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A Network Optimization Approach to
Cooperative Control Synthesis

Miel Sharf and Daniel Zelazo

Abstract—The mathematical theory of nonlinear coop-
erative control relies heavily on notions from graph the-
ory and passivity theory. A general analysis result is
known about cooperative control of maximally equilibrium-
independent systems, relating steady-states of the closed-
loop system to network optimization theory. However, until
now only analysis results have been proven, and there is
no known synthesis result. This letter presents a controller
synthesis procedure for a class of diffusively coupled
dynamic networks. We use tools from network optimization
and convex analysis to show that for a network composed
of maximally equilibrium independent passive systems, it is
possible to construct controllers on the edges that are max-
imally equilibrium independent output-strictly passive and
achieve any desired formation. Furthermore, we show that
this can be achieved with linear controllers. We also pro-
vide a simple controller augmentation procedure to allow
for reconfiguration of the desired output formation with-
out a redesign of the nominal control. We then apply the
presented methods to reconstruct the well-known consen-
sus algorithm, and to study formation control in networks
of damped oscillators.

Index Terms—Multi-agent systems, cooperative sys-
tems, nonlinear control systems, optimization

I. INTRODUCTION

THE STUDY of multi-agent networks has been in the pin-
nacle of control research for the last few years, exhibiting

both a rich theoretical framework as well as a wide range of
applications [1]–[3]. An important problem in the study of
multi-agent system is that of controller synthesis - namely
the construction of distributed controllers that ensures the
closed-loop system converges to some desired output. This
control goal encompasses many canonical problems including
synchronization and formation control [4]–[7].

In this venue, researchers have tried to establish a unified
theory for networks of dynamical systems, and in many of
them passivity theory plays a major role [8]. Passivity theory
allows for the analysis of dynamic networks to be separated
into complimentary layers - the dynamic system layer and the
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information exchange network layer. The use of passivity the-
ory to study the convergence properties of these networked
systems was originally proposed in [9]. Many variations and
extensions of this theme have been explored in a variety of
contexts. For example, the related concepts of incremental pas-
sivity or relaxed co-coercivity have been used to study various
synchronization problems [10], [11], and more general frame-
works including Port-Hamiltonian systems on graphs [12].
Passivity is also widely used in coordinated control of robotic
systems [13] and the teleoperation of UAV swarms [14].

In the recent work [15], the passivity approach to coopera-
tive control was revealed to have another interpretation related
to a class of network optimization problems. Network opti-
mization, a subdomain of convex optimization theory, deals
with optimization of functions defined over graphs [16]. The
main result of [15] showed that the asymptotic behavior of
these networked systems is (inverse) optimal with respect to a
family of network optimization problems. In fact, the steady-
state input-output signals of both the dynamical systems and
the controllers comprising the networked system can be asso-
ciated to the optimization variables of either an optimal flow
or an optimal potential problem; these are the two canonical
dual network optimization problems described in [16].

The results of [15], however, are an analysis result. For
such analysis to be practically useful, one must also develop
synthesis procedures to design controllers for networked sys-
tems to achieve the desired coordination goals. This motivates
the main objective of this letter. The goal of this letter is to
describe a solution to the synthesis problem for multi-agent
systems by applying results from [15]. Our control objective
is to assure the convergence of the networked system to a
desired relative output configuration - we term this desired
output a formation of the system.1 Our main contributions are
as follows:

i) We prove that under certain conditions on the networked
system, any desired formation can be achieved as a
steady-state of the system.

ii) Given a collection of desired relative outputs (the forma-
tions), we present a synthesis procedure for controllers
ensuring the closed-loop system globally asymptotically
converges to the desired formations.

1This is not to be confused with the standard formation control prob-
lem which aims to control a team of agents to some desired spatial
configuration [5]. Our use of the term formation in this context is more
abstract.
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iii) We propose a simple controller augmentation procedure
to allow for reconfiguration of the desired output for-
mation without a redesign of the nominal control. This
augmentation is realized by designing certain constant
exogenous inputs for the controller without modifying its
dynamic structure.

The rest of the letter is as follows. Section II reviews the
necessary results from [15]. Section III derives the synthe-
sis methods for the controllers, as well as the “formation
reconfiguration” scheme. Lastly, Section IV studies the case
of simple integrator agents, reconstructing the well-known
consensus protocol [4], and also demonstrates the formation
reconfiguration scheme.

Notations: This letter employs basic notions from alge-
braic graph theory [17]. An undirected graph G = (V,E)

consists of a finite set of vertices V and edges E ⊂ V×V. We
denote by k = {i, j} ∈ E the edge that has ends i and j in V.
For each edge k, we pick an arbitrary orientation and denote
k = (i, j) when i ∈ V is the head of edge k and j ∈ V the tail.
The incidence matrix of G, denoted E ∈ R

|E|×|V|, is defined
such that for edge k = (i, j) ∈ E, [E]ik = +1, [E]jk = −1, and
[E]�k = 0 for � �= i, j.

Furthermore, we also use a few basic notations from linear
algebra. For a linear map T:U → V between vector spaces,
we denote the kernel of T by ker T , and the image of T by
Im(T). For a subspace U of an inner-product space X (e.g.,
R

d), we denote the orthgonal complement of U by U⊥, and
the orthogonal projection of some x ∈ X on a U by ProjU(x).

II. NETWORK OPTIMIZATION AND PASSIVITY IN

COOPERATIVE CONTROL

The role of network optimization theory in cooperative con-
trol was introduced in [15]. In this section, we provide an
overview of the main results from this letter.

A. Maximally Monotone Dynamical Systems

Consider the dynamical system of the form

ϒ :
{

ẋ = f (x, u), y = h(x, u), (1)

where u ∈ R is the input and y ∈ R is the output. In [18], the
notion of equilibrium independent passivity (EIP) was intro-
duced. EIP systems requires the existence of a continuous and
monotone function that maps constant input signals to constant
output signals, i.e., an equilibrium input-output map, and that
the system is passive with respect to these input-output pairs.
An extension of this notion proposed in [15] is maximal equi-
librium independent passivity (MEIP). For MEIP, we consider
the set of all pairs (uss, yss) of steady-state inputs and outputs
for ϒ and denote this by the relation kϒ , which is a set of pairs
of real numbers. Thus, the set of all the steady-state outputs
associated with the input u is kϒ(u), and the set of all steady-
state inputs associated with the output y by k−1

ϒ (y). These are
both set-valued maps, as their image can have more than one
point, or no points at all. For example, if ϒ is the simple inte-
grator ẋ = u, y = x, then kϒ = {(0, y): y ∈ R}. This is the
main distinguishing point between EIP and MEIP. In EIP, it is
required that the steady-state input-output maps are functions,

while for MEIP they should be relations. Consequently, the
integrator example is not EIP.

Definition 1 (Maximal Equilibrium Independent
Passivity [15]): Let ϒ be as in (1). The system ϒ is maximally
equilibrium independent monotonic (output-strictly) passive
if the following conditions hold:

i) The system ϒ is (output-strictly) passive with respect to
any steady state (uss, yss) ∈ kϒ [19].

ii) The relation kϒ is maximally monotone. That is, if
(u1, y1), (u2, y2) ∈ kϒ then either (u1 ≤ u2 and y1 ≤
y2), or (u1 ≥ u2 and y1 ≥ y2), and kϒ is not contained
in any larger monotone relation [20].

Such systems include (among others) simple integrators, gra-
dient systems, Hamiltonian systems on graphs, and others
(see [15] for more examples).

The main reason one is interested in monotone relations
is their connection with convex functions. A theorem by
Rockafellar [20] states that maximal monotone relations are
given by the subdifferential of a convex function R → R, and
vice versa. Futhermore, this correspondence is unique up to a
constant added to the convex function. In particular, for MEIP
systems, we conclude that there exists some convex function
Kϒ such that the steady-state input-output relation kϒ(u) is
the subgradient ∂Kϒ(u). This characteristic allows us to use
the theory of convex optimization to find steady-states, as was
exhibited in [15].

B. The Network Model

In this subsection, we describe the structure of the network
dynamical system studied in [15]. Furthermore, we present the
tool connecting the space of networked dynamical systems and
network optimization theory.

Consider a collection of agents interacting over a network
G = (V,E). Assign to each node i ∈ V the dynamical system

�i :

{
ẋi = fi(xi, ui)

yi = hi(xi, ui),
(2)

which we assume to be maximally equilibrium-independent
monotonic passive. Similarly, we can assign a dynamical
system (a controller2) to each edge k ∈ E,

�k :

{
η̇k = φk(ηk, ζk)

μk = ψk(ηk, ζk),
(3)

also assumed to be maximally equilibrium-independent mono-
tonic passive. We consider stacked vectors of the form u =
[uT

1 , . . . , uT
|V|]T and similarly for y, ζ and μ. The network sys-

tem is diffusively coupled with the controller input described
by ζ = ETy, and the control input to each system by u = −Eμ.
This structure is illustrated in Fig. 1. In the figure, the systems
�i denote the agents, the systems �k denote the edge cou-
plings, and E is the incidence matrix that provides the diffusive
coupling between the nodal systems and edge controllers.

We denote the steady-state input-output relations of the
node i and the edge k by ki and γk, respectively. Owing to

2In the literature, controllers are usually external systems whose trajectory
all the nodes in the network should be driven onto [21]. Here, the notion of
controllers refers to edge couplings, which is also widespread in [15].
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Fig. 1. Block-diagram of the closed loop.

Rockafellar’s result, we also associate to each of the input-
output relations the convex functions Ki(ui) and �k(ζk) (i.e.,
∂Ki(ui) = ki and ∂�k(ζk) = γk). We consider the stacked rela-
tions k(u) and γ (ζ ) by concatenating the ki(ui)’s and γk(ζk)’s
respectively. We also define the convex functions K(u) =∑

i∈V
Ki(ui) and �(ζ ) = ∑

k∈E
�k(ζk). It is straightforward

to check that ∂K(u) = k(u) and ∂�(ζ ) = γ (ζ ).
Remark 1: Although the defined network is unweighted,

results obtained will also hold for weighted network, as one
can “absorb” the weight in the measurement μk of each edge
controller.

For the statement of the main theorem, we introduce the
notion of the dual function. The dual function of K is defined
by K
(y) = minu{yTu−K(u)} [22]. It is also a convex function,
and it possesses the property that ∂K
(y) = k−1(y). One can
similarly define the convex dual �
(μ) of �. We are now ready
to state the main result from [15].

Theorem 1 [15]: Assume that the systems �i are maxi-
mally equilibrium-independent monotonic output-strictly pas-
sive systems. Then the signals u(t), y(t), ζ(t), μ(t) of the
closed-loop system with diffusive coupling and controllers �k

converge to some steady-state values û, ŷ, ζ̂ , μ̂. These values
are the (primal-dual) solutions of the following pair of convex
optimization problems:

For the remainder of this letter, we make the following
assumption on the agent dynamics.

Assumption 1: The agent dynamics in (2) are maximally
equilibrium-independent monotonic passive.

Remark 2: Owing to the symmetry of the system in Fig. 1,
we can consider networks of plants that are only maxi-
mally equilibrium-independent monotonic passive with con-
trollers that are maximally equilibrium-independent monotonic
output-strictly passive without changing the convergence result
of Theorem 1.

III. NETWORK OPTIMIZATION FOR

CONTROLLER SYNTHESIS

Our goal is to design the controllers �k on the edges to
achieve a desired output for the networked system. We specify
the desired outputs in terms of the relative output ETy(t), and
we term this desired configuration a formation.

Definition 2: A formation is a vector ζ ∈ R
|E| which is

in Im(ET). We say that a vector y ∈ R
|E| has formation ζ if

ETy = ζ , and that a system converges to a formation ζ if its
output converges to a vector y which has formation ζ .

Our overarching goal in this section is to solve the follow-
ing problem, which deals with forcing a certain steady-state
formation on the output of the agents.

Problem 1: Let ζ 
 be the desired formation. Find con-
trollers �k on the edges such that the output y(t) of the
closed-loop system will converge a vector y
 such that ETy
 =
ζ 
, that is, limt→∞ ETy(t) = ζ 
.

The section is divided into three subsections. The first deals
with forcing the desired formation to exist as a steady-state
output. The second one deals with assuring that the system
will globally asymptotically converge to the said formation.
Finally, the last deals with the problem of different formations,
namely how to construct a “formation reconfiguration scheme”
allowing us to switch the steady-state formation of the closed-
loop system by slightly augmenting the controller.

A. Achieving a Desired Steady-State

We assume the node dynamics �i and network structure
G is given and fixed. In particular, the input-output relations
ki, the integral functions Ki, their sum K, and the incidence
matrix E are all given. However, the input-output relations
of the controllers γk and their integral functions �k are not
specified and should be designed.

Suppose we choose our controllers to be maximally
equilibrium-independent monotonic passive controllers. As
before, we denote the stacked input-output relation of all the
controllers by γ , and let � be the corresponding integral func-
tion. The result of Theorem 1 showed that the closed-loop
system converges to an output y which solves the convex
Optimal Potential Problem (OPP).

The outline to the solution to the Problem 1 is given by
studying the minimizers of the optimization problem OPP. We
first prove the following proposition.

Proposition 1: Let ŷ be a fixed stacked output vector and
let ζ̂ = ET ŷ. The pair (ŷ, ζ̂ ) is a minimizer of OPP if and only
if the inclusion

k−1(ŷ)+ Eγ (ζ̂ ) � 0 (4)

holds.
Note that we ask 0 to be in the subdifferential set because

it can have more than one value.
Proof: The network optimization problem OPP can be writ-

ten as an unconstrained optimization problem in terms of the
variable y alone. We ask to minimize F(y) = K
(y)+�(ETy).
This is a convex function of y, so it is minimized only
where the zero vector lies in its subdifferential [22]. Thus,
by subdifferential calculus (see [22]) we obtain

0 ∈ k−1(ŷ)+ Eγ (ET ŷ).

Plugging in ζ̂ = ET ŷ gives the desired criterion.
The main point of (4) is that if one tries to solve Problem 1,

one must find some potential vector y
 such that ETy
 = ζ 


and k−1(y
) ∈ Im(E). Thus, the question to be asked is if one
can actually find such a vector y
.
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Theorem 2: For every ζ , there exists a vector y such that
ETy = ζ and k−1(y) ∩ Im(E) �= 0.

Proof: We consider the function F which is the restriction
of K
 on the set Y = {y : ETy = ζ }. As F is a convex function
defined on an affine subspace, it must have a minimum at some
point y ∈ Y . Moreover, we know that the zero vector lies in
∂F(y). In [23], it was shown that ∂F(y) = ProjkerET (k−1(y)).

Thus, because we know that the zero vector is in the sub-
gradient of F at y, we conclude that there is some vector
u ∈ k−1(y) such that ProjkerET (u) = 0, which is the same as
u ∈ ker(ET)⊥ = Im(E). Thus we choose y
 = y.

The following corollary shows that any formation ζ can be
achieved as a steady-state solution.

Corollary 1: For every ζ , there exists some vector μ such
that both 0 ∈ k−1(y) + Eμ and ETy = ζ hold. In particular,
if γ (ζ ) = μ, then (4) is satisfied, implying that (y, ζ ) is a
minimizer of OPP.

Proof: Take y to be the vector from Theorem 2. As k−1(y)∩
Im(E) �= ∅, we conclude that there is some vector μ such that
E(−μ) ∈ k−1(μ). This is equivalent to 0 ∈ k−1(y)+ Eμ.

B. Asymptotic Convergence and Uniqueness of a
Steady-State

Recall that Problem 1 aims to achieve the formation ζ 
.
We found a corresponding vector y
 such that (y
, ζ 
) is a
minimizer of OPP. We also know that the closed-loop sys-
tem converges to a solution of this optimization problem
(assuming that assumption 1 holds). However, we should note
that network optimization problems (and in general, convex
optimization problems) can admit multiple solutions. In this
case, we cannot assure convergence of the system to the
desired formation. However, if we show that (y
, ζ 
) is the
unique solution, we would assure convergence to the correct
formation.

In this direction, we define a new function of the parameter
ζ , replacing the y term in the target function:

Definition 3: The minimal potential function G is a function
with domain Im(ET) having values in R, and defined by

G(ζ ) = min{K
(y) | ETy = ζ }. (5)

Theorem 3: Consider the closed-loop system in Fig. 1,
and let ζ 
 be the desired formation vector. Suppose that the
controllers are maximally equilibrium-independent monotonic
output-strictly passive, and denote their steady-state input-
output relations by γk and their integral convex functions by
�k. Suppose that the following conditions hold:

1) There exists some y
 such that ETy
 = ζ 
.
2) The equation (4) holds for the pair (y
, ζ 
).
3) For any edge k ∈ E, �k is strictly convex in a

neighborood of ζk.
Then the closed-loop converges to the desired formation ζ 
.
Furthermore, the output of the system converges to some ỹ
satisfying ET ỹ = ζ 
.3

Proof: If (4) is satisfied, then (y
, ζ 
) is a minimizer of OPP.
If we show all minimizers are of the form (y, ζ 
) for some y,
then the proof will be completed by Theorem 1.

3The vectors ỹ and y
 need not be identical.

The optimization problem OPP in the variables (y, ζ ) is
equivalent to the unconstrained minimization of G(ζ )+ �(ζ )

in the variable ζ , meaning that ζ 
 is a minimizer for the latter.
We show that it is the only minimizer. Indeed, we know that
G is convex [23], and � is assumed to be convex and strictly
convex in a neighborhood U of ζ 
. Hence, G +� is a convex
function which is strictly convex in U. Let M be the collection
of all minima of G +�. It was shown in [23] and [22] that M
is convex, and that U ∩ M contains no more than one point.

Now, we know that ζ 
 is a minimizer of G+�, so ζ 
 ∈ M.
If we had any other point ζ ∈ M, the straight line from ζ 


to ζ would have been in M, and in particular, since U is a
neighborhood of ζ 
, it would contain infinitely many points
from M. We saw that this cannot hold, meaning that ζ 
 must
be the sole point in M, thus being the unique minimizer of
G + �. This completes the proof.

Remark 3: In the general case, checking whether some
function � is strictly convex (near ζ 
) is a hard task - one
can try and show that for all vectors ζ0, ζ1, μ0 and any t ∈ R,
the function t �→ μT

0 γ (ζ0 + tζ1) has no straight lines in its
graph, which is not easily checked.

However, one should note that �(ζ ) = ∑
i �k(ζk) has the

property that it is strictly convex (near ζ 
) if and only if �k

are strictly convex near ζ 
k for all k ∈ E. This is easier to ver-
ify geometrically since the �k : R → R are one-dimensional
maps. In particular, �k is strictly convex if its graph does not
contain any straight lines, or equivalently, γk does not have
any horizontal lines for all k ∈ E. We emphasize a few special
cases of importance.

• The relation γ (ζ ) = ∇ψ(ζ ) defines a strictly convex
function if and only if ψ is strictly convex.

• The relation γ (ζ ) = Mζ + μ0 defines a strictly convex
function if and only if M is a positive-definite function.

• If γ defines a convex relation and it is given by a dif-
ferentiable map γ (ζ ) = φ(ζ ), then it defines a strictly
convex function near ζ 
 if the differential df (ζ ) is a full-
rank matrix. Note that it is possible that this condition is
violated, but that we still have a strictly convex function
- for example γk(ζk) = ζ 3

k with ζ 
 = 0.
Example 1 (Linear Controllers): We consider an example

for the construction of linear dynamic controllers of the form

�k :

{
η̇k = −ηk + ζk + vk

μk = ηk,

for k ∈ E, where the constant signals vk are to be decided
later. It is easy to check that this is a maximal equilibrium-
independent monotonic output-strictly passive system with a
steady-state input-output relation given by γk(ζk) = ζk +vk. In
this case, the stacked input-output relation is given by γ (ζ ) =
ζ + v, where v is freely-assignable.

Suppose we want a steady-state formation ζ 
. We first
solve (4) and find some y
 such that ETy
 = ζ 
 with some
corresponding u
 ∈ k−1(y
) ∩ Im(E). This is done by mini-
mizing K
(y) over {y: ETy = ζ 
}. Now take some μ such that
u
 = E(−μ
). Then, (4) takes the form,

E(−μ
) = k−1(y
) = E(ζ 
 + v),
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and choosing v = −ζ 
−μ
 satisfies (4). Moreover, the integral
function � of γ is of the form �(ζ ) = 1

2ζ
Tζ + vTζ , which is

strictly convex. Thus, if we take the controllers

�k :
{
η̇k = −ηk + ζk − ζ 
k − μ
k, μk = ηk

we end up with the desired formation.
An important consequence of this result is that if all of the

nodal systems are maximally equilibrium-independent mono-
tone passive, then we can achieve any desired steady-state
formation using a linear controller. However, one should note
that the construction of these controllers requires global infor-
mation, as the minimization of K
(y) over ETy = ζ 
 is
needed.

C. Formation Reconfiguration

In practical applications, we may want to change the desired
formation ζ 
 after some time. However, we wish to avoid
a change in the controller design scheme. Note that in the
previous example, the desired formation ζ 
 defined the vector
v we used. We wish to implement a similar mechanism for
general controllers.

In this direction, we present a new scheme for the con-
troller, adding a constant exogenous input ωk. The controller
dynamical system now becomes

�k :

{
η̇k = φk(ηk, ζk, ωk)

μk = ψk(ηk, ζk, ωk).
(6)

This design allows us to alter the design of the system by
changing ωk, yielding different steady-state formations.

Suppose we have found some controllers of the form (3)
for some formation ζ0, and consider the stacked controller:

� :

{
η̇ = φ(η, ζ )

μ = ψ(η, ζ ).

We now augment it to a stacked new-scheme controller by
allowing the exogenous input ω = (α, β) to affect the output
of the controller,

� :

{
η̇ = φ(η, ζ − α)

μ = ψ(η, ζ − α)+ β.

The following result implies that it is enough to solve the
synthesis problem for a single formation (e.g., concensus),
applying the “formation reconfiguration” procedure to get any
other desired formation.

Theorem 4: Consider the closed-loop system in Fig. 1
with some nominal controller �, and suppose that its out-
put converges to a formation ζ0. Then there is a function
g : ζ �→ ω such that for any desired formation ζ 
, if one
defines α = ζ 
−ζ0 and β = g(ζ 
)−g(ζ0), then the controller
�ω forces the output of the closed-loop system to converge
to the formation ζ 
.

The controllers produced by the formation reconfiguration
scheme is illustrated in Fig. 2.

Proof: The steady-state input-output relations can be com-
puted from one another by γ ω(ζ ) = γ (ζ − α) + β, where
γ is �’s relation and γ ω is �’s relation for that specific

Fig. 2. The formation reconfiguration scheme.

choice of ω. For each ζ , we know that there is some yζ such
that ETyζ = ζ and that E(−μζ ) ∈ k−1(yζ ) for some μζ .
Because � yields the steady-state formation ζ0, we know that
k−1(yζ0) = −E(γ (ζ0)).

Now, if we fix some formation ζ 
 and use � with α =
ζ 
 − ζ0 and β = μζ
 − μζ0 , we claim that the equation (4)
holds. Indeed,

k−1(yζ 
) = k−1(yζ0)+ (k−1(yζ 
)− k−1(yζ0))

= −E(γ (ζ0))− E(μζ
 − μζ0)

= −E(γ (ζ0)− μζ0 + μζ
)

= −E(γ (ζ 
 − α)+ β) = −E(γ ω(ζ 
)).
which proves our claim.

IV. CASE STUDIES

A. Simple Integrators

We now focus on the case in which our agents are sim-
ple integrators. They are governed by the equations ẋi =
ui; yi = xi. The input-output steady-state of each node and
the corresponding integral function is given by:

ki(ui) =
{

R
N, ui = 0

∅, ui �= 0
, Ki(ui) =

{
0, ui = 0
∞, ui �= 0,

(7)

which has a dual function K
i (yi) = 0. This simplifies the prob-
lem OPP, as it reduces to optimizing �(ζ ) over ζ ∈ Im(ET).
Equivalently, we can start from (4) and conclude that the
equation at the minimum is just Eγ (ζ ) = 0.

Suppose we want to reach output agreement (i.e., the for-
mation ζ 
 = 0). We need γ (0) to be in the kernel of E . Thus
a pick as γk(ζk) = ζk · exp(ζ 2

k ) is viable. Furthermore, the
corresponding convex function is �k(ζk) = 1

2 exp(ζ 2
k ), which

is strictly convex. Thus the closed-loop system converges to a
steady-state output-agreement. Implementing these controllers
leads to the closed-loop system

ẋi =
∑

j:(i,j)∈E

(xj(t)− xi(t)) · (exp((xj(t)− xi(t))
2)),

which is a nonlinear coupling driving the system to consensus.
Similarly, the choice γ (ζ ) = ζ with �(ζ ) = 1

2‖ζ‖2, will
lead to the well-known linear consensus protocol [4], [6].

B. Formation Reconfiguration of Damped Oscillators

We consider a network of four damped SISO oscillators,

�i

{[
ẋ1

ẋ2

]
=

[
x2

−bix2 − ω2
i (x1 − xi)+ u

]
, y = x1

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 10,2024 at 09:49:44 UTC from IEEE Xplore.  Restrictions apply. 



SHARF AND ZELAZO: NETWORK OPTIMIZATION APPROACH TO COOPERATIVE CONTROL SYNTHESIS 91

Fig. 3. Formation control of damped oscillators.

where xi is the equilibrium point of the spring. The under-
lying graph was chosen to be a path graph (i.e., V =
{v1, v2, v3, v4},E = {{v1, v2}, {v2, v3}, {v3, v4}}). For the diag-
onal matrix W with ωi on the diagonal, the input-output
steady-state relations is given by k(u) = W−2u + x. This
implies that K
(y) = 1

2 yTW2y − yTW2x, and the minimization
algorithm solving (4) can be solved by methods of quadratic
programming. For this example, the values ωi, bi, and xi

were chosen randomly as ω = [15.54, 5.13, 7.89, 4.29](Hz),
b = [1.66, 1.22, 4.62, 1.23](1/sec), x = [3, −2, 1, 0](m).

For a consensus objective, ζ 
 = 0, (4) reduces to Eγ (ζ 
) =
0. Solving for this ζ 
, we choose γ (ζ ) = tanh(ζ ). To imple-
ment the said input-output relation, we take the following
SISO controller on each of the edges,

{
η̇k = −ηk + ζk

μk = tanh(ηk).

We then use the formation reconfiguration scheme to create
an augmented controller. The desired formation was changed
every 25 seconds as ζ 1 = [0, 0, 0]T , ζ 2 = [1, 1, 1]T , ζ 3 =
[2, 2, 2]T , ζ 4 = [0, 3, 0]T , and ζ 5 = [3, 0,−3]T . The output
y(t) of the system can be seen in Fig. 3(a) and relative outputs
ζ in Fig. 3(b). We can see that the agents do as their supposed
to, converging to the desired formations.

V. CONCLUSION

In this letter we presented a synthesis procedure for design-
ing controllers in a networked system to guarantee con-
vergence to a desired formation. We fixed a collection of
MEICMP agents in an underlying graph, and derived the fol-
lowing results. First, we showed that any relative output vector
ζ can be forced to be a steady-state of a closed-loop system,
for some choice of couplings. Secondly, we showed that for
any formation ζ , one can find edge controllers so that the
closed-loop system globally asymptotically converges to the
formation ζ . Thirdly, we gave criteria for the construction of
the controllers in derived condition, and showed how to build
controllers satisfying these criteria. Lastly, we presented the
“formation reconfiguration” scheme, allowing to augment con-
trollers driving the closed-loop system to some formation ζ0,

so that the closed-loop system with the augmented controllers
will converge to any wanted formation. The results were
demonstrated by two cases studies - simple integrators and
damped oscillators.
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