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A Unified Dissertation on Bearing
Rigidity Theory

Giulia Michieletto

Abstract—This work focuses on bearing rigidity theory,
namely, the branch of knowledge investigating the struc-
tural properties necessary for multielement systems to pre-
serve the interunit bearings under deformations. The con-
tributions of this work are two-fold. The first one consists in
the development of a general framework for the statement
of the principal definitions and properties of bearing rigid-
ity. We show that this approach encompasses results ex-
isting in the literature, and provides a systematic approach
for studying bearing rigidity on any differential manifold in
SE(3)™, where n is the number of agents. The second con-
tribution is the derivation of a general form of the rigidity
matrix, a central construct in the study of rigidity theory.
We provide a necessary and sufficient condition for the
infinitesimal rigidity of a bearing framework as a property
of the rank of the rigidity matrix. Finally, we present two
examples of multiagent systems not encountered in the
literature and we study their rigidity properties using the
developed methods.

Index Terms—Cyber-physical systems, multiagent sys-
tems, networks of autonomous agents, rigidity theory.

[. INTRODUCTION

CCORDING to the most general definition, rigidity theory

aims at studying the stiffness of a given system, understood
as areaction to an induced deformation. The origin of this branch
of knowledge dates back to Euler in 1776 [1]. In the centuries
since, rigidity analysis has been extended from geometric sys-
tems to physical structures, impacting different research areas,
ranging from mechanics to biology, and from robotics to chem-
istry (see [2] and the references therein). An outstanding result in
this research thread is the work of Asimow and Roth providing
the mathematical description of rigid systems of bars and joints

Manuscript received July 10, 2020; revised July 13, 2020, November
13, 2020, November 14, 2020, and March 5, 2021; accepted April
18, 2021. Date of publication May 5, 2021; date of current version
December 3, 2021. This work was supported in part by MIUR (ltalian
Ministry for Education) under the initiative “Departments of Excellence”
(Law 232/2016), in part by the University of Padova under the Visiting
Scientist 2019 program, and in part by the TSTARK DEI-SEED 2020
project. Recommended by Associate Editor I. Shames. (Corresponding
author: Giulia Michieletto.)

Giulia Michieletto is with the Department of Engineering and Man-
agement, University of Padova, 35122 Padova, ltaly (e-mail: giulia.
michieletto@unipd.it).

Angelo Cenedese is with the Department of Information Engi-
neering, University of Padova, 35122 Padova, ltaly (e-mail: angelo.
cenedese@unipd.it).

Daniel Zelazo is with the Faculty of Aerospace Engineering,
Technion-Israel Institute of Technology, Haifa 32000, Israel (e-mail:
dzelazo@technion.ac.il).

Digital Object Identifier 10.1109/TCNS.2021.3077712

, Member, IEEE, Angelo Cenedese

, Member, IEEE, and Daniel Zelazo

through the notion of a framework [3]. This corresponds to the
graph-based representation of the system (so that each vertex
corresponds to a joint in the structure and each edge represents
a bar connecting two elements), jointly with a set of elements
inR%, d > 2, describing the position of the corresponding units
composing the structure [3].

Recently, overcoming the standard bar-and-joints frame-
works, rigidity theory has enlarged its focus toward autonomous
multiagent systems wherein the connections among the forma-
tion elements are virtual and represent sensing relations and
capabilities, and/or collective objectives (see, for instance, [4],
[5] and the references therein). The concept of a framework
has thus been redefined by considering also manifolds more
complex than the (n-dimensional) Euclidean space. In these
cases, rigidity theory turns out to be an important architectural
property of many multiagent systems, where a common global
reference frame could be unavailable but the involved devices
are characterized by sensing, communication, and movement
capabilities. In particular, the rigidity concepts and results suit-
ably fit applications connected to the stabilization and motion
control of mobile robot formations and to sensor cooperation for
localization, exploration, mapping, and tracking of a target (see,

e.g., [6]-[12]).

A. Distance Versus Bearing Rigidity

Within the multiagent systems context, rigidity properties for
a given framework deal with agent interactions, either through
the available sensing measurements and/or through a common
objective function. From this perspective, the literature differen-
tiates between distance rigidity and bearing rigidity. These two
branches of rigidity theory in multiagent systems arose due to
the interdependence between the available sensing capabilities
in a multiagent system, and the team objective they are trying to
solve. For example, target formations specified using interagent
distances lead to distributed controllers that require agents to
gather relative position measurements [6]. Here, distance rigid-
ity theory emerges in the convergence analysis of these systems.
On the other hand, many robotic applications employ direction
or bearing-based sensors to achieve coordinated tasks. This mo-
tivates a need for objective functions defining formations using
interagent bearings, and consequently an extension of rigidity
theory to the study of bearing-constrained frameworks [11].

The principal notions about distance rigidity are illustrated
in [6], [7], [13]-[19]. These works explain how distance con-
straints for a framework can be summarized into a properly
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defined matrix whose rank determines the rigidity properties
of the system analogously to the case of frameworks embedded
in R<. In such a context, it turns out to be useful to consider the
given multiagent system as a bar-and-joint structure, where the
agents are modeled as particles (joints) in R¢, and the pairs of
interacting devices can be thought as being joined by bars whose
lengths enforce the interagent distance constraints.

Bearing rigidity in R? (also named parallel rigidity [20]) is
instead determined by normal constraints over the directions of
interacting devices, namely, the edges of the graph associated
to the framework, as explained in [21]-[24]. These constraints
entail the preservation of the angles formed between pairs of
interconnected agents and the lines joining them, i.e., the inter-
agent bearings. Similar interagent direction constraints can be
stated to access the rigidity properties of frameworks in R? with
d > 2, where the bearing between two agents coincides with
their normalized relative direction vector [10], [11], [25]-[27]. In
both cases, the agents are modeled as particles, and the necessary
and sufficient condition to guarantee the rigidity properties of a
given framework rests upon the rank of a matrix summarizing
the involved constraints.

Dealing with a more realistic scenario, in [28]-[31] bearings
are assumed to be expressed in the local frame of each agent
composing the framework. This implies that each device in the
group is modeled as a rigid body having a certain position and
orientation with respect to a common global frame which is
generally unavailable to the group. In particular, in [28] the
attention is focused on multiagent systems acting in the plane,
in [29] and [30] the study is extended to the 3D space although
limiting the agents attitude kinematics to rotations along only
one axis, while in [31] and [32] fully actuated formations are
considered by assuming to deal with systems of agents having six
controllable degrees of freedom (DOFs). The recent works [33],
[34] have also established connections between rigidity and
nonlinear observability of dynamic systems: Analogously to the
former cases, the rigidity properties of the multiagent systems
are studied through the spectral analysis of a matrix that naturally
appears in the observability one. However, such an approach
abstracts many concepts that are taken into account in this work,
as the underlying graph of a framework and the manifold it is
embedded in.

B. General Framework and Unified View of Bearing
Rigidity

In the past, distance rigidity has been deeply investigated from
the theoretical perspective and the related multiagent systems ap-
plications are nowadays copious, mainly focusing on formation
control and localization (see, e.g., [35]—[38] for a comprehensive
overview). Bearing rigidity theory, instead, has been developed
only recently, gaining popularity in the last years as a multiagent
systems control strategy.

Motivated by the similarities emerging from the existing
literature, the first contribution of this work proposes a unified
and general framework for a bearing rigidity theory. This allows
to understand the similarities and differences of the current state-
of-the-art results. To this end, Table IT in Section V-A provides a

comprehensive overview of the principal features of the bearing
rigidity theory for frameworks defined on different domains,
while in Section VI two examples are given to demonstrate
this approach for frameworks that to our knowledge do not
appear in the literature. A distinguishing feature of this contri-
bution is the explicit consideration of frameworks over directed
graphs. Rigidity theory for directed frameworks remains vastly
unexplored, with some early results for distance constrained
frameworks given in [14], and this work aims to provide a formal
foundation for approaching this topic for bearing frameworks.
This unified view reveals that all notions of bearing rigidity
are related through the so-called rigidity matrix. The second
contribution of this work consists of deriving a general form for
the rigidity matrix that is predictive in the sense that its structure
is completely determined by the configuration and interaction
graph of the multiagent system. We then provide a necessary
and sufficient condition relating the rank of the rigidity matrix
to rigidity properties of a given multiagent system, for any agent
domain.

The rest of the article is organized as follows. Section II
summarizes basic notations and background on graph theory.
Section III is devoted to the general definition and properties
of bearing rigidity theory. The main results that presented the
unified framework for bearing rigidity is given in Section IV.
Section V discuses the results in the context of homogeneous
formations, and two case studies are given in Section V1. Finally,
Section VII is devoted to a brief discussion about colinear for-
mation cases, and Section VIII concludes this article. Appendix,
lastly, provides the proof of an auxiliary theoretical result.

[I. PRELIMINARIES AND NOTATION

A graphis an ordered pair G = (V, £) consisting of the vertex
setV = {v;...v,}andtheedgesetE = {e1...en} CV XV,
having cardinality |V| = n and || = m, respectively. We dis-
tinguish between undirected, directed, and oriented graphs. An
undirected graph is a graph where edges have no orientation;
thus, e, = (v;,v;) € € is identical to e, = (vj,v;) € €. Con-
trarily, a directed graph is a graph where edges have orientation
so thattheedge e, = (v;,v;) € Eisdirected fromv; € V (head)
tov; € V (tail). An oriented graphis an undirected graph jointly
with an orientation that is the assignment of a unique direction
to each edge, hence only one directed edge (e, = (v;,v;) or
en = (v, v;)) can exist between two vertices v;, v; € V.

For any graph G = (V, £), the corresponding complete graph
K = (V, &) is the graph characterized by the same vertex set
V, while the edge set consists of all pairs of distinct vertices.
Thus, for undirected graphs |Ex| = n(n — 1)/2, and for directed
graphs |Ec| = n(n —1).

For a directed/oriented graph, the incidence matrix E €
R™*™ is the {0, +-1}-matrix defined as

—1, ifeyp = (vi,v;) € € (outgoing edge)
[E]zk = 1)
0, otherwise

if e, = (vj,v;) € € (ingoing edge) (1)
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and, in a similar way, the matrix E, € R™*™ is given by

—1, ifex = (vi,v;) € € (outgoing edge)

(Eolix = .( i) 2
0, otherwise.

We introduce also the matrices E = E ® I, € R¥*dm apd
E, =E, ®I; € R¥*9m where ® indicates the Kronecker
product, 1 is the the d-dimensional identity matrix, and d > 2
refers to the dimension of the considered space.

The d-sphere, i.e., the unit sphere embedded in RA+1 g
denoted as S¢. We recall that the 1D manifold S* (corresponding
to the unit circle) is isomorphic to the special orthogonal group
SO(2) = {ReR?2 | RR" =1y, det(R) = +1} which can
be parametrized by a single angle « € [0,27). The special
orthogonal group SO(3) = {ReR?*3 | RR" =I3,det(R) =
1}, instead, is not isomorphic to the 2-sphere S2, but it holds
that S? = SO(3)/SO(2). In addition, the Cartesian product
R? x SO(d) corresponds to the special Euclidean group SE(d).

The vectors of the canonical basis of R? are indicated as
e;, 1 € {1...d}, and they have a one in the ith entry and zeros
elsewhere. We denote with 0, and 1,4 the vectors in R¢ having all
the entries equal to zero and one, respectively, whereas 04, x4, €
R91%42 jg the matrix having all the entries equal to zero. Given
x € RY, its Buclidean norm is referred as ||x||. We define the
orthogonal projection operator as

XXT

:Id*ﬁ 3

ESINIEN|

P:RY -5 R P (x)

that maps any (nonzero) vector to its orthogonal complement.
Hence, P(x)y indicates the projection of y € R onto the or-
thogonal complement of x € R?. Given two vectors x,y € R3,
their cross product is denoted as x X y = [x]|xy = —[y]«xX,
where the map [-] : R? — s0(3) associates each vector x € R3
to the corresponding skew-symmetric matrix belonging to the
special orthogonal algebra so(3).

Given a matrix A € RP*9, AT ¢ RI*P represents its trans-
pose and its null space and image space are denoted as ker(A)
and Im(A), respectively. The dimension of Im(A) is indi-
cated as rk(A), whereas null(A) stands for the nullity of the
matrix, namely, null(A) = dim(ker(A)). For the well-known
rank—nullity theorem it is rk(A) = ¢ — null(A) . In addition,
it holds that tk(A) = rk(A"). In the rest of the article we use
the notation diag(Aj) € R™*"? to indicate the block diagonal
matrix associated to the set {A; € RP*9}_,.

Finally, given the function f : X — ) and the sets A C X,
and B C Y, then f(A) = {f(z) € Y : x € A} is called the im-
age of Aunder f,and f~1(B) = {z € X : f(x) € B} is called
preimage of B under f.

Ill. BEARING RIGIDITY: DEFINITIONS AND PROPERTIES
In this section we introduce the main concepts related to
bearing rigidity theory.
A. Framework Formation Model

Consider a generic formation of n > 3 agents, wherein each
agent is associated to an element of the differential manifold

D; C SE(3),i € {1...n},describing its configuration and mo-
tion constraints'. In detail, introducing a global frame common
(but not necessarily available) to all the agents in the group, the
configuration x; € D; of the ith agent coincides with its position
when modeled as a particle, or with the pair of its position and
(partial/full) attitude, i.e., with its (partial/full) pose, when the
rigid body model is assumed. We now introduce the notion of a
framework.

Definition 1 (Framework in D): A framework embedded in
the product differential manifold D = [[;_, D;C SE(3)" is
an ordered pair (G, x) consisting of a (directed or undirected)
graph G = (V,&) with [V| =n, and a map x : V — D, such
that v; — x(v;) := x; € D;. Wereferto x = (x1...xn) €D
as the formation configuration.

The framework model characterizes a formation in terms
of the agent configuration, where x can be thought of as an
embedding of the graph into D, and the agents are associated
with nodes in the graph. In the study of bearing rigidity, we
are interested in the bearing vector between pairs of agents that
are connected by an edge in G. Note that G can be directed or
undirected. In rigidity theory, it is typically assumed that the
graph is not time-varying, and we adopt this assumption here.

We introduce also the following definitions on formations.

Definition 2 (Noncolinear Formation): An n-agent forma-
tion modeled as a framework (G, x) in D is noncolinear if all
agents are in distinct positions and do not lie along the same line
in the global frame.

Definition 3 (Homogeneous Formation): An n-agent for-
mation modeled as a framework (G, ) in D is homogeneous if
D; =D Vi e {1...n}, hence D = D". Otherwise, the forma-
tion is heterogeneous.

Hereafter, we focus on noncolinear formations, albeit the
colinear case is discussed in Section VII. Note that, for a non-
colinear homogeneous n-agent formation, the (n x d) matrix
describing the agents position in R? is of rank greater than 1.

Although the stated assumptions regard the agents state and
motion constraints, for a given formation the bearing rigidity
properties are related to the bearing vector between neighboring
agents. According to the framework model, every edge e, =
eij = (vi,v;) € € (|| = m) represents a bearing measurement
by, = b;; defined in the differential manifold M, C S? and
recovered by the ith agent which is able to sense the jth agent,
i,j € {1...n},i # j. The bearing measurements domain can
now be expressed as M = [T, My C S?™_ For homogeneous
formations, itis M = M™ with M}, = MVk € {1...m}.The
available measurements can be expressed in the global frame
or in the local frame in-built with each agent/node (and, thus,
defined according to D;). However, in both cases, these are re-
lated to the framework configuration according to the following
definition, where an arbitrary edge labeling is introduced.

Definition 4 (Bearing Function): Given an n-agent forma-
tion modeled as a framework (G, x) in D, the bearing function
isthemap bg : D — M associating the formation configuration

'Here, we focus on real world scenarios, nonetheless the definitions and
properties provided in the following are valid also for the case D; = R? with
d > 3 discussed, e.g., in [26]
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Fig. 1. Graphical interpretation of condition (4).

_ T _
X € Dtothe vector bg(x) = [blT b;} € M, stacking all

the available bearing measurements.

Observe that the bearing function determines the shape of the
formation in terms of relative pose among all the agents. One
of the central questions in bearing rigidity theory is if a given
formation with its bearing function uniquely defines the shape.
This will explored in the sequel.

Hereafter, the framework model is adopted to refer to an n-
agent formation (implying n > 3) and the two concepts (frame-
work and formation) are assumed to be equivalent.

B. Rigidity Properties of Static Frameworks

Definition 4 allows to introduce the first two notions related
to bearing rigidity theory, namely, the equivalence and the con-
gruence of different frameworks.

Definition 5 (Bearing Equivalence): Two frameworks (G, )
and (G, \') are bearing equivalent (BE) if bg(x) = bg(x').

Definition 6 (Bearing Congruence): Two frameworks (G, x)
and (G, ') are BCif bic(x) = br(x’'), where K is the complete
graph associated to G.

Accounting for the preimage under the bearing function,
the set Q(x) = by Y(bg(x)) € D includes all the formation
configurations X' € D, such that (G, x’) is BE to (G, x), while
thesetC(x) = bi' (bx(x)) C D contains all the formation con-
figurations ' € D, such that (G, x') is BC to (G, x). Trivially,
it follows that C(x) C Q(x).

The definition of these sets allows to introduce the (local and
global) property of bearing rigidity.

Definition 7 (Bearing Rigidity in D): A framework (G, x) is
(locally) bearing rigid (BR) in D if there exists a neighborhood
U(x) C D of x, such that

Q(x)NU M) =Cx)NU(x)- “)

Definition 8 (Global Bearing Rigidity in D): A framework
(G, x) is globally bearing rigid (GBR) in D if every framework
which is BE to (G, x) is also BC to (G, x), i.e., Q(x) = C(x)-

Fig. 1 provides a graphical interpretation of condition (4)
highlighting the relation between the sets Q (), C(x), and U (x).
The existence of a neighborhood in the configurations space
is not present in Definition 8 of global bearing rigidity. As
a consequence, this property results to be stronger than the
previous one as proved in the next theorem.

Proposition 1: A GBR framework (G, x) is also BR.

Proof: For a GBR framework (G, x), it holds that Q(x) =
C(x). Consequently, condition (4) is valid fori/ () = D demon-
strating that the framework is BR. ]

C. Rigidity Properties of Dynamic Frameworks

All the properties previously defined concern rigidity for
static frameworks. In real-world scenarios, however, agents are
generally able to move with or within a formation, and, thus,
to change their configuration. Here, the motion constraints are
captured by the configuration space D; of each agent. For this
reason, in this section we assume to deal with dynamic agent for-
mations, namely, formations modeled as frameworks (G, x) with
fixed sensing graph G and y subject to a deformation implied
by the variation of the single agent configuration. Formally, we
consider the motion of an agent along a curve in its configuration
space parameterized by a variable ¢ € [0, 1]. Thus, we have that
Xi = Xi(t) € Diand x = x(t) = {xa(t) ... xn(t)} € D.

In this context, we introduce the variation &; defined in the ith
agent variations domain Z;, depending on the 7th agent motion
constraints. In particular, we assume that

dx;(t)
dt

= filxi(t),04),

where f; : D; x Z; — D; is a continuous function. Accounting
for the whole formation, we can stack all §; into a vector § €
7, where Z = H?:l Z; is the variations domain. Note that, for
homogeneous formations, we have Z; = Z, and thus, 7=1".
Hereafter, we interpret the variable ¢ as a time variable and
as the vector of commands acting on the formation to attain the
desired evolution from an initial formation configuration x(0)
to a final one y(1).

Given this setup, our aim is to identify the conditions under
which a given dynamic formation deforms while maintaining its
rigidity features, i.e., preserving the existing bearings among the
agents over time. The relation between § and the derivative of the
bearing function, clarified in the next definition, constitutes the
starting point for the study of the formation rigidity properties.

Definition 9 (Bearing Rigidity Matrix): For a given (dy-
namic) framework (G, x(t)), the bearing rigidity matrix is the
matrix Bg(x(t)) that satisfies the relation

d

= 2Pa(x(t)) = Bg(x(1))d.

bg (x()) )

Indeed, Bg(x(t)) can be interpreted as a Jacobian matrix
within a differential geometry perspective, whose dimensions
depend on the spaces M and Z. Nevertheless, one can observe
that the null space of Bg(x(t)) always identifies all the (first-
order) deformations of x(t) that keep the bearing measurements
unchanged, following from the Taylor series expansion of the
bearing function. From a physical perspective, such variations
of (G, x(t)) can be interpreted as sets of command inputs to
provide to the agents to drive the formation from an initial
configuration x(0) to a final one x(1) belonging to the set
Q(x(0)) of equivalent formation configurations. Note that the
existence of such paths further implies a smooth mapping from
x(0) to x(1), and in this sense, d can be interpreted as an
instantaneous velocity [39].

Definition 10 (Infinitesimal Variation): For a given (dy-
namic) framework (G, x(t)), a variation § € Z is infinitesimal
if and only if § € ker(Bg(x(t))).
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It directly results from (5) that an infinitesimal variation pre-
serves the bearing measurements among all interacting agents.
Foragiven (G, x(t)), there may be many infinitesimal variations.
However, there exist infinitesimal variations that hold for any
graph. This follows from the next result.

Theorem 1: Given a dynamic framework (G, x(t)), and de-
noting as K the complete graph associated to G, it holds that
ker(Bie(x(t))) € ker(Bg(x(1)))-

Proof: Since each edge of the graph G belongs to the graph
IC, the equations set Bg(x(t))d = 0,, constitutes a subset of the
equations set Bic(x(t))d = 0,, with u depending on M. Then
d € ker(Bx(x(t))) implies § € ker(Bg(x(¢))). [ |

In light of Theorem 1, we introduce the notion of trivial vari-
ations by considering the infinitesimal variations related to the
complete graph /C. These ensure the measurements preservation
for each pair of nodes in the formation, i.e., the formation shape
preservation in terms of relative poses among the agents.

Definition 11 (Trivial Variation): For a given (dynamic)
framework (G, x(t)), a variation § € Z is trivial if and only
if 0 € ker(By(x(t))), where Bic(x(t)) is the bearing rigidity
matrix computed for the complete graph K associated to G.

Theorem 1 is fundamental for the next definition that consti-
tutes a key concept in rigidity theory.

Definition 12 (Infinitesimal Bearing Rigidity in D): A (dy-
namic) framework (G, x(t)) is infinitesimally bearing rigid
(IBR) in D if ker(Bg(x(t))) = ker(Bx(x(t))). Otherwise, it
is infinitesimally bearing flexible (IBF).

From a physical point of view, a framework (G, x(t)) is IBR if
its trivial variations set Sy := ker(By(x(t))) coincides with its
infinitesimal variations set S; := ker(Bg(x(t))). A variation in
the set S; (S;) induces a deformation of the configuration x(0)
into x (1) that is bearing equivalent (congruent) to the initial one.
Thus, for an IBF framework, there exists at least a variation that
deforms the configuration x(0) to x(1) € Q(x(0)) \ C(x(0)).

In the rest of the article, we limit our analysis to the dynamic
framework case, and whenever it is possible, the time depen-
dency is dropped out to simplify the notation.

[V. UNIFIED RIGIDITY THEORY

Many of the existing works on the bearing rigidity begin
their analysis with a statement of the agent configuration space.
The rigidity results are then derived, not in generic terms, but
explicitly as a function of the chosen configuration space. A
consequence of this approach is the need to rederive and redefine
rigidity concepts. In this section, we show that stemming from
the general setup given in Section III, we are able to unify the
study of bearing rigidity that holds for any D inside SE/(3)". The
main realization is that any agent can be interpreted as a rigid
body acting in 3D space with constraints on its motions (i.e.,
constrained to move on a differential manifold inside SE(3)").
This approach leads to a general and constructive form for the
rigidity matrix and a necessary and sufficient condition relating
infinitesimal bearing rigidity to the rank of this matrix.

We consider a formation, where each ith agent, i € {1...n},
is associated to a set of bearing vectors related to its neighbors
defined by the graph G. An agent can vary its configuration

within D; consisting of ¢! € N translational DOFs (TDOFs)
and ¢/ € N rotational DOFs (RDOFs), where ¢; = ¢! 4 ¢! is
the dimension of the differential manifold D;. In this work we
consider D; in SE(3), so ¢! and ¢ are limited in [0, 3].

Independently of ¢;, each agent in the group can be modeled
as a rigid body and associated to a local reference frame F;
whose origin O, coincides with the agent center of mass. At each
time instant ¢ > 0, it is thus possible to describe the pose of the
agent in the 3D space through the pair (p;(t), Ri(t)) € SE(3),
where the vector p;(t) = {pf(t) pY(t) pf(t)]T € R? iden-
tifies the position of O; in the global frame %y, and the matrix
R;(t) € SO(3) defines the orientation of .%; with respect to
Fw . In particular, supposing that the (unit) vectors e;, € S2,
h € {1,2, 3} identify the axes of the global frame, we assume
that R;(t) = R({0; n(t),en}?_,) meaning that R;(f) results
from the composition of three consecutive rotations, each of
them performed around e;, of an angle 6, 5, (¢), according to a
suitable sequence.? The parameter c;, on the other hand, is intrin-
sically related to the dimension of D;, and x; may not necessarily
coincide with the whole pair (p;(¢), R;(t)). Specifically, when
¢; < 6, the agent can vary its pose in 3D space only partially.

In light of Section I1I, the described formation can be modeled
as a framework in D C SE(3)". Under the assumption that
agents do not have access to a global frame, G is a directed
graph encoding that bearings are inherently expressed in the
local frames and are not necessarily reciprocal between pair of
agents. Hence, the directed edge e, = (v;,v;) € & refers to the
bearing of the jth agent obtained by the ¢th agent. This can be
expressed in terms of the relative position and orientation of the
agents in .7y, namely

bi(t) = bi;(t) = R (t)si;(t)pi; (t) = R} ()pis(t)  (6)

where p;; (t) = p;(t) — pi(t) € R%is the relative position vec-
tor, and s;;(t) = ||pi;(t)]| ! € R is the inverse of the relative
distance between the ith and jth agent.

To treat in a unified way multiple domains, we can consider
the embedding® of each D; into the SE(3) manifold, thus
considering the given formation as a framework (G, x(¢)) in
SE(3)". Observing (6), we embed M into S and, according
to Definition 4, the bearing function can be expressed as

by (x(t)) = diag(si; ()R] (1)) ETp(t) € S*™ (1)

.
where p(t) = {p?(t) : pZ(t)} € R3" stacks all the agent

position vectors. Consistently, the variations domain Z can be
embedded in R®™ and thus, the vector § can be substituted by

5t = [J;JI]T € RS ®)

where 8, € R3" and &, € R3" are defined by padding with
zeros the corresponding components of § related to the possible
variations of the agents position and attitude, respectively.

This allows to introduce the following definition.

2This reasoning remains valid for any representation of 3D rotations.
3Hereafter, a superscript + is used to highlight the vectors defined in the lifted
spaces.
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Definition 13 (Extended Bearing Rigidity Matrix): For a
given framework (G, x(t)) embedded in SE(3)", the extended
bearing rigidity matrix is the matrix B (x(t)) € R3™*%" that

satisfies the relation
bg (x(t)) = bg (x(t)) =BG (x(1)3™
Note that since bg(x(#))T can be interpreted as the zero-
padded version of the vector bg(x(t)) in (6), the relation (9)
corresponds to (5) when accounting for the embedding of D; in
SFE(3). The consistency between Bg(x(t)) and Bg(x(t))T is
guaranteed by the emergence of zero rows in the latter. Along
the same line, we also observe that (8) induces a partition of
B/ (x(t)) into two blocks, distinguishing between the bearing
variations due to the variations of the agents position and orien-
tation, as formalized in the next proposition.
Proposition 2: The extended bearing rigidity matrix in Defi-
nition 13 can be expressed as

d €))

Bg(X(t)) = [Dp(t)UET Da(t)VE;r:| c R3m><6n (10)

where
1) D,(t),D,(t) € R3™*3™ are derived from the orthogo-
nal projections of relative position and attitude

D, (t) = diag(si; (R ()P (pi; () (11)
D,(t) = —diag(R; (t) [pi; (1)],) (12)

2) U = diag(U;;) € R¥™3™ and 'V = diag(Vy;) €
R3™*3™ take into account the (time-invariant) matrices
U;;, V,; € R3*3 defining, respectively, the translational
directions of the bearing measurement b;; and ¢th and
jth agents rotation directions in the 3D space with respect
to the ¢th agent frame;

3) E,E, € R33™ are derived from the (time-invariant)
incidence matrix of the graph G.

Proof: According to Definition 13, the extended bearing
rigidity matrix BY (x(t)) has to map the vector 67 € R%" to
the derivative of the bearing function. By applying the product
rule to (7), it follows that:

b (1)) = ( fydios(sss (1) ) dins(R] ()BT (1)
+ ding(s(0)  dine(R] () ) B7p()

+ ding (s (1)) ding(R] (1)ET Tp(t).  (13)

In light of (8), it is possible to distinguish the measurements
variations induced by the variations of the agents position d,,
or attitude &,: The former contribution refers to the first and
third addendum in (13), while the latter contribution is related
to the second one. Accounting for the agents dynamics when
embedded in SE(3), equation (13) can then be rearranged

as
bj (x(t)) = D,(t)UETS, + D,(t)VE] S,  (14)

where UET, VE| € R3™*3" Jink the bearing measurements
variations to the agents variations. In detail, the first addendum

in (14) includes the product of three matrices: The matrix E'T
translates the variations of the agents’ position into relative po-
sitions (which are scaled bearings), the block matrix U embeds
the variation of each bearing in the manifold S2 and, finally, the
block matrix D,,(¢) accounts for the projection of each bearing
b;; in the 7th agent local frame. An analogous reasoning can be
carried out for the second addendum in (14), where D, (t) acts
similarly to D,,(¢) since the skew matrix of the relative position
vector is an orthogonal matrix. ]

For any framework in D C SE(3)", Proposition 2, thus,
provides a construction method and a general structure for the
bearing rigidity matrix that can be decomposed into a part related
to the formation configuration ( D, (¢) and D,(t)), and a part
related to the graph ( E and E,). While not the focus of this work,
this structure may also assist in understanding the combinatorial
interpretation of certain rigidity properties. We then observe that
the structure of U and V induces a level of sparsity in the
extended bearing matrix, which may result in the presence of
some null columns and null rows.

The embedding of D in SE(3)™ implies two facts. On one
hand, both the infinitesimal and the trivial variations sets can be
lifted from Z into R®™, thus considering the corresponding sets
S;"and S;, such that |S;"| = |S;| = ¢; and |S;"| = |S;| = ;.
These new sets are related to the null space of the matrices
B (x(t)) and By (x(t)). Indeed, we first observe that S;" C
ker (BJ (x(t))) and S;" C ker (B (x(t))) since the extended
bearing rigidity matrix can differ from the rigidity matrix be-
cause of the emergence of zero columns in correspondence
of zero entries of the vector 6. This fact also justifies the
presence of other vectors in the null space of both B (x(t))
and B (x(t)): These are characterized by zero and nonzero
entries in correspondence to nonzero and zero entries of &7 .
In addition, because Bj:(x(¢)) includes additional rows as
compared to B (x(t)) while the structure of the two matri-
ces is the same in terms of zero columns, we conclude that
ker (BS (x(1))) = S;" ® S and ker (B (x(1))) = S;" ® S
The set S;F, whose cardinality ¢, = |S;/| corresponds to the
number of null columns in B (x(t)), represents the set of the
virtual variations of the evaluated formation and it includes the
command inputs inducing variations of the agent configuration
that do not affect the bearing measurements but that are also not
allowed by the physical constraints on the agents dynamics. On
the other hand, since the measurements domain M is also lifted
into S*™, g, null rows may characterize B (x(t)) in corre-
spondence to the the zero entries added to the vector bg(x(t))
in order to derive bg(x(t)). We finally provide a rank condition
on the extended bearing rigidity matrix that guarantees the
infinitesimal rigidity of the corresponding framework embedded
in any D.

Theorem 2: A noncolinear n-agent formation modeled as a
framework (G, x(¢)) in an arbitrary differential manifold D is
IBR if and only if rk(BJ (x(t))) = rk(Bj (x(t))).

Proof: Because rk(B})=6n—q, —¢ and rk(B{)=
6n — gy — qq. it holds that rk(B} (x(t))) = rk(Bj (x(t))) if
and only if ¢; = ¢;. Due to Theorem 1, the last equivalence is
guaranteed if and only if ker(Bg(x(t))) = ker(Bx(x(¢))), i.e.,
the framework is IBR. |
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TABLE |
PARTICULARIZATION OF THE STRUCTURE OF THE EXTENDED
BEARING MATRIX IN (10) FOR THE DIFFERENTIAL MANIFOLDS CONSIDERED

IN SECTION V-A
[ D ] pi \ R; [ Uy [ Vi |
[ SEG) [ » 1" [ R{0nM),enti_)) | I3 ‘ I3 |
3
R3 xSU | [prop! p]T | R(G:i(1),v),v="> vpen I3 [03x2 V]
h=1
R? x 8" | [pr p! 07 R (0:(t), e3) [e1 2 03] | [03x2 e3]
R3 [y »} PﬂT I3 I3 03x3
R? [P; Pf’ O]T I3 [91 ez 03] 03«3

V. INSIGHT INTO HOMOGENEOUS FORMATIONS

In this section, we deal with homogeneous n-agent formations
as described in Definition 3, further assuming that all the agents
are able to translate and/or rotate around the same directions in
the global frame .%yy . In this case, we have that ¢! = ¢* and ¢} =
¢", hence ¢; = ¢Vi € {1...n}; furthermore, ¢t = Y ;- ; ¢; =
cn represents the total DOFs of the formation corresponding
to the dimension of the variation domain Z. We first focus on
bearing rigidity theory for frameworks embedded in different
differential manifolds according to the existing literature and
we show that expression (10) fits for all the considered cases
(Section V-A). Along this line, Table I specifies the variables
introduced in Section IV for the considered manifolds. Then, we
take into account the IBR condition of Theorem 2 and we discuss
the relations between the properties of bearing rigidity, global
bearing rigidity, and infinitesimal bearing rigidity (Section V-B).

A. Manifolds Realizations

We recast the results from the literature about bearing rigidity
for various domains with the common notation proposed in
Section III. Table II summarizes the results presented here,
anticipating also the IBR condition discussed in the sequel. Time
dependency is dropped out for easing the readability.

1) Bearing Rigidity Theory in R?: When D = R?, d ¢
{2, 3}, the attention is focused on formations of n agents wherein
each element is modeled as a particle and its configuration coin-
cides withits positionp; € R%,i € {1...n},inthe global frame
Zw that is assumed to be known by all the agents. Each element
of the group is, thus, characterized by ¢* = d € {2,3} TDOFs
and ¢” = 0 RDOFs. Such frameworks, studied in [26], represent
a suitable model, for example, for teams of mobile sensors inter-
acting in a certain (two-dimensional or three-dimensional) area
of interest. Here, the framework model (G, ), when D = R,
the formation configuration x is associated to the positions

vector p = [p? e pﬂ ! € R, and the graph G is undirected
since the particle choice allows to assume bidirectional agent
iterations, meaning that neighboring agents are able to recip-
rocally recover bearing measurements. Following the results
from [26], the bearing rigidity matrix can be expressed as

Bg (x) = diag(s;;P (p;;))E" € R (15)

Furthermore, given a (noncolinear) n-agent formation mod-
eled as a framework (G, x) in R4 it is possible to prove (see
[26, Lemma 4] and Theorem 5 in Appendix) that its trivial

variation set coincides with the (d + 1)-dimensional set

S =span{l, @ I;,p} (16)

describing the translation and uniform scaling of .
Accounting for Section IV, we observe that for D = R4,
independently on d € {2,3}, each agent in the group can be
modeled as arigid body having fixed attitude. From a mathemat-
ical perspective, this means that R; = I3Vi € {1...n}, and that
V.; = 033 for every bearing measurement both for d = 2 and
d = 3.0Onthe other hand, in correspondence to all the edges of G,

it trivially holds that U;; = [el e 03} when d = 2 (embedding

R?intoR¥*)and U;; = I3 whend = 3.Hence, D, in (10) results
to be a null matrix, while D,, corresponds to the bearing rigidity
matrix (15). Analyzing then the null space of B (x) as in (10),
the virtual trivial variations result to be ¢, = 4n when d = 2
and ¢, = 3n when d = 3 and these corresponds to the three
rotational movements, in addition to the translation along the
z-axis of the 3D global frame for the d = 2 case.

2) Bearing Rigidity Theory in R x S': In a formation
wherein each agent configuration is defined in R? x S', d €
{2, 3}, the n components are all characterized by ¢! = d TDOFs
and ¢” = 1 RDOF controllable in a decoupled way. This is, for
instance, the case of teams of unicycle-modeled ground robots
(d=2) or of standard underactuated quadrotors (d=3) whose
controllable variables are the position and the yaw angle. The
described formation can be modeled as a framework (G, x) in
D = (R? x S*)™. In this case, y is associated to both the posi-

.

tions vector p = {plT . pﬂ € R and the attitudes vector
T

0= {91 . 94 € [0, 27)™, while the graph G is directed, since

we assume that agents do not have access to the global frame.
Basing on [28], the bearing rigidity matrix can be written as

Bg (x) = [DpET DGEZ] g dmx(dtn (17
where E € R¥xdm E_ c R™*™ gre derived from G and
D, = diag(s;;R; P (pi;)) € R ™ if d € {2,3},
. —di RT*L Rdmxm ifd=2
D, = et Py € P (18)
—diag(R; [pij], v) € R™™ if d = 3.

In (18), pj; = R(3)pi; € R%, R(3F) € SO(2) is the (unit)
vector perpendicular to p;; on the plane, while R, € SO(d)
identifies the orientation of .%; with respect to .y . For a
formation on a plane (d = 2), the orientation of each agent is
(completely) specified by an angle that is univocally associated
to a rotation matrix R; = R(6;) € SO(2), whereas for the 3D
case (d = 3), R; = R(0;,v) € SO(3) denotes the rotation of
angle §; € [0, 2) around the (unit) vector v = >3 _ v, with
v, € R, identifying a fixed direction in Fyy.

The trivial variations coincide with the translation and uni-
form scaling of the entire configuration, jointly with the coordi-
nated rotation, namely, the equal rotation of all the agents jointly
with the equal rotation of the whole formation around its center.
The coordinated rotation subspace R is formally determined
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TABLE Il
SUMMARY OF THE PRINCIPAL NOTIONS RELATED TO BEARING RIGIDITY THEORY FOR THE DIFFERENTIAL MANIFOLDS CONSIDERED IN SECTION V-A

‘ i-th agent properties [

n-agent formation properties ‘

‘ D ‘ Xi ‘ M ‘ bi; ‘ T ‘ 3 ‘ IBR condition ‘
i ]Rd —
RO 4 23) | e ooy | S| Pu | R =7 . ol th (Bx () = dn—d — 1
2, gl p; € R%,0; € [0,2) 1 T 3n _ T Sp=1[p .- pi] _ 3,
Bxs (2 tdofs + 1 rdofs) S| Ripy | R o=[o] a]” 5T | k(Be()=dn—d
3 1 pi € R3,0; € [0,2n) 2 T an _ T Op=[p] ~<PTTL]T — 4
BExs (3 tdofs + 1 rdofs) s Ri'py | R =[5, 6d S — [T . 61]7 rk (B (x)) =4n — 5
s 5 | Pi €RLR€500) [ o 5 | Ron | 5 T Gp=[p] - pi]" —6n—
R x 50(3) (3 tdofs + 3 rdofs) § | Ripy | R 8=[o &) 5T v k(B () = 6n -7
as includes its linear velocity p; € R? and its angular velocity
(I, © R (7/2)) w; € R3, both expressed in .Zy . Given these premises, it is thus
span " p] } , ifd=2 possible to prove that the bearing rigidity matrix, belonging to
Res = 1. (19) R3™*6" turns out to be
span (e .)p ifd=3 ; TP (5. . VET : T o BT
P 1, ’ - Bg (x) = |diag(s;; R, P (pi;))E' —diag(R; [py], )E, | -

and, since dim(R ) = 1ford € {2, 3}, the trivial variations set
has dimension ¢; = d + 2. This formally results

Adopting the unified view of Section IV, it is convenient
to distinguish between the differential manifolds R? x S =
SE(2) and R? x S!. Indeed, in the first case (d = 2), as-
suming that the formation evolves on the (zy)-plane of .Fy,

1n @ Id

0, (20)

S; = span {

identified by e; x ey, we have that U;; = [el ey 03} for all

the measurements, and that R; = R(6;,e3) Vi € {1...n}, ac-
cording to the axis-angle representation R(,-) of a 3D rota-

tion, hence, V;; = |:03><2 63:| in correspondence to any edges
of G. In the second case (d = 3), instead, U;; = I3, while
R; =R(6;,v), and, thus, V;; = |:03><2 v]. In particular, one

can check that [ngg [(f)fj)T O]T} = [[p; 0] "]« [03X2 eg] and

[ngg [f)ij]xv} = [Pij]x |:03><2 v} . Thus, we conclude that the
expression (10) can be reduced to the bearing rigidity ma-
trix (17). Furthermore, when D = (R¢ x S')", the set S, in-
cludes the 2n unfeasible rotational movements of the agents, in
addition to the translation along the z-axis of %y, when d = 2.
Summing up, concerning the virtual trivial variations, we have
that ¢, = 3n when d = 2 and ¢, = 2n when d = 3.

3) Rigidity Theory in SE(3): The recent work [31] ac-
counts for formations of agents equipped with a bearing sensor
whose configuration is given by an element of SE(3). An
example is given by a swarm of fully actuated aerial plat-
forms provided with on-board omnidirectional cameras. The
considered group of agents can be modeled as a framework

(G,x) in D= SE(3)", where G is a directed graph and x
T

deals with the positions vector p = {pI . pﬂ € R3", and

-
the (3n x 3) attitudes matrix R, = {RI . RI] € SO(3)",
stacking all the agent position vectors and rotation matrices,
respectively. Note that the commands space Z of each ¢th agent

21
Comparing (21) with (17), we observe that the translation,
uniform scaling, and coordinated rotation are trivial variations
also for a framework (G, x) in SE(3)", however, the concept
of coordinated rotation has to be redefined since the agents
orientation is no longer controllable only via a single angle.
Specifically, it has been proven in [31]

m®mwﬂ}
L. ®en h=1,2,3

Therefore, the following set S; tha dim(S;) = 7:

(22)

R = span {

1'n, ® IB
03n

p
) losn] ,Ro}- (23)

When D = SE(3)", each agent is characterized by ¢ = 6
DOFs and, thus, it can vary its position and attitude in any direc-
tion of the 3D space. Therefore, it follows that U;; = V;; =13
and the matrix Bg (x) corresponds to that in (21). Clearly, when
the agents actin SF/(3), no embedding in an higher dimensional
manifold is needed, which translates into the absence of virtual

trivial motions, and, correspondingly, no null columns appear in
B{ (x)-

S; = span {

B. Rigidity Properties

Accounting for Theorem 2, the next result provides a neces-
sary and sufficient condition to check if a given homogeneous
formation is IBR. Its validity is guaranteed by observing that
rk(Bg(x(t))) = rk(Bg (x(t))) together with the results of [26,
Th. 4], [28, Th. II.6], and [31, Th. 3] dealing with homo-
geneous frameworks embedded in R9", (R? x S')", SE(3)",
respectively.

Theorem 3: A homogeneous framework (G, x(t)) in D,
where each agent has ¢ <6 DOFs is IBR if and only if
rk(Bg(X(t))) =cn—c— L

Proof: Note that tk(Bj-(x(t))) = 6n — ¢; — q,, where the
difference 6n — ¢, corresponds to the total DOFs of the for-
mations, namely, to ¢, = cn < 6n in homogeneous cases. On
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the other hand, from (16), (20), and (23), it can be inferred
that for a homogeneous framework it holds that ¢, = c+ 1,
i.e., shape preservation is ensured when the formation acts as a
unique rigid body having ¢ DOFs and when it scales. Theorem 2,
thus, ensures that a noncolinear homogeneous formation is IBR
if and only if tk(BJ (x(t))) = tk(B} (x())) = (6n — q,) —
@G =cn—(c+1). [ |

As already highlighted in Section III-A, the IBR property
is generally studied for dynamic frameworks, while the BR
and the GBR ones are usually discussed for static frameworks.
Nonetheless, these last two properties can be also stated for
dynamic frameworks over time, and in particular they can hold
for any ¢.

Given these premises, the next theorem provides a complete
characterization to clarify the relation between BR, GBR, and
IBR properties for noncolinear frameworks embedded in any
differential manifold D.

Theorem 4: Given a differential manifold D for any ¢

i) aframework (G, x(¢)) is IBR if and only if it is BR;
ii) aframework (G, x(t)) is IBR if it is GBR.

Proof: i) Proceeding by contrapositive, if (G, x(t)) is not BR
for any ¢, there exists at least a configuration x(¢') in the neigh-
borhood U(x) of x(t), such that x(¢') € Q(x(t)) \ C(x(¢)),
and therefore the framework (G, x(¢)) would result to be IBF
according to the consequence of Definition 12. To prove the
reverse, we assume that the framework (G, x(t)) is BR for any
t. Ab absurdo, if the framework was not IBR (IBF) there would
be a variation deforming x(¢) into x(¢') € Q(x(t)) \ C(x(¢)),
implying a contradiction with respect to Definition 7.

i4) It is a direct implication of Proposition 1 and 1). [ |

The following results can also be stated for the frameworks
embedded in D = R, d € {2,3}.

Proposition 3: A BR framework (G, x(t)) inD = R, d €
{2, 3}, is also GBR.

Proof: According to [26, Th. 1 and 3], a framework (G, x(t'))
is BE/BC to (G, x(t)) if and only if its corresponding positions
vector belongs to ker(Bg(x(t)))/ker(Bi(x(t))), moreover, for
a BR framework it holds that ker(Bg(x(t))) C ker(Bx(x(t)))-
These two facts imply that a framework (G,x(t)) in D =
R, d € {2,3}, is GBR if the condition ker(Bg(x(t))) =
ker(Bg(x(t))) holds. Hence, because of Theorem 1, the bearing
rigidity property ensures the global rigidity property. |

We observe that the requirement on the null spaces equiva-
lence for GBR property derived in the proof of Proposition 3
coincides with the definition of IBR property provided in Defi-
nition 12. Thus, a IBR framework in R?" is also GBR for any
time and vice versa, leading to the next corollary.

Corollary 1: For frameworks embedded in D=R¥ e
{2, 3}, bearing rigidity, global bearing rigidity, and infinitesimal
bearing rigidity are equivalent properties.

The equivalence among rigidity properties is not valid when
introducing the RDOFs as for frameworks in (R¢ x S1)", d €
{2,3}, orin SE(3)™. Fig. 2 provides an example [panel (a)] of a
IBR framework in (R? x S')" composed of n = 4 agents, that
is not GBR since it is possible to deform into a BE and not BC
framework [panel (b)].

Fig. 2. Example of IBR and not GBR framework in D= (R?xS!)"
with n = 4. Blue circles, blue-red arrows, and gray arrows denote, re-
spectively, the agents, the corresponding local frames, and the existing
bearing measurements.

Fig. 3. Sensing graphs for the considered case studies. (a) Homo-
geneous formation. (b) Heterogeneous formation K = G; U Gs, with (c)
aerial bearing subgraph G, (d) terrestrial bearing subgraph Gs.

VI. APPLICATIONS OF UNIFIED RIGIDITY THEORY

In these case studies, time dependency is omitted for brevity.

A. Homogeneous Formation in R® x S? Case Study

As a first application of unified rigidity theory, we discuss a
homogeneous formation case study that has not been considered
in the literature and show how this can be well accommodated
in the framework of Section I'V.

We account for the case study in Fig. 3(a), where a forma-
tion is composed of four aerial platforms (blue circle) with
bearings coming from gimbal cameras, which, despite the free
movement of the agents in the 3D space, keep their image
planes aligned with the horizon and are denied the roll motion:
For each agent ¢ = 5 (¢! = 3 and ¢" = 2), and D = R3 x S2.
The considered n = 4 agents group is modeled as a homo-
geneous agent framework (K, x), where x = (x1 ... x4) with
X1, X2s X3, X4 € R? x S2. Note that the relative bearing mea-
surement between each pair of agents is expressed in their local
frames and the underlying graph is complete, thus the formation
is IBR, according to Definition 12.

According to Proposition 2 and the related discussion held in
Section V for the homogeneous case, all the edges can vary in
the 3D space in the same way, in particular their rotations are
constrained around the y-axis and z-axis of %y . Hence, U;; =
I3 and V;; = 03 e, es] in correspondence to any e;; € £. The
bearing matrix By (x) € R36*24 takes the form as in Fig. 4(a),
where four null columns can be highlighted.

From Theorem 3, itholds that tk(Bjf (x)) = 4(3 +2) — (3 +
2) — 1 = 14. This fact can be numerically verified and implies
thatnull(Bj£ (x)) = ¢ + ¢, = 10. Inparticular, we can identify
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Fig. 4. Structure of the bearing rigidity matrix for the considered case
studies. (a) Homogeneous and (b) heterogeneous formations. Dark
squares indicate nonnull values of the matrix; in the heterogeneous case
t and a labels refer, respectively, to terrestrial and aerial agents. Null
columns are indicated with an asterisk.

TABLE IlI
MATRICES FOR THE HETEROGENEOUS FORMATION CASE STUDY

l (i,5) [ Uy [ Vy |
(1’2)’(1»3))(271)7(273)7(371)7(372) [el €2 03} [03><2 63}
(174)7 (274)7 (374) I3 [03><2 93}
(471)7(472)7(473) 13 I3

q: = ¢+ 1 = 6 trivial variations, which are three translations,
two coordinated rotations, and one scaling, in addition to ¢, = 4
virtual variations that are due to the four null columns of ch' (x)
and correspond to the actual constraints on the agents motion.

B. Heterogeneous Formation Case Study

The discussion carried out in Section IV about the structure
of the rigidity matrix turns out to be particularly useful for the
case of heterogeneous formations made up of agents whose
configurations evolve in different differential manifolds.

To validate this observation, we account for the case study
in the right part of Fig. 3 [panels (b)—(d)] referring to a forma-
tion involving three unicycle-modeled terrestrial robots (green
squares), and a fully actuated aerial platform (blue circle). We
assume that the agents are able to retrieve relative bearings
expressed in their local frames according to the depicted com-
plete graph C. Hence, the considered n = 4 agents group is
modeled as the IBR framework (I, x), where x = (x1 ... x4)
with x1, X2, x3 € R? x S1, and x4 € SE(3).

Assuming that the global frame is oriented so that the terres-
trial vehicles can move on the (xy)-plane of .y, the matrices
U and V in (10) are determined based on Table III.

Hence, the rigidity matrix B}~ () € R3*24 has the structure
reported in Fig. 4(b).

The set S; counts ¢; = 5 trivial variations consisting of the
translation of the whole formation on the (xy)-plane of the
global frame, its coordinated rotation around the z-axis of
Fw, and its scaling (indeed, the third, sixth, ninth, tenth, and

eleventh columns of Bjf(y) results to be linearly dependent
with respect to the remaining ones). In addition, the matrix has
six null columns, meaning that the set S, of virtual variations
has cardinality ¢, = 6. This, in fact, coincides with the (un-
feasible) rotations of the terrestrial robots around their 2 and
y-axis, and is related to the zero columns in B (). From these
premises, it follows that null(Bj(y)) = 11 and, finally, that
rk(B;: (x)) = 13, as can be numerically verified.

To conclude, we note that the given IBR formation results
from the union of two sensing graphs, each one corresponding
with the measurements obtained by either the terrestrial robots
(G1) or the aerial platform (G2), as in Fig. 3(c) and (d). Focusing
on the infinitesimal rigidity of the resulting two frameworks,
we can observe that any rotation of the aerial vehicle is an
infinitesimal variation for (G, x), and similarly, any rotation
of the terrestrial vehicle is an infinitesimal variation for (G, x),
concluding that the two frameworks are not IBR differently from
their union (IC, ).

VIl. ON COLINEAR FORMATIONS

In this section we briefly discuss the colinear formations case,
focusing on the bearing-preserving variations set. According to
Definition 2, a formation composed of n > 3 distinctly placed
agents is colinear if all the agents are collinear, i.e., for any kth
component of the position vectors, k € {1...d},itexistsc € R,
such that pj = cp}; for each pair (v;, v;) of agents in the group.
Under this hypothesis, we can observe that the shape uniqueness
is guaranteed for a larger set of infinitesimal variations with
respect to that described in the previous sections. Although
this statement is valid independently on D, in the following we
distinguish between the three cases previously treated.

D =R, de{2,3}. For a formation composed of n
agents, controllable in R9, d € {2,3}, and aligned along
a certain direction identified by the unit vector w € S9!
the bearing measurements are collinear, namely, bg(x) =
diag(b11g - - by1q) (1, @ W), withb; € R fori € {1...m}.
Thus, these are preserved despite the displacement of any agent
along the direction specified by w and the translation of the
whole formation in the subspace W of R? orthogonal to w.
Hence the trivial variation set* coincides with S¢ = span{I,, ®
w,1, ® W}, where W € R?*(4-1) is a matrix whose columns
represent a basis for W. Trivially, S¢ has dimension n + (d —
1) > d+1=|8, with S; as in (16).

D = (R4 x SH)™, d € {2,3}. For an n-agent formation act-
ingin (R% x S')”, the bearing measurements are retrieved in the
local agents frame. Additionally, each agent has a (controllable)
RDOF allowing rotations only around the direction of v € S2
when d = 3. To analyze the colinear situation in which all the
agents are aligned along the direction identified by the unit vector
w € S971, it is necessary to distinguish between the following
cases: i) d=2,ord=3and v #w, i) d=3 and v =w.
For a colinear formation satisfying conditions ), the bearing
measurements are preserved when the whole agents group trans-
lates along any direction in the (d—1)-D subspace WW C R¢

“#Note that the uniform scaling of the formation corresponds to suitable (not
equal) translations of all the agents along the direction v € S,
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orthogonal to w, when a coordinated rotation is performed
according to the definition given in Section V-A2, and also when
any agent moves along the alignment direction. Therefore, the
trivial variation set S is spanned by n + (d — 1) + 1 elements.
In case i), the dimension of S{ increases since the formation
is not required to perform a coordinated rotation to preserve
the bearings; also the rotation of any agent around the axis
identified by v = w ensures the measurements maintenance.
Hence, we get |S¢| = 2n + (d — 1). Note that in both cases 7)
and ¢7) the trivial variation set has dimension greater with respect
to noncolinear case for which |S;| = d + 2 according to (20).

D = SE(3)" . When the space of interest is D = SFE(3)",
we figure out that for the colinear case in which the n agents
are aligned along the direction identified by the unit vector w &
S2, bearings are preserved when any agent translates or rotates
along the direction of v and when the whole formation performs
a translation or a coordinated rotation around any direction in
the (two-dimensional) subspace W C R orthogonal to w. The
trivial variation set has thus dimension 2n + 4 > 7 = |S;| with
S; as in (20).

In general, we can observe that for every differential manifold
D it occurs that | S| > |Sy|.

VIIl. CONCLUSION

This work focuses on bearing rigidity theory applied to mul-
tiagent systems whose elements are characterized by a certain
number of both TDOFs and RDOFs. As original contribution,
we propose a general framework for the definition of the main
rigidity properties without accounting for the specific control-
lable agents state domain. Moreover, we summarize the existing
results about bearing rigidity theory for frameworks embedded
in R%, in R? x St with d € {2,3}, and in SE(3). For each
case, the principal definitions are provided and the infinitesimal
rigidity property is investigated by deriving a necessary and
sufficient condition based on the rigidity matrix rank. In addition,
we provide a necessary and sufficient condition to check IBR
property of a given system independently on its differential
manifold. This arises from the derivation of a unified structure
of the rigidity matrix that does not rest on the specific agents
domain but exploits the fact that D C SE(3).

APPENDIX

Theorem 5: For a noncolinear framework (KC,y) in R9",
d € {2,3}, it holds that ker(By(x)) = S, or equivalently,
rk(Bx(x)) = dn — d — 1, where S; corresponds to the trivial
variation set (16).

Proof: The bearing rigidity matrix associated to (I, x) is so
that the kth row block, corresponding to e, = (v;,v;) € E with
1< j,5 has the following form, where 0, is the (p x q) zero
matrix and B;; = s;;P(p;;) € R¥¢
-By; Odxd(n—j)| - 24

O4xdagi-1) Ogxagi-i-1)  Bij

SFor undirected graph, it is always possible to choose a suitable edges labeling
ensuring the desired requirement.

For d =2, By = s}ryrl;, with vy = [p}; —pf]" € R?,
where pfj,pﬁ’j € R are the (scalar) components of vector p;; €
R? along the z-axis and y-axis of the global frame, respectively.
Note that B;; is neither zero nor full-rank, hence the k-row
block (24) has unitary rank. For this reason, for each edge
er = (vi,v;) € Ec withi < j, we consider the next opportunely
scaled version of (24)

O1x2i-1) Ty Otuagic1y T4 01><2(n—j)} (25)

obtaining the matrix B(n) € R(("=1)n/2)x2n_Thjs has the same
rank of B () but lower dimensions, so hereafter, we consider
B(n) instead of Bx () and we prove thesis by induction on the
number n of agents in the formation.

Base case: n = 3

We aim at proving that rk(B(3)) = 3. To do so, observe that

_r1r2 I'IQ 012
B(3)=|-rj; 01.o r[3|€R¥C (26)
01x2 —I‘;g, r;S

is full-rank whether the agents are not all collinear. Because of
noncolinear formation hypothesis the thesis is proved.

Inductive step n = n: Note that, given a set of n agents, for
each subset containing 7 — 1 elements, it is possible to partition
B(7) so that

B(n—1) 1, ® 0y

1st block
2nd block

27
where the first block has 7 = (7 — 1)(72 — 2)/2 rows related to
the edges incident to the first 7 — 1 agents, while the second
block has 7 rows related to the edges connecting the nth agent
with the first 7 — 1 agents. For inductive hypothesis the thesis
holds forn — 1 > 3,i.e.,rtk(B(72 — 1)) = 27 — 5, thus, the first
block of B(7n) in (27) contains 272 — 5 linearly independent
rows. Moreover, there are at least two agents, for instance the ¢th
and jth agent, that are not aligned with the nth agent, hence it
doesnotexistc € R, suchthatr;; = cr;p and the rows related to
the edges (v;, v5 ), and (v;, vy ) are linearly independent with re-
spect to the rows of the first block. B(7) has thus at least 271 — 3
linearly independent rows, and, since rk(B(n)) < 2n — 3 for
Lemmad4 in [26], thenitmustberk(B(7)) = 27 — 3 concluding
the proof for the case d = 2.

When d = 3, the matrix B;; in (24) turns out to be

B (71) =

diag{r[;}","  col{r 1"

(r)) "+ (05)° *QPZ‘P?J' , —piip;;
By=sl;| —wheh  0B)T0L) pieh
R A ARG
(28)

where pj;, piyj, p;; € R are the (scalar) components of vector
pij € R3 along the x-axis, y-axis, and z-axis of the Zyy, respec-
tively. The proof for this case thus follows the same inductive
reasoning performed for d = 2. ]
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