent transmits only
at a subset of sampling instances. At each sampling instance
G[𝑘] is a union of any nonempty combination of the three
graphs in Fig. 2. The sampling instances, shown by abscissa
ticks on the bottom, are a random variable such that 𝑠𝑘+1 −
𝑠𝑘 ∈ 0.3ℕ6, and the induced graphs satisfy A 2. Major ticks
indicate instances where agent 1 transmits information, i.e.
corresponding to G1 in Fig. 2. The simulations were carried
out with a time step of Δ𝑡 = 1×10−3 on the time interval 𝑡 ∈
[0, 24]. For each sampling interval, ℎ𝑘 B 𝑠𝑘+1−𝑠𝑘 , a random
integer 𝑚𝑘 was drawn uniformly from the interval [1, ℎ𝑘/Δ𝑡],
generating the delay 𝜏𝑖 𝑗 [𝑘] = 𝑚𝑘Δ𝑡, thus satisfying A 3.
The major ticks at the top and corresponding dashed lines
correspond to the delayed updates originating from agent 1
to agent 2. Both examples are simulated for the same delays,
sampling sequence, and time interval.

The first simulation involves integrator agents as described
in §III-A with 𝐹d = −5. The agent’s states can be seen in
Fig. 3(a), while the difference Δ𝜇,𝑖 (𝑡) B 𝜇̄𝑖 (𝑡) − 𝜇̄𝐷𝐹

𝑖
(𝑡) is

shown in Fig. 3(b). It can be seen that indeed the agents
asymptotically agree, and that Δ𝜇,𝑖 (𝑡) repeatedly resets to
zero after each agent finishes its ”cycle” of delayed updates.

x1

x2 x3

G2

x1

x2 x3

G1

x1

x2 x3

G3

Fig. 2. The three possible graphs.

Moreover, the trajectories are piecewise constant for this case
since 𝜇̄𝑖 (𝑡) has no continuous-time dynamics as mentioned
in the proof of Proposition 3.1. The second example is

(a) Agents states.

(b) Difference between 𝜇̄ and its delay-free counterpart.

Fig. 3. Simulations for the example with 𝐴 = 𝐴0 = 0.

comprised of identical agents with

¤𝑥𝑖 (𝑡) =
[

4 9
1 4

]
𝑥𝑖 (𝑡) +

[
2
1

]
𝑢𝑖 (𝑡)

trying to synchronize to 𝐴0 =
[ 0 1
−1 0

]
. In this case

𝐹̄ = −
[

2 4
]

and 𝐹d =
[
−34.6 39.2

]
satisfy the requirements of Theorem 3.3. The components
of the agents’ state are shown in Fig. 4, and those of Δ𝜇,𝑖

are shown in Fig. 5. Once more, we can see that the agents’
states synchronize to a common trajectory as in Ps with 𝐴0
corresponding to a sine wave with frequency 1. Furthermore,
we again see that the difference between the delayed and
delay-free system resets repeatedly after each ”cycle” ends,
and that the amplitude of the mismatch decays as the updates
drive the systems closer to the agreement space. Note that
this time 𝜇̄𝑖 (𝑡) is not piecewise constant between updates,
since the synchronous trajectory is not constant.

V. CONCLUDING REMARKS

In this note, we have addressed the synchronization of LTI
agents to a common time-varying trajectory while utilizing
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(a) Agents first state component.

(b) Agents second state component.

Fig. 4. The state components for the second example.

(a) The firs components of Δ𝜇,𝑖 .

(b) The second component of Δ𝜇,𝑖 .

Fig. 5. The components of Δ𝜇,𝑖 for the second example.

asynchronous communication afflicted by heterogeneous and
time-varying transmission delays. By augmenting a hybrid
controller with a special kind of predictor, we were able
to achieve synchronization under identical conditions to

the delay-free case, contingent upon transmission delays
remaining smaller than the corresponding sampling interval.
The proposed predictor does not require a-priori knowledge
of the delays or their rate of change, only that they are time-
stamped. Moreover, its design is transparent, intuitive, and
independent of the delay-free control law. The predictor can
be implemented easily using a buffer of size one without
knowledge of the sampling times, making the method imple-
mentable and scalable. The simplicity of the predictor leaves
room for many possible extensions and adjustments. Current
research focuses on extending the results to output measure-
ments, noisy measurements, and delays with uncertainty.
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